期刊文献+
共找到3,551篇文章
< 1 2 178 >
每页显示 20 50 100
The critical role of iron homeostasis in neurodegenerative diseases
1
作者 Tiantian Liang Jiasen Xu +6 位作者 Yan Zhu He Zhao Xiaoyu Zhai Qi Wang Xiaohui Ma Limei Cui Yan Sun 《Neural Regeneration Research》 2026年第5期1723-1737,共15页
Neurodegenerative diseases are prevalent conditions that greatly impact human health.These diseases are primarily characterized by the progressive loss and eventual death of neuronal function,although the precise mech... Neurodegenerative diseases are prevalent conditions that greatly impact human health.These diseases are primarily characterized by the progressive loss and eventual death of neuronal function,although the precise mechanisms underlying these processes remain incompletely understood.Iron is an essential trace element in the human body,playing a crucial role in various biological processes.The maintenance of iron homeostasis relies on the body's intricate and nuanced regulatory mechanisms.In recent years,considerable attention has been directed toward the relationship between dysregulated iron homeostasis and neurodegenerative diseases.The regulation of iron homeostasis within cells is crucial for maintaining proper nervous system function.Research has already revealed that disruptions in iron homeostasis may lead to ferroptosis and oxidative stress,which,in turn,can impact neuronal health and contribute to the development of neurodegenerative diseases.This article primarily explores the intimate relationship between iron homeostasis and neurodegenerative diseases,aiming to provide novel insights and strategies for treating these debilitating conditions. 展开更多
关键词 ferroprotein neurodegenerative diseases iron homeostasis IRON iron regulatory proteins
暂未订购
Feeling the Fragrance--Blending tradition with modern elements,young entrepreneurs revive tea industry and culture in Songyang
2
作者 YANG SHUANGSHUANG 《ChinAfrica》 2026年第1期54-55,共2页
On the stone-paved lanes of Songyang County that date back to ancient times,morning mist lingered as a faint fragrance of tea wafted from a century-old house.Inside,Yang Junjie,a tea maker born in the 1980s,worked def... On the stone-paved lanes of Songyang County that date back to ancient times,morning mist lingered as a faint fragrance of tea wafted from a century-old house.Inside,Yang Junjie,a tea maker born in the 1980s,worked deftly at the stove,his hands moving swiftly over the scorching iron wok as tender green tea leaves dance between his fingers. 展开更多
关键词 TEA scorching iron wok FRAGRANCE tea leaves modern elements TRADITION Songyang tea making
原文传递
Thermal simulation method for researching solidification process of ductile iron pipe based on heat transfer similarity of characteristic unit of ductile iron pipe
3
作者 Gan-chao Zhai Gong-ao Zhu +4 位作者 Shao-dong Hu Bin Yang Jie-yu Zhang Xiang-ru Chen Qi-jie Zhai 《China Foundry》 2026年第1期62-72,共11页
Centrifugal casting of ductile iron pipe is a high-temperature,semi-continuous production process.However,conducting laboratory research on the solidification process of centrifugal casting of ductile iron pipe presen... Centrifugal casting of ductile iron pipe is a high-temperature,semi-continuous production process.However,conducting laboratory research on the solidification process of centrifugal casting of ductile iron pipe presents significant challenges.In this study,a novel research method was introduced for investigating the solidification process of ductile iron pipe,namely thermal simulation of ductile iron pipe.Comparative research was conducted on the microstructure and properties of the thermal simulation sample and the ductile iron pipe.The findings indicate that the thermal simulation sample and ductile iron pipe exhibit good heat transfer similarity and microstructure similarity.The difference of cooling rate between thermal simulation sample and ductile pipe is less than 0.24℃·s^(-1),and the difference of microstructure content of free cementite,ferrite,and pearlite is less than 5%.The tensile strength of annealed ductile iron pipe is 466 MPa,with an elongation of 16.1%and a Brinell hardness of 156.5 HBW.In comparison,the tensile strength of annealed thermal simulation sample is 482.0 MPa,with an elongation of 15.5%and a Brinell hardness of 159.0 HBW.These results suggest that the thermal simulation experimental research method is both scientific and feasible,offering an objective,reliable,and cost-effective approach to laboratory research on ductile iron pipe. 展开更多
关键词 ductile iron pipe centrifugal casting thermal simulation MICROSTRUCTURE mechanical property
在线阅读 下载PDF
Single Fe atom anchored by N vacancy of C_(3)N_(4) activates PMS for efficient degradation of refractory organics:The key role of non-radical pathway through 1O_(2) and Fe(IV)=O
4
作者 Shenghui Tu Lu Sun +5 位作者 Hongxiang Zhang Jiaqi Xie Leizhen Shen Wenming Liu Guobo Li Honggen Peng 《Journal of Environmental Sciences》 2026年第1期339-348,共10页
Fenton-like technology based on peroxymonosulfate activation has shown great potential in refractory organics degradation.In this work,single Fe atom catalysts were synthesized through facile ball milling and exhibite... Fenton-like technology based on peroxymonosulfate activation has shown great potential in refractory organics degradation.In this work,single Fe atom catalysts were synthesized through facile ball milling and exhibited very high performance in peroxymonosulfate activation.The Fe single-atom filled an N vacancy on the triazine ring edge of C_(3)N_(4),as confirmed through X-ray absorption fine structure,density functional calculation and elec-tron paramagnetic resonance.The SAFe_(0.4)–C_(3)N_(4)/PMS system could completely remove phenol(20 mg/L)within 10 min and its first-order kinetic constant was 12.3 times that of the Fe_(3)O_(4)/PMS system.Under different ini-tial pH levels and in various anionic environments,SAFe_(0.4)–C_(3)N_(4) still demonstrated excellent catalytic activity,achieving a removal rate of over 90%for phenol within 12 min.In addition,SAFe_(0.4)–C_(3)N_(4) exhibited outstanding selectivity in reaction systems with different pollutants,showing excellent degradation effects on electron-rich pollutants only.Hydroxyl radicals(•OH),singlet oxygen(1O_(2))and high-valent iron oxide(Fe(Ⅳ)=O)were de-tected in the SAFe_(0.4)–C_(3)N_(4)/PMS system through free radical capture experiments.Further experiments on the quenching of active species and a methyl phenyl sulfoxide probe confirmed that 1O_(2) and Fe(Ⅳ)=O played dom-inant roles.Additionally,the change in the current response after adding PMS and phenol in succession proved that a direct electron transfer path between organic matter and the catalyst surface was unlikely to exist in the SAFe_(0.4)–C_(3)N_(4)/PMS/Phenol degradation system.This study provides a new demonstration of the catalytic mech-anism of single-atom catalysts. 展开更多
关键词 Refractory organics PMS activation Single atom Singlet oxygen High-valent iron Carbon nitride
原文传递
Iron dyshomeostasis links obesity and neurological diseases
5
作者 Bandy Chen 《Neural Regeneration Research》 2026年第5期1985-1986,共2页
With the industrialization of agriculture and the advancement of medical care,human life expectancy has increased considerably and continues to rise steadily.This results in novel and unprecedented challenges,namely o... With the industrialization of agriculture and the advancement of medical care,human life expectancy has increased considerably and continues to rise steadily.This results in novel and unprecedented challenges,namely obesity and neurodegeneration. 展开更多
关键词 industrialization agriculture human life expectancy OBESITY medical care advancement neurological diseases iron dysregulation NEURODEGENERATION
暂未订购
Magnetic resonance imaging tracing of superparamagnetic iron oxide nanoparticle-labeled mesenchymal stromal cells for repairing spinal cord injury
6
作者 Xiaoli Mai Yuanyuan Xie +12 位作者 Zhichong Wu Junting Zou Jiacheng Du Yunpeng Shen Hao Liu Bo Chen Mengxia Zhu Jiong Shi Yang Chen Bing Zhang Zezhang Zhu Bin Wang Ning Gu 《Neural Regeneration Research》 2026年第5期2031-2039,共9页
Mesenchymal stromal cell transplantation is an effective and promising approach for treating various systemic and diffuse diseases.However,the biological characteristics of transplanted mesenchymal stromal cells in hu... Mesenchymal stromal cell transplantation is an effective and promising approach for treating various systemic and diffuse diseases.However,the biological characteristics of transplanted mesenchymal stromal cells in humans remain unclear,including cell viability,distribution,migration,and fate.Conventional cell tracing methods cannot be used in the clinic.The use of superparamagnetic iron oxide nanoparticles as contrast agents allows for the observation of transplanted cells using magnetic resonance imaging.In 2016,the National Medical Products Administration of China approved a new superparamagnetic iron oxide nanoparticle,Ruicun,for use as a contrast agent in clinical trials.In the present study,an acute hemi-transection spinal cord injury model was established in beagle dogs.The injury was then treated by transplantation of Ruicun-labeled mesenchymal stromal cells.The results indicated that Ruicunlabeled mesenchymal stromal cells repaired damaged spinal cord fibers and partially restored neurological function in animals with acute spinal cord injury.T2*-weighted imaging revealed low signal areas on both sides of the injured spinal cord.The results of quantitative susceptibility mapping with ultrashort echo time sequences indicated that Ruicun-labeled mesenchymal stromal cells persisted stably within the injured spinal cord for over 4 weeks.These findings suggest that magnetic resonance imaging has the potential to effectively track the migration of Ruicun-labeled mesenchymal stromal cells and assess their ability to repair spinal cord injury. 展开更多
关键词 acute spinal cord injury diffusion tensor imaging dynamic migration mesenchymal stromal cells neural function neuronal regeneration quantitative susceptibility mapping repairability ruicun superparamagnetic iron oxide nanoparticle
暂未订购
Fe single-atom-modified g-C_(3)N_(4)via a facile oxygen-tolerant synthesis strategy for improved photocatalytic H_(2)production
7
作者 Wentao Xu Yuting Tang +3 位作者 Tao Ding Qichen Liu Xusheng Zheng Qing Yang 《Nano Research》 2026年第1期418-428,共11页
Single-atom catalysts based on graphitic carbon nitride(g-C_(3)N_(4))show high potential for hydrogen production photocatalytically.However,it is still a challenge to develop single-atom-based g-C_(3)N_(4)due to the c... Single-atom catalysts based on graphitic carbon nitride(g-C_(3)N_(4))show high potential for hydrogen production photocatalytically.However,it is still a challenge to develop single-atom-based g-C_(3)N_(4)due to the complex synthesis procedures,limited active sites,and insufficient mechanistic understanding.Herein,a facile oxygen-tolerant synthesis strategy was developed,which utilizes the nitrogen-rich structure of g-C_(3)N_(4)to capture Fe single atoms from ammonium iron citrate,successfully constructing an efficient photocatalytic composite.The resulting Fe single-atom-modified g-C_(3)N_(4)catalyst exhibited highly improved light absorption,charge carrier separation,and a substantially enhanced rate of H_(2)production photocatalytically under visible light irradiation.Experimental results demonstrated that the optimal sample achieves a H_(2)production rate of 683μmol·h-1·g^(-1),representing a 425% enhancement compared to pristine g-C_(3)N_(4).This study presents a facile oxygen-tolerant approach for metal immobilization using metal-organic precursors,where the nitrogen-rich framework of g-C_(3)N_(4)effectively captures Fe atoms as singular site within the composite.The developed synthesis strategy provides new insights for designing high-performance single-atom photocatalytic materials,potentially advancing the application and development of photocatalysis. 展开更多
关键词 graphitic carbon nitride(g-C_(3)N_(4)) Fe single atoms ammonium iron citrate oxygen-tolerant photocatalytic hydrogen production
原文传递
Role of iron ore in enhancing gasification of iron coke:Structural evolution,influence mechanism and kinetic analysis 被引量:1
8
作者 Jie Wang Wei Wang +4 位作者 Xuheng Chen Junfang Bao Qiuyue Hao Heng Zheng Runsheng Xu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第1期58-69,共12页
The utilization of iron coke provides a green pathway for low-carbon ironmaking.To uncover the influence mechanism of iron ore on the behavior and kinetics of iron coke gasification,the effect of iron ore on the micro... The utilization of iron coke provides a green pathway for low-carbon ironmaking.To uncover the influence mechanism of iron ore on the behavior and kinetics of iron coke gasification,the effect of iron ore on the microstructure of iron coke was investigated.Furthermore,a comparative study of the gasification reactions between iron coke and coke was conducted through non-isothermal thermogravimetric method.The findings indicate that compared to coke,iron coke exhibits an augmentation in micropores and specific surface area,and the micropores further extend and interconnect.This provides more adsorption sites for CO_(2) molecules during the gasification process,resulting in a reduction in the initial gasification temperature of iron coke.Accelerating the heating rate in non-isothermal gasification can enhance the reactivity of iron coke.The metallic iron reduced from iron ore is embedded in the carbon matrix,reducing the orderliness of the carbon structure,which is primarily responsible for the heightened reactivity of the carbon atoms.The kinetic study indicates that the random pore model can effectively represent the gasification process of iron coke due to its rich pore structure.Moreover,as the proportion of iron ore increases,the activation energy for the carbon gasification gradually decreases,from 246.2 kJ/mol for coke to 192.5 kJ/mol for iron coke 15wt%. 展开更多
关键词 low-carbon ironmaking iron coke GASIFICATION structural evolution kinetic model
在线阅读 下载PDF
Conditionally restricted fluorescent probe for Fe^(3+)and Cu^(2+)based on the naphthalimide structure 被引量:1
9
作者 ZHU Yuan ZHANG Xiaoda +2 位作者 WANG Shasha WEI Peng YI Tao 《无机化学学报》 北大核心 2025年第1期183-192,共10页
To address the lack of systematic studies on heavy metal fluorescent probes in typical buffer solutions,this study developed a Fe^(3+)and Cu^(2+)fluorescent probe,DHU‑NP‑4,based on a naphthalimide fluorophore.Comparat... To address the lack of systematic studies on heavy metal fluorescent probes in typical buffer solutions,this study developed a Fe^(3+)and Cu^(2+)fluorescent probe,DHU‑NP‑4,based on a naphthalimide fluorophore.Comparative analysis of the probe's performance in various buffer systems revealed that buffers with high organic content are unsuitable for evaluating such probes.Furthermore,the pH of the solvent system was found to significantly influence the probe's behavior.Under highly acidic conditions(pH≤2),DHU‑NP‑4 exhibited exceptional specificity for Fe^(3+),while in alkaline conditions,it demonstrated high specificity for Cu^(2+).Leveraging these properties,the probe enabled the quantitative detection of Fe^(3+)and Cu^(2+)in solution. 展开更多
关键词 fluorescent probe NAPHTHALIMIDE copper(Ⅱ)ion iron(Ⅲ)ion buffer solution
在线阅读 下载PDF
Carbon emissions in China’s steel industry from a life cycle perspective:Carbon footprint insights 被引量:6
10
作者 Xiaocong Song Shuai Du +5 位作者 Chenning Deng Peng Shen Minghui Xie Ci Zhao Chen Chen Xiaoyu Liu 《Journal of Environmental Sciences》 2025年第2期650-664,共15页
China is the most important steel producer in the world,and its steel industry is one of themost carbon-intensive industries in China.Consequently,research on carbon emissions from the steel industry is crucial for Ch... China is the most important steel producer in the world,and its steel industry is one of themost carbon-intensive industries in China.Consequently,research on carbon emissions from the steel industry is crucial for China to achieve carbon neutrality and meet its sustainable global development goals.We constructed a carbon dioxide(CO_(2))emission model for China’s iron and steel industry froma life cycle perspective,conducted an empirical analysis based on data from2019,and calculated the CO_(2)emissions of the industry throughout its life cycle.Key emission reduction factors were identified using sensitivity analysis.The results demonstrated that the CO_(2)emission intensity of the steel industry was 2.33 ton CO_(2)/ton,and the production and manufacturing stages were the main sources of CO_(2)emissions,accounting for 89.84%of the total steel life-cycle emissions.Notably,fossil fuel combustion had the highest sensitivity to steel CO_(2)emissions,with a sensitivity coefficient of 0.68,reducing the amount of fossil fuel combustion by 20%and carbon emissions by 13.60%.The sensitivities of power structure optimization and scrap consumption were similar,while that of the transportation structure adjustment was the lowest,with a sensitivity coefficient of less than 0.1.Given the current strategic goals of peak carbon and carbon neutrality,it is in the best interest of the Chinese government to actively promote energy-saving and low-carbon technologies,increase the ratio of scrap steel to steelmaking,and build a new power system. 展开更多
关键词 Iron and steel industry Life cycle Carbon dioxide(CO_(2))emissions Carbon footprint China
原文传递
Metabolomic and gut-microbial responses of earthworms exposed to microcystins and nano zero-valent iron in soil 被引量:2
11
作者 Yifan Wang Chunlong Zhang +1 位作者 Daohui Lin Jianying Zhang 《Journal of Environmental Sciences》 2025年第4期340-348,共9页
The earthworm-based vermiremediation facilitated with benign chemicals such as nano zero-valent iron(nZVI)is a promising approach for the remediation of a variety of soil contaminants including cyanotoxins.As themost ... The earthworm-based vermiremediation facilitated with benign chemicals such as nano zero-valent iron(nZVI)is a promising approach for the remediation of a variety of soil contaminants including cyanotoxins.As themost toxic cyanotoxin,microcystin-LR(MC-LR)enter soil via runoff,irrigated surface water and sewage,and the application of cyanobacterial biofertilizers as part of the sustainable agricultural practice.Earthworms in such remediation systems must sustain the potential risk from both nZVI and MC-LR.In the present study,earthworms(Eisenia fetida)were exposed up to 14 days to MC-LR and nZVI(individually and inmixture),and the toxicity was investigated at both the organismal andmetabolic levels,including growth,tissue damage,oxidative stress,metabolic response and gut microbiota.Results showed that co-exposure of MC-LR and nZVI is less potent to earthworms than that of separate exposure.Histological observations in the co-exposure group revealed only minor epidermal brokenness,and KEGG enrichment analysis showed that co-exposure induced earthworms to regulate glutathione biosynthesis for detoxification and reduced adverse effects from MC-LR.The combined use of nZVI promoted the growth and reproduction of soil and earthworm gut bacteria(e.g.,Sphingobacterium and Acinetobacter)responsible for the degradation of MC-LR,whichmight explain the observed antagonism between nZVI and MC-LR in earthworm microcosm.Our study suggests the beneficial use of nZVI to detoxify pollutants in earthworm-based vermiremediation systems where freshwater containing cyanobacterial blooms is frequently used to irrigate soil and supply water for the growth and metabolism of earthworms. 展开更多
关键词 Nano zero-valent iron MICROCYSTIN-LR Mixed exposure Vermiremediation Metabolic pathways Gut microbiota
原文传递
High-energy-density lithium manganese iron phosphate for lithium-ion batteries:Progresses,challenges,and prospects 被引量:2
12
作者 Bokun Zhang Xiaoyun Wang +5 位作者 Shuai Wang Yan Li Libo Chen Handong Jiao Zhijing Yu Jiguo Tu 《Journal of Energy Chemistry》 2025年第1期1-17,共17页
The soaring demand for smart portable electronics and electric vehicles is propelling the advancements in high-energy–density lithium-ion batteries.Lithium manganese iron phosphate(LiMn_(x)Fe_(1-x)PO_(4))has garnered... The soaring demand for smart portable electronics and electric vehicles is propelling the advancements in high-energy–density lithium-ion batteries.Lithium manganese iron phosphate(LiMn_(x)Fe_(1-x)PO_(4))has garnered significant attention as a promising positive electrode material for lithium-ion batteries due to its advantages of low cost,high safety,long cycle life,high voltage,good high-temperature performance,and high energy density.Although LiMn_(x)Fe_(1-x)PO_(4)has made significant breakthroughs in the past few decades,there are still facing great challenges in poor electronic conductivity and Li-ion diffusion,manganese dissolution affecting battery cycling performance,as well as low tap density.This review systematically summarizes the reaction mechanisms,various synthesis methods,and electrochemical properties of LiMn_(x)Fe_(1-x)PO_(4)to analyze reaction processes accurately and guide material preparation.Later,the main challenges currently faced are concluded,and the corresponding various modification strategies are discussed to enhance the reaction kinetics and electrochemical performance of LiMn_(x)Fe_(1-x)PO_(4),including multi-scale particle regulation,heteroatom doping,surface coating,as well as microscopic morphology design.Finally,in view of the current research challenges faced by intrinsic reaction processes,kinetics,and energy storage applications,the promising research directions are anticipated.More importantly,it is expected to provide key insights into the development of high-performance and stable LiMn_(x)Fe_(1-x)PO_(4)materials,to achieve practical energy storage requirements. 展开更多
关键词 Lithiummanganese iron phosphate High energydensity LITHIUM-IONBATTERIES Reactionmechanism Tap density
在线阅读 下载PDF
Amino-modified IONPs potentiates ferroptotic cell death due to the release of Fe ion in the lysosome 被引量:1
13
作者 Zijuan Qi Xiaofeng Huang +6 位作者 Jiajun Jing Wenya Feng Ming Xu Li Yan Ming Gao Sijin Liu Xue-Feng Yu 《Journal of Environmental Sciences》 2025年第4期1-13,共13页
Iron oxide nanoparticles(IONPs)have wide applications in the biomedical field due to their outstanding physical and chemical properties.However,the potential adverse effects and relatedmechanisms of IONPs in human org... Iron oxide nanoparticles(IONPs)have wide applications in the biomedical field due to their outstanding physical and chemical properties.However,the potential adverse effects and relatedmechanisms of IONPs in human organs,especially the lung,are still largely ignored.In this study,we found that group-modified IONPs(carboxylated,aminated and silica coated)induce slight lung cell damage(in terms of the cell cycle,reactive oxygen species(ROS)production,cell membrane integrity and DNA damage)at a sublethal dosage.However,aminated IONPs could release more iron ions in the lysosome than the other two types of IONPs,but the abnormally elevated iron ion concentration did not induce ferroptosis.In-triguingly,amino-modified IONPs aggravated the accumulation of intracellular peroxides induced by the ferroptosis activator RSL3 and thus caused ferroptosis in vitro,and the coadministration of amino-modified IONPs and RSL3 induced more severe lung injury in vivo.Therefore,our data revealed that the surface functionalization of IONPs plays an important role in determining their potential pulmonary toxicity,as surface modification influences their degradation behavior.These results provide guidance for the design of future IONPs and the corresponding safety evaluations and predictions. 展开更多
关键词 Iron oxide nanoparticles(IONPs) Surface functionalization Iron homeostasis Ferroptosis
原文传递
The Role and Mechanisms of Ubiquitin-Proteasome System-Mediated Ferroptosis in Neurological Disorders 被引量:1
14
作者 Xin Liu Wei Wang +5 位作者 Qiucheng Nie Xining Liu Lili Sun Qiang Ma Jie Zhang Yiju Wei 《Neuroscience Bulletin》 2025年第4期691-706,共16页
Ferroptosis is a form of cell death elicited by an imbalance in intracellular iron concentrations,leading to enhanced lipid peroxidation.In neurological disorders,both oxidative stress and mitochondrial damage can con... Ferroptosis is a form of cell death elicited by an imbalance in intracellular iron concentrations,leading to enhanced lipid peroxidation.In neurological disorders,both oxidative stress and mitochondrial damage can contribute to ferroptosis,resulting in nerve cell dysfunction and death.The ubiquitin-proteasome system(UPS)refers to a cellular pathway in which specific proteins are tagged with ubiquitin for recognition and degradation by the proteasome.In neuro-logical conditions,the UPS plays a significant role in regu-lating ferroptosis.In this review,we outline how the UPS regulates iron metabolism,ferroptosis,and their interplay in neurological diseases.In addition,we discuss the future application of small-molecule inhibitors and identify poten-tial drug targets.Further investigation into the mechanisms of UPS-mediated ferroptosis will provide novel insights and strategies for therapeutic interventions and clinical applica-tions in neurological diseases. 展开更多
关键词 Ferroptosis Neurological disorders Ubiquitin-proteasome system IRON
原文传递
Organic fertilizer enhances soil aggregate stability by altering greenhouse soil content of iron oxide and organic carbon 被引量:1
15
作者 Lijun Ren Han Yang +4 位作者 Jin Li Nan Zhang Yanyu Han Hongtao Zou Yulong Zhang 《Journal of Integrative Agriculture》 2025年第1期306-321,共16页
Both soil organic carbon (SOC) and iron (Fe) oxide content, among other factors, drive the formation and stability of soil aggregates.However, the mechanism of these drivers in greenhouse soil fertilized with organic ... Both soil organic carbon (SOC) and iron (Fe) oxide content, among other factors, drive the formation and stability of soil aggregates.However, the mechanism of these drivers in greenhouse soil fertilized with organic fertilizer is not well understood.In a 3-year field experiment, we aimed to investigate the factors which drive the stability of soil aggregates in greenhouse soil.To explore the impact of organic fertilizer on soil aggregates, we established four treatments:no fertilization (CK);inorganic fertilizer (CF);organic fertilizer (OF);and combined application of inorganic and organic fertilizers(COF).The application of organic fertilizer significantly enhanced the stability of aggregates, that is it enhanced the mean weight diameter, geometric mean diameter and aggregate content (%) of>0.25 mm aggregate fractions.OF and COF treatments increased the concentration of SOC, especially the aliphatic-C, aromatic-C and polysaccharide-C components of SOC, particularly in>0.25 mm aggregates.Organic fertilizer application significantly increased the content of free Fe(Fed), reactive Fe (Feo), and non-crystalline Fe in both bulk soil and aggregates.Furthermore, non-crystalline Fe showed a positive correlation with SOC content in both bulk soil and aggregates.Both non-crystalline Fe and SOC were significantly positively correlated with>2 mm mean weight diameter.Overall, we believe that the increase of SOC, aromatic-C, and non-crystal ine Fe concentrations in soil after the application of organic fertilizer is the reason for improving soil aggregate stability. 展开更多
关键词 organic fertilizer soil aggregates soil organic carbon iron oxides greenhouse soil
在线阅读 下载PDF
Revealing role of oxidation in recycling spent lithium iron phosphate through acid leaching 被引量:1
16
作者 Dan-Feng Wang Min Chen +7 位作者 Jing-Jing Zhao Feng-Yin Zhou Hong-Ya Wang Xin Qu Yu-Qi Cai Zhi-Yu Zheng Di-Hua Wang Hua-Yi Yin 《Rare Metals》 2025年第3期2059-2070,共12页
The efficient recycling of spent lithium iron phosphate(LiFePO_(4),also referred to as LFP)should convert Fe(Ⅱ)to Fe(Ⅲ),which is key to the extraction of Li and separation of Fe and is not well understood.Herein,we ... The efficient recycling of spent lithium iron phosphate(LiFePO_(4),also referred to as LFP)should convert Fe(Ⅱ)to Fe(Ⅲ),which is key to the extraction of Li and separation of Fe and is not well understood.Herein,we systematically study the oxidation of LiFePO_(4)in the air and in the solution containing oxidants such as H_(2)O_(2)and the effect of oxidation on the leaching behaviors of LFP.In the air,O_(2)breaks down the LFP olivine structure at 550℃for 1 h by oxidizing Fe(Ⅱ)to Fe(Ⅲ)in terms of converting LFP to Li_(3)Fe_(2)(PO_(4))_(3)and Fe_(2)O_(3).After that,Li is leached in 0.5 M sulfuric acid solution and is further recycled as Li_(3)PO_(4)with a Li recovery efficiency of 97.48%.Meanwhile,Fe is recovered as FePO_(4)and Fe_(2)O_(3).Compared with H_(2)SO_(4)-H_(2)O_(2),the air oxidation saves H_(2)O_(2)but increases the leaching efficiency of Fe and H_(2)SO_(4)consumption.The discrepancy of Fe leaching efficiency can be attributed to the different leaching mechanisms involving the solid-to-solid and solid-to-liquid-to-solid conversions.Furthermore,the results of the Everbatt model analysis show that the air roasting-H_(2)SO_(4)leaching method has low emission and potentially high income,which is simple and safe.Overall,this work will deepen the understanding of acid leaching of LFP and favorably stimulate the maturation of the LFP recycling technique. 展开更多
关键词 Spent lithium iron phosphate battery Air roasting Acid leaching OXIDATION RECOVERY
原文传递
Iron homeostasis and ferroptosis in muscle diseases and disorders:mechanisms and therapeutic prospects 被引量:1
17
作者 Qin Ru Yusheng Li +4 位作者 Xi Zhang Lin Chen Yuxiang Wu Junxia Min Fudi Wang 《Bone Research》 2025年第2期225-262,共38页
The muscular system plays a critical role in the human body by governing skeletal movement,cardiovascular function,and the activities of digestive organs.Additionally,muscle tissues serve an endocrine function by secr... The muscular system plays a critical role in the human body by governing skeletal movement,cardiovascular function,and the activities of digestive organs.Additionally,muscle tissues serve an endocrine function by secreting myogenic cytokines,thereby regulating metabolism throughout the entire body.Maintaining muscle function requires iron homeostasis.Recent studies suggest that disruptions in iron metabolism and ferroptosis,a form of iron-dependent cell death,are essential contributors to the progression of a wide range of muscle diseases and disorders,including sarcopenia,cardiomyopathy,and amyotrophic lateral sclerosis.Thus,a comprehensive overview of the mechanisms regulating iron metabolism and ferroptosis in these conditions is crucial for identifying potential therapeutic targets and developing new strategies for disease treatment and/or prevention.This review aims to summarize recent advances in understanding the molecular mechanisms underlying ferroptosis in the context of muscle injury,as well as associated muscle diseases and disorders.Moreover,we discuss potential targets within the ferroptosis pathway and possible strategies for managing muscle disorders.Finally,we shed new light on current limitations and future prospects for therapeutic interventions targeting ferroptosis. 展开更多
关键词 myogenic cytokinesthereby muscle diseases iron homeostasis ferroptosis SARCOPENIA therapeutic targets amyotrophic lateral sclerosis muscular system
暂未订购
Advances in iron-based Fischer-Tropsch synthesis with high carbon efficiency 被引量:1
18
作者 Xueqing Zhang Wusha Jiye +2 位作者 Yuhua Zhang Jinlin Li Li Wang 《Chinese Journal of Catalysis》 2025年第7期4-21,共18页
Fischer-Tropsch synthesis offers a promising route to convert carbon-rich resources such as coal,natural gas,and biomass into clean fuels and high-value chemicals via syngas.Catalyst development is crucial for optimiz... Fischer-Tropsch synthesis offers a promising route to convert carbon-rich resources such as coal,natural gas,and biomass into clean fuels and high-value chemicals via syngas.Catalyst development is crucial for optimizing the process,with cobalt-and iron-based catalysts being widely used in industrial applications.Iron-based catalysts,in particular,are favored due to their low cost,broad temperature range,and high water-gas shift reaction activity,making them ideal for syngas derived from coal and biomass with a low H_(2)/CO ratio.However,despite their long history of industrial use,iron-based catalysts face two significant challenges.First,the presence of multiple iron phases-metallic iron,iron oxides,and iron carbides-complicates the understanding of the reaction mechanism due to dynamic phase transformations.Second,the high water-gas shift activity of these catalysts leads to increased CO_(2) selectivity,thereby reducing overall carbon efficiency.In Fischer-Tropsch synthesis,CO_(2) can arise as primary CO_(2) from CO disproportionation(the Boudouard reaction)and as secondary CO_(2) from the water-gas shift reaction.The accumulation of CO_(2) formation further compromises overall carbon efficiency,which is particularly undesirable given the current focus on minimizing carbon emissions and achieving carbon neutrality.This review focus on the ongoing advancements of iron-based catalysts for Fischer-Tropsch synthesis,with particular emphasis on overcoming these two critical challenges for iron-based catalysts:regulating the active phases and minimizing CO_(2) selectivity.Addressing these challenges is essential for enhancing the overall catalytic efficiency and selectivity of iron-based catalysts.In this review,recent efforts to suppress CO_(2) selectivity of iron-based catalysts,including catalyst hydrophobic modification and graphene confinement,are explored for their potential to stabilize active phases and prevent unwanted side reactions.This innovative approach offers new opportunities for developing catalysts with high activity,low CO_(2) selectivity,and enhanced stability,which are key factors for enhancing both the efficiency and sustainability for Fischer-Tropsch synthesis.Such advancements are crucial for advancing more efficient and sustainable Fischer-Tropsch synthesis technologies,supporting the global push for net-zero emissions goals,and contributing to carbon reduction efforts worldwide. 展开更多
关键词 Fischer-Tropsch synthesis Syngas conversion Carbon dioxide Carbon efficiency Iron carbide Graphene layer confinement
在线阅读 下载PDF
Mechanism of thermal compressive strength evolution of carbon-bearing iron ore pellet without binders during reduction process 被引量:1
19
作者 Hong-tao Wang Yi-bin Wang +3 位作者 Shi-xin Zhu Qing-min Meng Tie-jun Chun Hong-ming Long 《Journal of Iron and Steel Research International》 2025年第4期871-882,共12页
Against the background of“carbon peak and carbon neutrality,”it is of great practical significance to develop non-blast furnace ironmaking technology for the sustainable development of steel industry.Carbon-bearing ... Against the background of“carbon peak and carbon neutrality,”it is of great practical significance to develop non-blast furnace ironmaking technology for the sustainable development of steel industry.Carbon-bearing iron ore pellet is an innovative burden of direct reduction ironmaking due to its excellent self-reducing property,and the thermal strength of pellet is a crucial metallurgical property that affects its wide application.The carbon-bearing iron ore pellet without binders(CIPWB)was prepared using iron concentrate and anthracite,and the effects of reducing agent addition amount,size of pellet,reduction temperature and time on the thermal compressive strength of CIPWB during the reduction process were studied.Simultaneously,the mechanism of the thermal strength evolution of CIPWB was revealed.The results showed that during the low-temperature reduction process(300-500℃),the thermal compressive strength of CIPWB linearly increases with increasing the size of pellet,while it gradually decreases with increasing the anthracite ratio.When the CIPWB with 8%anthracite is reduced at 300℃for 60 min,the thermal strength of pellet is enhanced from 13.24 to 31.88 N as the size of pellet increases from 8.04 to 12.78 mm.Meanwhile,as the temperature is 500℃,with increasing the anthracite ratio from 2%to 8%,the thermal compressive strength of pellet under reduction for 60 min remarkably decreases from 41.47 to 8.94 N.Furthermore,in the high-temperature reduction process(600-1150℃),the thermal compressive strength of CIPWB firstly increases and then reduces with increasing the temperature,while it as well as the temperature corresponding to the maximum strength decreases with increasing the anthracite ratio.With adding 18%anthracite,the thermal compressive strength of pellet reaches the maximum value at 800℃,namely 35.00 N,and obtains the minimum value at 1050℃,namely 8.60 N.The thermal compressive strength of CIPWB significantly depends on the temperature,reducing agent dosage,and pellet size. 展开更多
关键词 Non-blast furnace ironmaking Carbon-bearing iron ore pellet Reduction reaction Thermal compressive strength MECHANISM
原文传递
Green and High-Yield Recovery of Phosphorus from Municipal Wastewater for LiFePO_(4)Batteries 被引量:1
20
作者 Yijiao Chang Xuan Wang +6 位作者 Bolin Zhao Anjie Li Yiru Wu Bohua Wen Bing Li Xiao-Yan Li Lin Lin 《Engineering》 2025年第2期234-242,共9页
The rapidly growing demand for lithium iron phosphate(LiFePO_(4))as the cathode material of lithium-ion batteries(LIBs)has aggravated the scarcity of phosphorus(P)reserves on Earth.This study introduces an environment... The rapidly growing demand for lithium iron phosphate(LiFePO_(4))as the cathode material of lithium-ion batteries(LIBs)has aggravated the scarcity of phosphorus(P)reserves on Earth.This study introduces an environmentally friendly and economical method of P recovery from municipal wastewater,providing the P source for LiFePO_(4) cathodes.The novel approach utilizes the sludge of Fe-coagulant-based chemical P removal(CPR)in wastewater treatment.After a sintering treatment with acid washing,the CPR sludge,enriched with P and Fe,transforms into purified P-Fe oxides(Fe2.1P1.0O5.6).These oxides can substitute up to 35%of the FePO_(4) reagent as precursor,producing a carbon-coated LiFePO_(4)(LiFePO_(4)/C)cathode with a specific discharge capacity of 114.9 mA·h·g^(-1)at current density of 17 mA·g^(-1)),and cycle stability of 99.2%after 100 cycles.The enhanced cycle performance of the as-prepared LiFePO_(4)/C cathode may be attributed to the incorporations of impurities(such as Ca^(2+)and Na^(+))from sludge,with improved stability of crystal structure.Unlike conventional P-fertilizers,this P recovery technology converts 100%of P in CPR sludge into the production of value-added LiFePO_(4)/C cathodes.The recovered P from municipal wastewater can meet up to 35%of the P demand in the Chinese LIBs industry,offering a cost-effective solution for addressing the pressing challenges of P scarcity. 展开更多
关键词 Municipal wastewater Chemical phosphorus removal sludge Lithium iron phosphate Lithium-ion batteries Phosphorus recovery
在线阅读 下载PDF
上一页 1 2 178 下一页 到第
使用帮助 返回顶部