期刊文献+
共找到64,094篇文章
< 1 2 250 >
每页显示 20 50 100
Role of iron ore in enhancing gasification of iron coke:Structural evolution,influence mechanism and kinetic analysis 被引量:1
1
作者 Jie Wang Wei Wang +4 位作者 Xuheng Chen Junfang Bao Qiuyue Hao Heng Zheng Runsheng Xu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第1期58-69,共12页
The utilization of iron coke provides a green pathway for low-carbon ironmaking.To uncover the influence mechanism of iron ore on the behavior and kinetics of iron coke gasification,the effect of iron ore on the micro... The utilization of iron coke provides a green pathway for low-carbon ironmaking.To uncover the influence mechanism of iron ore on the behavior and kinetics of iron coke gasification,the effect of iron ore on the microstructure of iron coke was investigated.Furthermore,a comparative study of the gasification reactions between iron coke and coke was conducted through non-isothermal thermogravimetric method.The findings indicate that compared to coke,iron coke exhibits an augmentation in micropores and specific surface area,and the micropores further extend and interconnect.This provides more adsorption sites for CO_(2) molecules during the gasification process,resulting in a reduction in the initial gasification temperature of iron coke.Accelerating the heating rate in non-isothermal gasification can enhance the reactivity of iron coke.The metallic iron reduced from iron ore is embedded in the carbon matrix,reducing the orderliness of the carbon structure,which is primarily responsible for the heightened reactivity of the carbon atoms.The kinetic study indicates that the random pore model can effectively represent the gasification process of iron coke due to its rich pore structure.Moreover,as the proportion of iron ore increases,the activation energy for the carbon gasification gradually decreases,from 246.2 kJ/mol for coke to 192.5 kJ/mol for iron coke 15wt%. 展开更多
关键词 low-carbon ironmaking iron coke GASIFICATION structural evolution kinetic model
在线阅读 下载PDF
Metabolomic and gut-microbial responses of earthworms exposed to microcystins and nano zero-valent iron in soil 被引量:2
2
作者 Yifan Wang Chunlong Zhang +1 位作者 Daohui Lin Jianying Zhang 《Journal of Environmental Sciences》 2025年第4期340-348,共9页
The earthworm-based vermiremediation facilitated with benign chemicals such as nano zero-valent iron(nZVI)is a promising approach for the remediation of a variety of soil contaminants including cyanotoxins.As themost ... The earthworm-based vermiremediation facilitated with benign chemicals such as nano zero-valent iron(nZVI)is a promising approach for the remediation of a variety of soil contaminants including cyanotoxins.As themost toxic cyanotoxin,microcystin-LR(MC-LR)enter soil via runoff,irrigated surface water and sewage,and the application of cyanobacterial biofertilizers as part of the sustainable agricultural practice.Earthworms in such remediation systems must sustain the potential risk from both nZVI and MC-LR.In the present study,earthworms(Eisenia fetida)were exposed up to 14 days to MC-LR and nZVI(individually and inmixture),and the toxicity was investigated at both the organismal andmetabolic levels,including growth,tissue damage,oxidative stress,metabolic response and gut microbiota.Results showed that co-exposure of MC-LR and nZVI is less potent to earthworms than that of separate exposure.Histological observations in the co-exposure group revealed only minor epidermal brokenness,and KEGG enrichment analysis showed that co-exposure induced earthworms to regulate glutathione biosynthesis for detoxification and reduced adverse effects from MC-LR.The combined use of nZVI promoted the growth and reproduction of soil and earthworm gut bacteria(e.g.,Sphingobacterium and Acinetobacter)responsible for the degradation of MC-LR,whichmight explain the observed antagonism between nZVI and MC-LR in earthworm microcosm.Our study suggests the beneficial use of nZVI to detoxify pollutants in earthworm-based vermiremediation systems where freshwater containing cyanobacterial blooms is frequently used to irrigate soil and supply water for the growth and metabolism of earthworms. 展开更多
关键词 Nano zero-valent iron MICROCYSTIN-LR Mixed exposure Vermiremediation Metabolic pathways Gut microbiota
原文传递
Organic fertilizer enhances soil aggregate stability by altering greenhouse soil content of iron oxide and organic carbon 被引量:1
3
作者 Lijun Ren Han Yang +4 位作者 Jin Li Nan Zhang Yanyu Han Hongtao Zou Yulong Zhang 《Journal of Integrative Agriculture》 2025年第1期306-321,共16页
Both soil organic carbon (SOC) and iron (Fe) oxide content, among other factors, drive the formation and stability of soil aggregates.However, the mechanism of these drivers in greenhouse soil fertilized with organic ... Both soil organic carbon (SOC) and iron (Fe) oxide content, among other factors, drive the formation and stability of soil aggregates.However, the mechanism of these drivers in greenhouse soil fertilized with organic fertilizer is not well understood.In a 3-year field experiment, we aimed to investigate the factors which drive the stability of soil aggregates in greenhouse soil.To explore the impact of organic fertilizer on soil aggregates, we established four treatments:no fertilization (CK);inorganic fertilizer (CF);organic fertilizer (OF);and combined application of inorganic and organic fertilizers(COF).The application of organic fertilizer significantly enhanced the stability of aggregates, that is it enhanced the mean weight diameter, geometric mean diameter and aggregate content (%) of>0.25 mm aggregate fractions.OF and COF treatments increased the concentration of SOC, especially the aliphatic-C, aromatic-C and polysaccharide-C components of SOC, particularly in>0.25 mm aggregates.Organic fertilizer application significantly increased the content of free Fe(Fed), reactive Fe (Feo), and non-crystalline Fe in both bulk soil and aggregates.Furthermore, non-crystalline Fe showed a positive correlation with SOC content in both bulk soil and aggregates.Both non-crystalline Fe and SOC were significantly positively correlated with>2 mm mean weight diameter.Overall, we believe that the increase of SOC, aromatic-C, and non-crystal ine Fe concentrations in soil after the application of organic fertilizer is the reason for improving soil aggregate stability. 展开更多
关键词 organic fertilizer soil aggregates soil organic carbon iron oxides greenhouse soil
在线阅读 下载PDF
Iron homeostasis and ferroptosis in muscle diseases and disorders:mechanisms and therapeutic prospects 被引量:1
4
作者 Qin Ru Yusheng Li +4 位作者 Xi Zhang Lin Chen Yuxiang Wu Junxia Min Fudi Wang 《Bone Research》 2025年第2期225-262,共38页
The muscular system plays a critical role in the human body by governing skeletal movement,cardiovascular function,and the activities of digestive organs.Additionally,muscle tissues serve an endocrine function by secr... The muscular system plays a critical role in the human body by governing skeletal movement,cardiovascular function,and the activities of digestive organs.Additionally,muscle tissues serve an endocrine function by secreting myogenic cytokines,thereby regulating metabolism throughout the entire body.Maintaining muscle function requires iron homeostasis.Recent studies suggest that disruptions in iron metabolism and ferroptosis,a form of iron-dependent cell death,are essential contributors to the progression of a wide range of muscle diseases and disorders,including sarcopenia,cardiomyopathy,and amyotrophic lateral sclerosis.Thus,a comprehensive overview of the mechanisms regulating iron metabolism and ferroptosis in these conditions is crucial for identifying potential therapeutic targets and developing new strategies for disease treatment and/or prevention.This review aims to summarize recent advances in understanding the molecular mechanisms underlying ferroptosis in the context of muscle injury,as well as associated muscle diseases and disorders.Moreover,we discuss potential targets within the ferroptosis pathway and possible strategies for managing muscle disorders.Finally,we shed new light on current limitations and future prospects for therapeutic interventions targeting ferroptosis. 展开更多
关键词 myogenic cytokinesthereby muscle diseases iron homeostasis ferroptosis SARCOPENIA therapeutic targets amyotrophic lateral sclerosis muscular system
暂未订购
High-energy-density lithium manganese iron phosphate for lithium-ion batteries:Progresses,challenges,and prospects 被引量:1
5
作者 Bokun Zhang Xiaoyun Wang +5 位作者 Shuai Wang Yan Li Libo Chen Handong Jiao Zhijing Yu Jiguo Tu 《Journal of Energy Chemistry》 2025年第1期1-17,共17页
The soaring demand for smart portable electronics and electric vehicles is propelling the advancements in high-energy–density lithium-ion batteries.Lithium manganese iron phosphate(LiMn_(x)Fe_(1-x)PO_(4))has garnered... The soaring demand for smart portable electronics and electric vehicles is propelling the advancements in high-energy–density lithium-ion batteries.Lithium manganese iron phosphate(LiMn_(x)Fe_(1-x)PO_(4))has garnered significant attention as a promising positive electrode material for lithium-ion batteries due to its advantages of low cost,high safety,long cycle life,high voltage,good high-temperature performance,and high energy density.Although LiMn_(x)Fe_(1-x)PO_(4)has made significant breakthroughs in the past few decades,there are still facing great challenges in poor electronic conductivity and Li-ion diffusion,manganese dissolution affecting battery cycling performance,as well as low tap density.This review systematically summarizes the reaction mechanisms,various synthesis methods,and electrochemical properties of LiMn_(x)Fe_(1-x)PO_(4)to analyze reaction processes accurately and guide material preparation.Later,the main challenges currently faced are concluded,and the corresponding various modification strategies are discussed to enhance the reaction kinetics and electrochemical performance of LiMn_(x)Fe_(1-x)PO_(4),including multi-scale particle regulation,heteroatom doping,surface coating,as well as microscopic morphology design.Finally,in view of the current research challenges faced by intrinsic reaction processes,kinetics,and energy storage applications,the promising research directions are anticipated.More importantly,it is expected to provide key insights into the development of high-performance and stable LiMn_(x)Fe_(1-x)PO_(4)materials,to achieve practical energy storage requirements. 展开更多
关键词 Lithiummanganese iron phosphate High energydensity LITHIUM-IONBATTERIES Reactionmechanism Tap density
在线阅读 下载PDF
《Journal of Iron and Steel Research International》征稿启事
6
《钢铁研究学报》 北大核心 2025年第9期1151-1151,共1页
Journal of Iron and Steel Research International(中文刊名:钢铁研究学报(英文版),下文简称JISRI)是由中国钢铁工业协会主管、中国钢研科技集团有限公司主办的冶金领域学术期刊(CN 11-3678/TF,ISSN 1006-706X)。JISRI于1994年创刊,月... Journal of Iron and Steel Research International(中文刊名:钢铁研究学报(英文版),下文简称JISRI)是由中国钢铁工业协会主管、中国钢研科技集团有限公司主办的冶金领域学术期刊(CN 11-3678/TF,ISSN 1006-706X)。JISRI于1994年创刊,月刊,主编为田志凌教授。 展开更多
关键词 钢铁研究学报 Journal of iron and Steel Research International
原文传递
《Journal of Iron and Steel Research International》征稿启事
7
《钢铁研究学报》 北大核心 2025年第7期844-844,共1页
Journal of Iron and Steel Research International(中文刊名:钢铁研究学报(英文版),下文简称JISRI)是由中国钢铁工业协会主管、中国钢研科技集团有限公司主办的冶金领域学术期刊(CN 11-3678/TF,ISSN 1006-706X)。JISRI于1994年创刊,月... Journal of Iron and Steel Research International(中文刊名:钢铁研究学报(英文版),下文简称JISRI)是由中国钢铁工业协会主管、中国钢研科技集团有限公司主办的冶金领域学术期刊(CN 11-3678/TF,ISSN 1006-706X)。JISRI于1994年创刊,月刊,主编为田志凌教授。 展开更多
关键词 钢铁研究学报 Journal of iron and Steel Research International
原文传递
Journal of Iron and Steel Research International 征稿启事
8
《钢铁研究学报》 北大核心 2025年第3期334-334,共1页
Journal of Iron and Steel Research International(中文刊名:钢铁研究学报(英文版),下文简称JISRI)是由中国钢铁工业协会主管、中国钢研科技集团有限公司主办的冶金领域学术期刊(CN11-3678/TFISSN1006-706X)。JISRI于1994年创刊,月刊... Journal of Iron and Steel Research International(中文刊名:钢铁研究学报(英文版),下文简称JISRI)是由中国钢铁工业协会主管、中国钢研科技集团有限公司主办的冶金领域学术期刊(CN11-3678/TFISSN1006-706X)。JISRI于1994年创刊,月刊,主编为田志凌教授。JISRI被SCI科学引文索引、EI工程索引、美国化学文摘(CAS)、JST日本科学技术振兴机构数据库、中国科学引文数据库(CSCD)等国内外著名检索机构及数据库收录. 展开更多
关键词 Journal of iron and Steel Research International
原文传递
The critical role of iron homeostasis in neurodegenerative diseases
9
作者 Tiantian Liang Jiasen Xu +6 位作者 Yan Zhu He Zhao Xiaoyu Zhai Qi Wang Xiaohui Ma Limei Cui Yan Sun 《Neural Regeneration Research》 2026年第5期1723-1737,共15页
Neurodegenerative diseases are prevalent conditions that greatly impact human health.These diseases are primarily characterized by the progressive loss and eventual death of neuronal function,although the precise mech... Neurodegenerative diseases are prevalent conditions that greatly impact human health.These diseases are primarily characterized by the progressive loss and eventual death of neuronal function,although the precise mechanisms underlying these processes remain incompletely understood.Iron is an essential trace element in the human body,playing a crucial role in various biological processes.The maintenance of iron homeostasis relies on the body's intricate and nuanced regulatory mechanisms.In recent years,considerable attention has been directed toward the relationship between dysregulated iron homeostasis and neurodegenerative diseases.The regulation of iron homeostasis within cells is crucial for maintaining proper nervous system function.Research has already revealed that disruptions in iron homeostasis may lead to ferroptosis and oxidative stress,which,in turn,can impact neuronal health and contribute to the development of neurodegenerative diseases.This article primarily explores the intimate relationship between iron homeostasis and neurodegenerative diseases,aiming to provide novel insights and strategies for treating these debilitating conditions. 展开更多
关键词 ferroprotein neurodegenerative diseases iron homeostasis iron iron regulatory proteins
暂未订购
Study of the relationship between iron metabolism disorders and sepsis-associated liver injury:A prospective observational study
10
作者 Tian-Wei Wang Lu-Lu Zhou +10 位作者 Jing Yuan Wen-Xin Zhou Hao-Ran Wang Ting-Ting Yu Ji-Chao Zhai Cheng-Bin Tang Wei Jiang Jiang-Quan Yu Rui-Qiang Zheng Hai-Long Yu Jun Shao 《World Journal of Gastroenterology》 2025年第14期71-82,共12页
BACKGROUND Sepsis-associated liver injury(SALI)refers to secondary liver function impairment caused by sepsis,patients with SALI often have worse clinical outcomes.The early identification and assessment of the occurr... BACKGROUND Sepsis-associated liver injury(SALI)refers to secondary liver function impairment caused by sepsis,patients with SALI often have worse clinical outcomes.The early identification and assessment of the occurrence and progression of SALI are pressing issues that urgently need to be resolved.AIM To investigate the relationship between iron metabolism and SALI.METHODS In this prospective study,139 patients were recruited,with 53 assigned to the SALI group.The relationships between SALI and various iron metabolism-related biomarkers were examined.These biomarkers included serum iron(SI),total iron-binding capacity(TIBC),serum ferritin,transferrin,and transferrin saturation.To identify independent risk factors for SALI,both univariate and multivariate logistic regression analyses were performed.Additionally,receiver operating characteristic curve analysis was utilized to assess the predictive value of these biomarkers for the occurrence of SALI.RESULTS There were no statistically significant differences in age,sex,body mass index,Sequential Organ Failure Assessment scores(excluding liver function),or APACHE II scores between the two groups of patients.Compared with the sepsis group,the SALI group presented significantly higher SI(P<0.001),TIBC(P<0.001),serum ferritin(P=0.001),transferrin(P=0.005),and transferrin saturation levels(P<0.001).Multivariate logistic regression analysis revealed that SI(odds ratio=1.24,95%confidence interval:1.11-1.40,P<0.001)and TIBC levels(odds ratio=1.13,95%confidence interval:1.05-1.21,P<0.001)were independent predictors of SALI.Receiver operating characteristic curve analysis revealed that SI and TIBC had areas under the curve of 0.816 and 0.757,respectively,indicating moderate predictive accuracy for SALI.CONCLUSION Iron metabolism disorders are closely associated with the development of SALI,and SI and TIBC may serve as potential predictive biomarkers.The combined use of SI and TIBC has superior diagnostic efficacy for SALI.These findings provide valuable insights for the early identification and management of SALI among patients with sepsis. 展开更多
关键词 SEPSIS Liver injury iron metabolism Biomarkers Serum iron Total iron-binding capacity
暂未订购
Study of Environmental and Geochemical Effects on The Distribution and Transformations of Iron Oxides in Some Soils
11
作者 Rafaa Haider Azizi Al-Mahanna Luma Abdalalah Sagban Alabadi 《Journal of Environmental & Earth Sciences》 2025年第2期129-137,共9页
This study was conducted to determine the content,distribution and transformation of iron oxides in the soils of the Middle Euphrates regions in Iraq.The study included four sites:Tuwairij area in Karbala Governorate,... This study was conducted to determine the content,distribution and transformation of iron oxides in the soils of the Middle Euphrates regions in Iraq.The study included four sites:Tuwairij area in Karbala Governorate,College of Agriculture at the University of Kufa in Najaf Governorate,College of Agriculture at the University of Qadisiyah in Diwaniyah Governorate,and the Nile District in Babylon Governorate.The results showed that the soils of Najaf and Qadisiyah were superior in terms of their content of total free iron oxides(Fet)compared to the soils of Karbala and Babylon.The relative distribution of free iron oxides was generally close among the studied sites,with a homogeneous pattern in the distribution of these oxides within the soil horizons.As for silicate iron oxides(Fes),a homogeneous pattern was observed in the soil of Babylon with its content increasing with depth,while these patterns varied in the soils of Karbala,Najaf and Qadisiyah.Regarding the ratios of crystalline iron oxides(Fed/Fet),the study showed that the Babylon and Qadisiyah soils recorded the highest values,while these values were lower in the Najaf and Karbala soils.On the other hand,amorphous iron oxides(FeO)showed similar values in the Najaf and Qadisiyah soils.In general,these results clearly showed the effect of environmental and geochemical factors of the study areas on the distribution and transformations of iron oxides in the soil of the Middle Euphrates regions. 展开更多
关键词 Fed/Fet FEO CRYSTALLINE iron Compounds Active iron Ratio
在线阅读 下载PDF
OsACL-A2 Regulates Positive Iron Uptake and Blast Resistance in Rice
12
作者 DUAN Wenjing AARON Chan +13 位作者 XU Peng ZHANG Yingxin SUN Lianping WANG Beifang CAO Yongrun ZHANG Yue LI Dian CHEN Daibo HONG Yongbo ZHAN Xiaodeng WU Weixun CHENG Shihua LIU Qun’en CAO Liyong 《Rice science》 2025年第5期589-593,I0005-I0008,共9页
Iron is an essential nutrient for plant growth,development,and disease resistance.Plants absorb iron through their roots,with citrate playing a key role in xylem transport of insoluble Fe3+.In this study,we identified... Iron is an essential nutrient for plant growth,development,and disease resistance.Plants absorb iron through their roots,with citrate playing a key role in xylem transport of insoluble Fe3+.In this study,we identified the cytoplasmic ATP-citrate lyase(ACL)subunit A2 in rice(Oryza sativa L.),OsACL-A2(Os12g0566300),as a critical factor for iron uptake and transport.The osacl-a2 mutant exhibited reduced leaf iron levels,leading to iron deficiency-induced chlorosis,activated defense signaling,and eventual necrosis in mature leaves.Additionally,blast resistance was weakened in immature osacl-a2 leaves.Exogenous iron supplementation rescued these defects.The mutant displayed reduced ATP-citrate lyase activity but increased citric acid levels compared with its wild type(WT),suggesting that the osacl-a2 mutation impairs enzyme activity.Thus,OsACL-A2-mediated citrate lyase activity plays a vital role in promoting iron uptake and associated blast resistance in rice. 展开更多
关键词 xylem transport blast resistance defense signaling iron uptake iron deficiency chlorosisactivated defense signalingand CHLOROSIS cytoplasmic ATP citrate lyase
在线阅读 下载PDF
Remediation of sulfamethoxazole contaminated soil using sulfidated zero-valent iron:The overlooked size and sulfur content effects
13
作者 Chenyu Nie Yinshun Dai +6 位作者 Zhongkai Duan Yucheng Feng Yi Chen Haijun Chen Chao Song Shuguang Wang Shan Zhao 《Journal of Environmental Sciences》 2025年第12期853-866,共14页
Sulfamethoxazole(SMX)contamination in farmland disrupts soil micro-ecological functions,posing a risk to soil health and productivity.Sulfidated zero-valent iron(SZVI),a promising green material known for its good rea... Sulfamethoxazole(SMX)contamination in farmland disrupts soil micro-ecological functions,posing a risk to soil health and productivity.Sulfidated zero-valent iron(SZVI),a promising green material known for its good reactivity,had been used for soil remediation.However,existing studies often overlooked the effects of particle size and sulfur content on the long-term performance of SZVI and its impact on soil micro-ecological safety.This study employed polysulfide-modified nano,micro-nano,and micron-sized SZVI to investigate how particle size and sulfur content influenced the reactivity and durability,as well as the iron oxide forms and microbial community of soil during the SMX remediation.The results demonstrated that micro-nano sized SZVI(nm-SZVI)exhibited prolonged reactivity,achieving 83.12%-99.91%SMX removal over 30 days and maintaining higher levels of soil amorphous and reactive ferrous iron.Although sulfidation improved reactivity,excessive sulfur content reduced removal efficiency and accelerated the conversion to soil crystalline iron forms.Compared to nanoparticles,nm-SZVI fostered microbial diversity and balanced functional bacteria for electron transfer,organic matter utilization,and nutrient cycling.However,the elevated sulfur content in SZVI inhibited the stability of the microbial network.Finally,it was found that SMX underwent isoxazole reduction cleavage and oxidative removal pathways,reducing ecological toxicity.This study provided a new insight into the rational design of SZVI to achieve long-term pollutant removal and ensuring the health and stability of the microbial community by regulating particle size and sulfur content in soil remediation. 展开更多
关键词 Sulfidated zero-valent iron SULFAMETHOXAZOLE Particle size Sulfur content Soil iron(hydr)oxide MICROORGANISM
原文传递
Iron metabolism and sepsis-associated liver injury:Methodological considerations and clinical perspectives
14
作者 Gokhan Koker 《World Journal of Hepatology》 2025年第8期319-321,共3页
This letter offered commentary on the recently published article by Wang et al that investigated the relationship between iron metabolism disorders and sepsis-associated liver injury(SALI).The original study identifie... This letter offered commentary on the recently published article by Wang et al that investigated the relationship between iron metabolism disorders and sepsis-associated liver injury(SALI).The original study identified serum iron and total iron-binding capacity as potential predictive markers of SALI,contributing important insights to critical care hepatology.In this correspondence several methodological considerations that may influence the interpretation and general-izability of the findings were discussed.These include the limitations of a single-center design,the lack of serial biomarker measurements,the omission of hepcidin(a central iron regulatory hormone)as a measured variable,and the exclusive reliance on biochemical criteria for diagnosing liver injury.The potential value of incorporating imaging modalities and additional iron-related markers such as ferritin and transferrin saturation were also highlighted.The aim was to reinforce the importance of a comprehensive approach to iron metabolism in sepsis and to suggest future directions for clinical research that may enhance the diagnostic and prognostic utility of iron-related biomarkers in SALI. 展开更多
关键词 Sepsis-associated liver injury iron metabolism HEPCIDIN Serum iron Total iron-binding capacity Prognostic markers Biomarkers in critical illness Liver imaging FERRITIN Transferrin saturation
暂未订购
Immobilization of phosphorus in sediment-water system by hydrous iron oxide and hydrous iron oxide/calcite mixture under feed input condition
15
作者 Lingui Li Yanhui Zhan Jianwei Lin 《Journal of Environmental Sciences》 2025年第12期476-504,共29页
The efficiency and mechanism of hydrous iron oxide(HFO)and HFO/calcite mixture to inactivate the phosphorus in the overlying water(OW)/sediment system under the feed adding condition were explored,and the effect of HF... The efficiency and mechanism of hydrous iron oxide(HFO)and HFO/calcite mixture to inactivate the phosphorus in the overlying water(OW)/sediment system under the feed adding condition were explored,and the effect of HFO and HFO/calcite mixture addition on the diversity,composition and function of bacterial communities in the sediment was examined.HFO and HFO/calcite mixture direct addition can effectively lower the concentration of soluble reactive phosphorus(RSP)and diffusion gradient in thin film-unstable phosphorus(PD GT)in OW and inactivate the P DGTin the upper sediment.The elimination efficiencies of RSP by the direct HFO and HFO/calcite mixture addition were 48.9%-97.0%and 42.4%-95.4%,respectively.The alteration in the addition mode from the one-time to multiple direct addition was beneficial to the immobilization of RSP and PD GTin OW and P DGTin the upper sediment by HFO and HFO/calcite mixture under the feed input condition in the long run.Permeable fabric wrapping reduced the inactivation efficiency of RSP in OW by HFO and HFO/calcite mixture,but it made the recycling of these materials possible.Most of P immobilized by HFO and HFO/calcite mixture was relatively or very stable.After the HFO and HFO/calcite mixture addition,the composition of bacterial communities in the surface sediment changed.However,the bacterial communities in the amended sediments still can perform good ecological function.Our findings suggest that HFO and HFO/calcite mixture are promising phosphorus-immobilization materials for the inactivation of RSP and PD GTin OW and PD GTin the upper sediment under the feed inputting condition. 展开更多
关键词 Hydrous iron oxide CALCITE SEDIMENT FEED PHOSPHORUS IMMOBILIZATION
原文传递
Structural evolution of iron components and their action behavior on lignite combustion
16
作者 Jialin Chen Zhenghao Yan +3 位作者 Runxia He Yanpeng Ban Huacong Zhou Quansheng Liu 《Chinese Journal of Chemical Engineering》 2025年第2期251-262,共12页
Spontaneous combustion of lignite is closely related to the inherent minerals it contains, and the iron component has a remarkable influence on the combustion property of lignite. It is very important to study the inf... Spontaneous combustion of lignite is closely related to the inherent minerals it contains, and the iron component has a remarkable influence on the combustion property of lignite. It is very important to study the influence of iron component on the combustion reaction property of lignite to reveal autoignition mechanism of lignite and reduce autoignition of lignite. In this research, FeCl_(3) and Fe_(2)O_(3) were doped into demineralised lignite (SL+) by impregnation to research the effects of iron salts and iron oxides on the combustion properties of lignite. Based on the above, the effects of post-treatment method of the FeCl_(3)-doped coal samples, iron-salt hydrolysis products and heat-treated temperatures on the combustion property of lignite were researched, and the microstructures of the coal samples were characterised and analysed using Fourier transform infrared spectroscopy (FTIR), Scanning electron microscope-energy dispersive spectrometer (SEM-EDS), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The results demonstrate that doping with FeCl_(3) increases the combustion performance of lignite, thereby reducing the ignition temperature of lignite by approximately 112 ℃. In contrast, doping with Fe_(2)O_(3) has a weaker combustion-promoting effect. XRD and XPS characterisation indicates that iron species in the coal samples doped with iron salts are highly dispersed and exhibit the FeOOH structure, whereas iron species in the coal samples doped with Fe_(2)O_(3) exhibit the crystal form of α-Fe_(2)O_(3). Doping of lignite with FeCl_(3) and its hydrolysis product β-FeOOH reduces the ignition temperature of the coal samples. Iron species in the FeCl_(3)-doped coal samples after heat treatment at 300–500 ℃ increase the combustion property of the coal samples, whereas iron species after heat treatment at 600–900 ℃ have a much weaker or non-existent promoting effect on the combustion performance of the coal samples. The characterisation show a change in iron species in the coal samples with the rise in the heat treatment temperature. This change progresses from highly dispersed β-FeOOH below 300 ℃ to Fe_(3)O_(4) above 400 ℃. Fe_(3)O_(4) is gradually reduced, with part of it further reduced to elementary iron at the same time as grain growth. It is believed that the gradual agglomeration of Fe_(3)O_(4) and the appearance of elementary iron are the main reasons for the weakening or disappearance of the promoting effect on coal combustion. 展开更多
关键词 Coal combustion MICROSTRUCTURE iron speciation OXIDATION Dynamics
在线阅读 下载PDF
Biogeochemical mechanisms of zero-valent iron and biochar for synergistically mitigating antimony uptake in rice
17
作者 Xiaofeng Zhang Jialin Chi +7 位作者 Huanyun Yu Liping Fang Tongxu Liu Yanhong Du Chuanping Liu Xiangqin Wang Qian Xu Fangbai Li 《Journal of Environmental Sciences》 2025年第7期76-86,共11页
Antimony(Sb)contamination in paddy fields can lead to its accumulation in rice grains,posing a threat to food safety.To address this issue,the combined use of zero-valent iron(ZVI)and biochar(BC)were applied to decrea... Antimony(Sb)contamination in paddy fields can lead to its accumulation in rice grains,posing a threat to food safety.To address this issue,the combined use of zero-valent iron(ZVI)and biochar(BC)were applied to decrease the uptake of Sb in Sb-polluted soils,and their effects on Sb uptake from soil to rice grains were investigated.Our results showed that the combination treatment of 0.05%ZVI and 0.095%BC resulted in a significant decrease(42.8%)in Sb accumulation in rice grains that was comparably more efficient than that by 0.05%ZVI(decrease of 15.8%Sb accumulation)or 0.095%BC(decrease of 12.7%Sb accumulation)alone,demonstrating the synergistic effect of ZVI and BC on mitigating Sb uptake by rice plants.ZVI presence resulted in the formation of iron oxides in the soil and on root surfaces,and the S^(2-)/S_(2)^(2-)ascent also increased by 58.7%on day 75 compared with that of the control,facilitating the reduction of Sb(Ⅴ)to less mobile Sb(Ⅲ),thereby decreasing Sb accumulation in rice plants.BC initially increased themobility of Sb owing to its alkaline nature,whereas the electron shuttle properties of BC contributed to a decrease in Sbmobility.The abundance of the arsenite-reducing gene arrA ultimately increased by 203.2% on day 120 compared with the initial phase on day 5,and BC caused a remarkable increase in arrA gene abundance.This study revealed the synergistic mechanisms by combining ZVI and BC to mitigate Sb uptake by rice,which may be useful for the sustainable remediation of contaminated rice paddies. 展开更多
关键词 ANTIMONY Zero-valent iron BIOCHAR Synergistic remediation Soil-rice system
原文传递
Copper and iron extraction from chalcopyrite by NaCl@MgCl_(2)@urea:Synthesis of CuFe_(2)O_(4) electrodes for supercapacitors
18
作者 POLAT Safa MOHAMMED Mariem MASHRAH Muwafaq 《Journal of Central South University》 2025年第1期82-93,共12页
This study was conducted in two sections.Initially,the effects of NaCl,MgCl_(2),and urea were investigated on extracting copper and iron from chalcopyrite.Subsequently,CuFe_(2)O_(4)-based electrodes for supercapacitor... This study was conducted in two sections.Initially,the effects of NaCl,MgCl_(2),and urea were investigated on extracting copper and iron from chalcopyrite.Subsequently,CuFe_(2)O_(4)-based electrodes for supercapacitors were synthesized using the extracted solution.The first phase revealed that 3 mol/L NaCl achieved the highest extraction performance,yielding 60%Cu and 23%Fe.MgCl_(2)at 1.5 mol/L extracted 52%Cu and 27%Fe,while a combination of 0.5 mol/L MgCl_(2)and 1.6 mol/L urea yielded 57%Cu and 20%Fe.Urea effectively reduced iron levels.CuFe_(2)O_(4)-based electrodes were then successfully synthesized via a hydrothermal method using a MgCl_(2)-urea solution.Characterization studies confirmed CuFe_(2)O_(4)formation with a 2D structure and 45−50 nm wall thickness on nickel foam.Electrochemical analysis showed a specific capacitance of 725 mF/cm^(2)at 2 mA/cm^(2)current density,with energy and power densities of 12.3 mW·h/cm^(2)and 175 mW/cm^(2),respectively.These findings suggest that chalcopyrite has the potential for direct use in energy storage. 展开更多
关键词 COPPER iron NACL MgCl_(2) UREA thiourea CHALCOPYRITE supercapacitor copper ferrite
在线阅读 下载PDF
Dissolved carbon in biochar:Exploring its chemistry,iron complexing capability,toxicity in natural redox environment
19
作者 Chaochao Lai Juhong Zhan +5 位作者 Qiuyun Chai Changlu Wang Xiaoxia Yang Huan He Bin Huang Xuejun Pan 《Journal of Environmental Sciences》 2025年第1期217-229,共13页
Dissolved black carbon(DBC)plays a crucial role in the migration and bioavailability of iron in water.However,the properties of DBC releasing under diverse pyrolysis conditions and dissolving processes have not been s... Dissolved black carbon(DBC)plays a crucial role in the migration and bioavailability of iron in water.However,the properties of DBC releasing under diverse pyrolysis conditions and dissolving processes have not been systematically studied.Here,the compositions of DBC released from biochar through redox processes dominated by bacteria and light were thoroughly studied.It was found that the DBC released from straw biochar possess more oxygen-containing functional groups and aromatic substances.The content of phenolic and carboxylic groups in DBC was increased under influence of microorganisms and light,respectively.The concentration of phenolic hydroxyl groups increased from 10.0~57.5 mmol/gC to 6.6~65.2 mmol/gC,and the concentration of carboxyl groups increased from49.7~97.5 mmol/gC to 62.1~113.3 mmol/gC.Then the impacts of DBC on pyrite dissolution andmicroalgae growth were also investigated.The complexing Fe^(3+)was proved to play a predominant role in the dissolution of ferrous mineral in DBC solution.Due to complexing between iron ion and DBC,the amount of dissolved Fe in aquatic water may rise as a result of elevated number of aromatic components with oxygen containing groups and low molecular weight generated under light conditions.Fe-DBC complexations in solution significantly promoted microalga growth,which might be attributed to the stimulating effect of dissolved Fe on the chlorophyll synthesis.The results of study will deepen our understanding of the behavior and ultimate destiny of DBC released into an iron-rich environment under redox conditions. 展开更多
关键词 Dissolved black carbon BACTERIA Light iron complexes TOXICITY
原文传递
Combinatorial approach to treat iron overload cardiomyopathy in pediatric patients with thalassemia-major: A systematic review and meta-analysis
20
作者 Moaz Safwan Mariam Safwan Bourgleh +1 位作者 Aseel Alsudays Khawaja Husnain Haider 《World Journal of Cardiology》 2025年第2期93-102,共10页
BACKGROUND Iron overload cardiomyopathy is a significant cause of morbidity and mortality in transfusion-dependent thalassemia patients.Standard iron chelation therapy is less efficient in alleviating iron accumulatio... BACKGROUND Iron overload cardiomyopathy is a significant cause of morbidity and mortality in transfusion-dependent thalassemia patients.Standard iron chelation therapy is less efficient in alleviating iron accumulation in many organs,especially when iron enters the cells via specific calcium channels.AIM To validate our hypothesis that adding amlodipine to the iron chelation regimen is more efficient in alleviating myocardial iron overload.METHODS Five databases,including PubMed,Cochrane Library,Embase,ScienceDirect,and ClinicalTrials.gov,were systematically searched,and three randomized controlled trials involving 144 pediatric patients with transfusion-dependent thalassemia were included in our meta-analysis based on the predefined eligibility criteria.The quality of the included studies was assessed based on the Cochrane collab-oration tool for bias assessment.The primary outcome assessed was myocardial-T2 and myocardial iron concentration,while the secondary results showed serum ferritin level,liver iron concentration,and treatment adverse outcomes.Weighted mean difference and odds ratio were calculated to measure the changes in the estimated treatment effects.RESULTS During the follow-up period,Amlodipine treatment significantly improved cardiac T2 by 2.79 ms compared to the control group[95%confidence interval(CI):0.34-5.24,P=0.03,I2=0%].Additionally,a significant reduction of 0.31 in myocardial iron concentration was observed with amlodipine treatment compared to the control group[95%CI:-0.38-(-0.25),P<0.00001,I2=0%].Liver iron concentration was slightly lower in the amlodipine group by-0.04 mg/g,but this difference was not statistically significant(95%CI:-0.33-0.24,P=0.77,I2=0%).Amlodipine also showed a non-significant trend toward a reduction in serum ferritin levels(-328.86 ng/mL,95%CI:-1212.34-554.62,P=0.47,I2=90%).Regarding safety,there were no significant differences between the groups in the incidence of gastrointestinal upset,hypotension,or lower limb edema.CONCLUSION Amlodipine with iron chelation therapy significantly improved cardiac parameters,including cardiac-T2 and myocardial iron,in patients with transfusion-dependent thalassemia without causing significant adverse events but enhancing the efficacy of iron chelation therapy. 展开更多
关键词 AMLODIPINE CARDIOMYOPATHY iron overload Randomized controlled trials THALASSEMIA
暂未订购
上一页 1 2 250 下一页 到第
使用帮助 返回顶部