期刊文献+
共找到8,798篇文章
< 1 2 250 >
每页显示 20 50 100
Iron-based biochar as efficient persulfate activation catalyst for emerging pollutants removal:A review 被引量:3
1
作者 Jinjie Lu Qinwei Lu +2 位作者 Lu Di Yi Zhou Yanbo Zhou 《Chinese Chemical Letters》 SCIE CAS CSCD 2023年第11期74-81,共8页
In recent years,biochar(BC)as a low-cost,easily available biomass product,is widely applied in sulfate radical-based advanced oxidation processes(SR-AOPs)for emerging pollutants remediation.Herein,a state-of-art revie... In recent years,biochar(BC)as a low-cost,easily available biomass product,is widely applied in sulfate radical-based advanced oxidation processes(SR-AOPs)for emerging pollutants remediation.Herein,a state-of-art review of iron-based biochar catalysts is currently available in SR-AOPs application.A general summary of the development of biochar and the catalytic properties of biochar is presented.Especially,the synthetic strategies of different types of iron-based biochar catalysts are discussed.Moreover,the theoretical calculation to interpret the interaction between biochar and iron species is discussed to explore the activation mechanisms.And the regeneration methods of biochar-based catalyst are presented.The unresolved challenges of the existent biochar-based SR-AOPs are pointed out,and the outlooks of future research directions are proposed. 展开更多
关键词 biochar PERSULFATE Emerging pollutants
原文传递
The iron-based biochar activating chlorite(ClO_(2)^(−))driven by mechanochemical ultrasonic:piecewise kinetics,biomimetic catalytic-mechanism,and novel advanced redox process
2
作者 Qihui Xu Qianhui Yang +3 位作者 Yuming Xie Lin Hu Zhenghao Fei Hong You 《Frontiers of Environmental Science & Engineering》 2025年第2期151-168,共18页
Chlorite(ClO_(2)^(−)or COI)is used to establish the advanced reduction and oxidation process(AROP).The iron/biochar-based particles(iron-based hydrothermal carbon with hinge-like structure,FebHCs,20 mg/L)can be utiliz... Chlorite(ClO_(2)^(−)or COI)is used to establish the advanced reduction and oxidation process(AROP).The iron/biochar-based particles(iron-based hydrothermal carbon with hinge-like structure,FebHCs,20 mg/L)can be utilized to activate COI(2 mmol/L)to present selective oxidation in removing triphenylmethane derivatives(15 min,90%).The protonation(H+at~102μmol/L level)played a huge role(k-2nd=0.136c-H+−0.014(R^(2)-adj=0.986),and rapp=−0.0876/c-H++1.017(R^(2)-adj=0.996))to boost the generation of the active species(e.g.,high-valent iron oxidizing species(HVI=O)and chlorine dioxide(ClO_(2))).The protonation-coupled electron transfer promoted Fe-substances in Feb/HCs activating COI(the calculated kobs ranging from 0.066−0.285 min^(−1)).The form of ClO_(2) mainly attributed to proton-coupled electron transfer(1e/1H+).The HVI=O was generated from the electron transfer within the coordination complex.Moreover,carbon particles in FebHCs serve as the bridge for electron transfer.The above roles contribute to the fracture and formation of coordination-induced bonds between Lx-FeII/III and ClO_(2)^(−)at phase interface to form AROP.The ultrasonic(US)cavitation enhanced the mass transfer of active species in bulk solution,and the HVI=O and ClO_(2) attack unsaturated central carbon atoms of triphenylmethane derivatives to initiate selective removal.Furthermore,the scale-up experiment with continuous flow(k values of approximately 0.2 min^(−1),COD removal efficiency of approximately 80%)and the reactor with COMSOL simulation have also proved the applicability of the system.The study offers a novel AROP and new insights into correspondingly heterogeneous interface activation mechanisms. 展开更多
关键词 CHLORITE iron-based biochar ULTRASONIC Chlorine dioxide High-valent iron oxidizing species
原文传递
Iron-Based Metal Matrix Composite:A Critical Review on the Microstructural Design,Fabrication Processes,and Mechanical Properties
3
作者 Sai Chen Shuangjie Chu Bo Mao 《Acta Metallurgica Sinica(English Letters)》 2025年第1期1-44,共44页
Iron-based metal matrix composites(IMMCs)have attracted significant research attention due to their high specific stiffness and strength,making them potentially suitable for various engineering applications.Microstruc... Iron-based metal matrix composites(IMMCs)have attracted significant research attention due to their high specific stiffness and strength,making them potentially suitable for various engineering applications.Microstructural design,including the selection of reinforcement and matrix phases,the reinforcement volume fraction,and the interface issues are essential factors determining the engineering performance of IMMCs.A variety of fabrication methods have been developed to manufacture IMMCs in recent years.This paper reviews the recent advances and development of IMMCs with particular focus on microstructure design,fabrication methods,and their engineering performance.The microstructure design issues of IMMC are firstly discussed,including the reinforcement and matrix phase selection criteria,interface geometry and characteristics,and the bonding mechanism.The fabrication methods,including liquid state,solid state,and gas-mixing processing are comprehensively reviewed and compared.The engineering performance of IMMCs in terms of elastic modulus,hardness and wear resistance,tensile and fracture behavior is reviewed.Finally,the current challenges of the IMMCs are highlighted,followed by the discussion and outlook of the future research directions of IMMCs. 展开更多
关键词 iron-based metal matrix composites MICROSTRUCTURE Fabrication methods Mechanical properties
原文传递
A new iron-based sulfate cathode material for high-performance potassium-ion battery
4
作者 Xinyue Xu Guodong Li +8 位作者 Hao Zhang Nan Wang Tinghang Xu Hui Yang Jie Xu Baofeng Wang Junxi Zhang Zhaolu Liu Yongjie Cao 《Nano Research》 2025年第11期532-543,共12页
Iron-based sulfates have emerged as promising cathode materials for potassium-ion batteries due to their low cost,high working potential,and environmentally friendly.However,the relatively large ionic radius and slugg... Iron-based sulfates have emerged as promising cathode materials for potassium-ion batteries due to their low cost,high working potential,and environmentally friendly.However,the relatively large ionic radius and sluggish diffusion coefficient of K-ion pose significant challenges to the electrochemical performance and structural stability of cathode materials in potassium-ion batteries(PIBs).In this work,we successfully synthesis a new iron-based sulfate cathode material,potassium sodium iron sulfate(K1.66Na1.02Fe1.66(SO4)3,KNFS),through an electro-chemical ion exchange method.As a cathode material,it exhibits a reversible specific capacity of 83 mAh·g^(−1) and an average working potential of 3.84 V(vs.K/K^(+))at 0.1 C in PIBs.Even at 2 C,it still demonstrates a reversible specific capacity of 52 mAh·g^(−1) with a capacity retention ratio of 88.2%after 300 cycles.The in-situ X-ray diffraction(XRD)and ex-situ X-ray absorption spectroscopy reveal that the K-ion storage mechanism in KNFS is predominantly governed by the reversible Fe3+/Fe2+redox couple,which provides a theoretical specific capacity of 94 mAh·g^(−1) and involves minimal volume change(2.57%).The first-principles calculations combined with XRD results indicate that the KNFS cathode exhibits a typical alluaudite-type crystal structure with multiple fast K-ion migration channels along the three-dimensional orientation. 展开更多
关键词 energy storage potassium-ion batteries polyanion-type cathode materials iron-based sulfate high working potential
原文传递
Optimization of process parameters for preparation of vanadium-iron-based alloy via silicon thermal reduction
5
作者 Ning Sun Yi-min Zhang +6 位作者 Nan-nan Xue Kui-song Zhu Jun-han Li Shao-li Yang Lan Ma Xiang-li Cheng Lu Lu 《Journal of Iron and Steel Research International》 2025年第11期3722-3736,共15页
Specialized vanadium(V)-iron(Fe)-based alloy additives utilized in the production of V-containing steels were investigated.Vanadium slag from the Panzhihua region of China was utilized as a raw material to optimize pr... Specialized vanadium(V)-iron(Fe)-based alloy additives utilized in the production of V-containing steels were investigated.Vanadium slag from the Panzhihua region of China was utilized as a raw material to optimize process parameters for the preparation of V-Fe-based alloy via silicon thermal reduction.Experiments were conducted to investigate the effects of reduction temperature,holding time,and slag composition on alloy-slag separation,alloy microstructure,and the oxide content of residual slag,with an emphasis on the recovery of valuable metal elements.The results indicated that the optimal process conditions for silicon thermal reduction were achieved at reduction temperature of 1823 K,holding time of 240 min,and slag composition of 45 wt.%SiO_(2),40 wt.%CaO,and 15 wt.%Al_(2)O_(3).The resulting V-Fe-based alloy predominantly consisted of Fe-based phases such as Fe,titanium(Ti),silicon(Si)and manganese(Mn),with Si,V,as well as chromium(Cr)concentrated in the intercrystalline phase of the Fe-based alloy.The recoveries of Fe,Mn,Cr,V,and Ti under the optimal conditions were 96.30%,91.96%,86.53%,80.29%,and 74.82%,respectively.The key components of the V-Fe-based alloy obtained were 41.96 wt.%Si,27.55 wt.%Fe,12.13 wt.%Mn,5.53 wt.%V,4.86 wt.%Cr,and 3.74 wt.%Ti,thereby enabling the comprehensive recovery of the valuable metal from vanadium slag. 展开更多
关键词 Vanadium slag Silicon thermal reduction Process parameter optimization Vanadium–iron-based alloy Valuable metal element
原文传递
Effect of Manganese Incorporation Manner on an Iron-Based Catalyst for Fischer-Tropsch Synthesis 被引量:5
6
作者 Tingzhen Li Yong Yang +5 位作者 Chenghua Zhang Zhichao Tao Haijun Wan Xia An Hongwei Xiang Yongwang Li 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2007年第3期244-251,共8页
A systematic study was undertaken to investigate the effects of the manganese incorporation manner on the textural properties, bulk and surface phase compositions, reduction/carburization behaviors, and surface basici... A systematic study was undertaken to investigate the effects of the manganese incorporation manner on the textural properties, bulk and surface phase compositions, reduction/carburization behaviors, and surface basicity of an iron-based Fischer-Tropsch synthesis (FTS) catalyst. The catalyst samples were characterized by N2 physisorption, X-ray photoelectron spectroscopy (XPS), H2 (or CO) temperature-programmed reduction (TPR), CO2 temperature-programmed desorption (TPD), and M5ssbauer spectroscopy. The FTS performance of the catalysts was studied in a slurry-phase continuously stirred tank reactor (CSTR). The characterization results indicated that the manganese promoter incorporated by using the coprecipitation method could improve the dispersion of iron oxide, and decrease the size of the iron oxide crystallite. The manganese incorporated with the impregnation method is enriched on the catalyst's surface. The manganese promoter added with the impregnation method suppresses the reduction and carburization of the catalyst in H2, CO, and syngas because of the excessive enrichment of manganese on the catalyst surface. The catalyst added manganese using the coprecipitation method has the highest CO conversion (51.9%) and the lowest selectivity for heavy hydrocarbons (C12+). 展开更多
关键词 Fischer-Tropsch synthesis iron-based catalyst manganese promoter incorporation manner
在线阅读 下载PDF
Recent advances in iron-based sulfides electrocatalysts for oxygen and hydrogen evolution reaction 被引量:3
7
作者 Jing Mei Yuqing Deng +2 位作者 Xiaohong Cheng Xing Wang Qi Wu 《Chinese Chemical Letters》 SCIE CAS CSCD 2024年第1期181-195,共15页
Increasing environmental pollution and shortage of conventional fossil fuels have made it urgent to develop renewable and clean energy sources. Electrocatalytic water splitting, with its abundant raw materials, simple... Increasing environmental pollution and shortage of conventional fossil fuels have made it urgent to develop renewable and clean energy sources. Electrocatalytic water splitting, with its abundant raw materials, simple process, and zero carbon emission, is considered one of the most promising processes for producing carbon-neutral hydrogen which has excellent energy conversion efficiency and high gravimetric energy density. Among them, oxygen evolution reaction (OER) electrocatalysts and hydrogen evolution reaction (HER) electrocatalysts are critical to decreasing the intrinsic reaction energy barrier and boosting the hydrogen evolution efficiency. Therefore, it is imperative to develop and design low-cost, highly active, and stable OER and HER electrocatalysts to lower the overpotential and drive the electrocatalytic reactions. Transition metal sulfides, especially iron-based sulfides, have attracted extensive exploration by researchers as a result of its high abundance in the Earth's crust and near-metallic conductivity. Consequently, in this review, we systematically and comprehensively summarize the progress in the application of iron-based sulfides and their composites as OER and HER electrocatalysts in electrocatalysis. Detailed descriptions and illustrations of the special relationships among their composition, structure, and electrocatalytic performance are presented. Finally, this review points out the challenges and future prospects of iron-based sulfides in practical applications for designing and fabricating more promising iron-based sulfide OER and HER electrocatalysts. We believe that iron-based sulfide materials will have a wide range of application prospects as OER and HER electrocatalysts in the future. 展开更多
关键词 iron-based sulfides ELECTROCATALYSTS DOPING COMPOSITES Water splitting
原文传递
New Iron-based SiC Spherical Composite Magnetic Abrasive for Magnetic Abrasive Finishing 被引量:13
8
作者 ZHANG Guixiang ZHAO Yugang +2 位作者 ZHAO Dongbiao ZUO Dunwen YIN Fengshi 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2013年第2期377-383,共7页
SiC magnetic abrasive is used to polish surfaces of precise, complex parts which are hard, brittle and highly corrosion-resistant in magnetic abrasive finishing(MAF). Various techniques are employed to produce this ... SiC magnetic abrasive is used to polish surfaces of precise, complex parts which are hard, brittle and highly corrosion-resistant in magnetic abrasive finishing(MAF). Various techniques are employed to produce this magnetic abrasive, but few can meet production demands because they are usually time-consuming, complex with high cost, and the magnetic abrasives made by these techniques have irregular shape and low bonding strength that result in low processing efficiency and shorter service life. Therefore, an attempt is made by combining gas atomization and rapid solidification to fabricate a new iron-based SiC spherical composite magnetic abrasive. The experimental system to prepare this new magnetic abrasive is constructed according to the characteristics of gas atomization and rapid solidification process and the performance requirements of magnetic abrasive. The new iron-based SiC spherical composite magnetic abrasive is prepared successfully when the machining parameters and the composition proportion of the raw materials are controlled properly. Its morphology, microstructure, phase composition are characterized by scanning electron microscope(SEM) and X-ray diffraction(XRD) analysis. The MAF tests on plate of mold steel S136 are carried out without grinding lubricant to assess the finishing performance and service life of this new SiC magnetic abrasive. The surface roughness(Ra) of the plate worked is rapidly reduced to 0.051 μm from an initial value of 0.372 μm within 5 min. The MAF test is carried on to find that the service life of this new SiC magnetic abrasive reaches to 155 min. The results indicate that this process presented is feasible to prepare the new SiC magnetic abrasive; and compared with previous magnetic abrasives, the new SiC spherical composite magnetic abrasive has excellent finishing performance, high processing efficiency and longer service life. The presented method to fabricate magnetic abrasive through gas atomization and rapid solidification presented can significantly improve the finishing performance and service life of magnetic abrasive, and provide a more practical approach for large-scale industrial production of magnetic abrasive. 展开更多
关键词 iron-based SiC composite powder gas atomization and rapid solidification spherical composite magnetic abrasive magnetic abrasive finishing(MAF)
在线阅读 下载PDF
Interfacial mechanisms of heterogeneous Fenton reactions catalyzed by iron-based materials: A review 被引量:42
9
作者 Jie He Xiaofang Yang +1 位作者 Bin Men Dongsheng Wang 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2016年第1期97-109,共13页
The heterogeneous Fenton reaction can generate highly reactive hydroxyl radicals(·OH)from reactions between recyclable solid catalysts and H2O2 at acidic or even circumneutral pH.Hence,it can effectively oxidiz... The heterogeneous Fenton reaction can generate highly reactive hydroxyl radicals(·OH)from reactions between recyclable solid catalysts and H2O2 at acidic or even circumneutral pH.Hence,it can effectively oxidize refractory organics in water or soils and has become a promising environmentally friendly treatment technology.Due to the complex reaction system,the mechanism behind heterogeneous Fenton reactions remains unresolved but fascinating,and is crucial for understanding Fenton chemistry and the development and application of efficient heterogeneous Fenton technologies.Iron-based materials usually possess high catalytic activity,low cost,negligible toxicity and easy recovery,and are a superior type of heterogeneous Fenton catalysts.Therefore,this article reviews the fundamental but important interfacial mechanisms of heterogeneous Fenton reactions catalyzed by iron-based materials..OH,hydroperoxyl radicals/superoxide anions(HO2./O2^-.)and high-valent iron are the three main types of reactive oxygen species(ROS),with different oxidation reactivity and selectivity.Based on the mechanisms of ROS generation,the interfacial mechanisms of heterogeneous Fenton systems can be classified as the homogeneous Fenton mechanism induced by surface-leached iron,the heterogeneous catalysis mechanism,and the heterogeneous reaction-induced homogeneous mechanism.Different heterogeneous Fenton systems catalyzed by characteristic iron-based materials are comprehensively reviewed.Finally,related future research directions are also suggested. 展开更多
关键词 Heterogeneous Fenton reactions ROS interfacial mechanisms iron-based materials
原文传递
Effect of Al_2O_3 Binder on the Precipitated Iron-Based Catalysts for Fischer-Tropsch Synthesis 被引量:9
10
作者 Hai-Jun Wan Bao-Shan Wu +4 位作者 Xia An Ting-Zhen Li Zhi-Chao Tao Hong-Wei Xiang Yong-Wang Li 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2007年第2期130-138,共9页
A series of iron-based Fischer-Tropsch synthesis (FTS) catalysts incorporated with Al2O3 binder were prepared by the combination of co-precipitation and spray drying technology. The catalyst samples were characteriz... A series of iron-based Fischer-Tropsch synthesis (FTS) catalysts incorporated with Al2O3 binder were prepared by the combination of co-precipitation and spray drying technology. The catalyst samples were characterized by using N2 physical adsorption, temperature-programmed reduction/desorption (TPR/TPD) and MSssbauer effect spectroscopy (MES) methods. The characterization results indicated that the BET surface area increases with increasing Al2O3 content and passes through a maximum at the Al2O3/Fe ratio of 10/100 (weight basis). After the point, it decreases with further increase in Al2O3 content. The incorporation of Al2O3 binder was found to weaken the surface basicity and suppress the reduction and carburization of iron-based catalysts probably due to the strong K-Al2O3 and Fe-Al2O3 interactions. Furthermore, the H2 adsorption ability of the catalysts is enhanced with increasing Al2O3 content. The FTS performances of the catalysts were tested in a slurry-phase continuously stirred tank reactor (CSTR) under the reaction conditions of 260 ℃, 1.5 MPa, 1000 h^-1 and molar ratio of H2/CO 0.67 for 200 h. The results showed that the addition of small amounts of Al2O3 affects the activity of iron-based catalysts to a little extent. However, with further increase of Al2O3 content, the FTS activity and water gas shift reaction (WGS) activity are decreased severely. The addition of appropriate Al2O3 do not affect the product selectivity, but the catalysts incorporated with large amounts of Al2O3 have higher selectivity for light hydrocarbons and lower selectivity for heavy hydrocarbons. 展开更多
关键词 Fischer-Tropsch synthesis iron-based catalyst Al2O3 binder Fe-Al2O3 interaction
在线阅读 下载PDF
Signal Detection of Carbon in Iron-Based Alloy by Double-Pulse Laser-Induced Breakdown Spectroscopy 被引量:2
11
作者 林晓梅 李晗 姚清华 《Plasma Science and Technology》 SCIE EI CAS CSCD 2015年第11期953-957,共5页
Although single-pulse lasers are often used in traditional laser-induced breakdown spectroscopy (LIBS) measurements, their measurement outcomes are generally undesirable because of the low sensitivity of carbon in i... Although single-pulse lasers are often used in traditional laser-induced breakdown spectroscopy (LIBS) measurements, their measurement outcomes are generally undesirable because of the low sensitivity of carbon in iron-based alloys. In this article, a double-pulse laser was applied to improve the signal intensity of carbon. Both the inter-pulse delay and the combination of laser wavelengths in double-pulse laser-induced breakdown spectroscopy (DP-LIBS) were optimized in our experiment. At the optimized inter-pulse delay, the combination of a first laser of 532 nm and a second laser of 1,064 nm achieved the highest signal enhancement. The properties of the target also played a role in determining the mass ablation enhancement in DP-LIBS configuration. 展开更多
关键词 DP-LIBS CARBON signal detection iron-based alloy
在线阅读 下载PDF
Crystal chemistry and structural design of iron-based superconductors 被引量:2
12
作者 蒋好 孙云蕾 +1 位作者 许祝安 曹光旱 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第8期135-145,共11页
The second class of high-temperature superconductors (HTSCs), iron-based pnictides and chalcogenides, necessarily contain Fe2X2 ("X" refers to a pnictogen or a chalcogen element) layers, just like the first clas... The second class of high-temperature superconductors (HTSCs), iron-based pnictides and chalcogenides, necessarily contain Fe2X2 ("X" refers to a pnictogen or a chalcogen element) layers, just like the first class of HTSCs which possess the essential CuO2 sheets. So far, dozens of iron-based HTSCs, classified into nine groups, have been discovered. In this article, the crystal-chemistry aspects of the known iron-based superconductors are reviewed and summarized by employing "hard and soft acids and bases (HSAB)" concept. Based on these understandings, we propose an alternative route to exploring new iron-based superconductors via rational structural design. 展开更多
关键词 iron-based superconductors crystal chemistry structural design
原文传递
Angle-resolved photoemission spectroscopy study on iron-based superconductors 被引量:2
13
作者 叶子荣 张焱 +1 位作者 谢斌平 封东来 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第8期109-122,共14页
Angle-resolved photoemission spectroscopy (ARPES) has played an important role in determining the band structure and the superconducting gap structure of iron-based superconductors. In this paper, from the ARPES per... Angle-resolved photoemission spectroscopy (ARPES) has played an important role in determining the band structure and the superconducting gap structure of iron-based superconductors. In this paper, from the ARPES perspective, we briefly review the main results from our group in recent years on the iron-based superconductors and their parent compounds, and depict our current understanding on the antiferromagnetism and superconductivity in these materials. 展开更多
关键词 iron-based superconductors angle-resolved photoemission spectroscopy electronic structure
原文传递
Emerging multifunctional iron-based nanomaterials as polysulfides adsorbent and sulfur species catalyst for lithium-sulfur batteries——A mini-review 被引量:1
14
作者 Xinxing Sun Shuangke Liu +1 位作者 Weiwei Sun Chunman Zheng 《Chinese Chemical Letters》 SCIE CAS CSCD 2023年第1期59-72,共14页
Lithium-sulfur(Li-S)battery has been considered as one of the most promising next generation energy storage technologies for its overwhelming merits of high theoretical specific capacity(1673 m Ah/g),high energy densi... Lithium-sulfur(Li-S)battery has been considered as one of the most promising next generation energy storage technologies for its overwhelming merits of high theoretical specific capacity(1673 m Ah/g),high energy density(2500 Wh/kg),low cost,and environmentally friendliness of sulfur.However,critical drawbacks,including inherent low conductivity of sulfur and Li2S,large volume changes of sulfur cathodes,undesirable shuttling and sluggish redox kinetics of polysulfides,seriously deteriorate the energy density,cycle life and rate capability of Li-S battery,and thus limit its practical applications.Herein,we reviewed the recent developments addressing these problems through iron-based nanomaterials for effective synergistic immobilization as well as conversion reaction kinetics acceleration for polysulfides.The mechanist configurations between different iron-based nanomaterials and polysulfides for entrapment and conversion acceleration were summarized at first.Then we concluded the recent progresses on utilizing various iron-based nanomaterials in Li-S battery as sulfur hosts,separators and cathode interlayers.Finally,we discussed the challenges and perspectives for designing high sulfur loading cathode architectures along with outstanding chemisorption capability and catalytic activity. 展开更多
关键词 iron-based nanomaterials POLYSULFIDES Chemical anchoring Electrocatalyst Lithium-sulfur batteries
原文传递
Corrosion properties of high silicon iron-based alloys in nitric acid 被引量:1
15
作者 LI Ju-cang WANG Shu-ying +2 位作者 ZHAO Ai-min WANG Li-na LIU Feng-he 《China Foundry》 SCIE CAS 2007年第4期276-279,共4页
The effect of copper and rare-earth elements on corrosion behavior of high silicon iron-based alloys in nitric acid was studied by means of static and loading current corrosion experiments.The anodic polarization curv... The effect of copper and rare-earth elements on corrosion behavior of high silicon iron-based alloys in nitric acid was studied by means of static and loading current corrosion experiments.The anodic polarization curve was also made to discuss the corrosion mechanism.The examination on alloy microstructure and SEM corrosion pattern showed that when silicon content reached 14.5%,the Fe3Si phase appeared and the primary structure of the iron-base alloy was ferrite.When adding 4.57% copper in the iron alloy,its corrosion resistance in static diluted sulfuric acid was improved while its corrosion resistance and electrochemical corrosion properties in the nitric acid were decreased.In contrast,the addition of rare earth elements could improve the corrosion properties in all above conditions including in static diluted sulfuric acid and in nitric acid. 展开更多
关键词 polarization curve corrosion resistance MICROSTRUCTURE corrosion pattern iron-based alloys
在线阅读 下载PDF
Electronic structure and spatial inhomogeneity of iron-based superconductor FeS 被引量:1
16
作者 Chengwei Wang Meixiao Wang +12 位作者 Juan Jiang Haifeng Yang Lexian Yang Wujun Shi Xiaofang Lai Sung-Kwan Mo Alexei Barinov Binghai Yan Zhi Liu Fuqiang Huang Jinfeng Jia Zhongkai Liu Yulin Chen 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第4期110-115,共6页
Iron-based superconductor family FeX(X=S,Se,Te)has been one of the research foci in physics and material science due to their record-breaking superconducting temperature(FeSe film)and rich physical phenomena.Recently,... Iron-based superconductor family FeX(X=S,Se,Te)has been one of the research foci in physics and material science due to their record-breaking superconducting temperature(FeSe film)and rich physical phenomena.Recently,FeS,the least studied Fe X compound(due to the difficulty in synthesizing high quality macroscopic crystals)attracted much attention because of its puzzling superconducting pairing symmetry.In this work,combining scanning tunneling microscopy and angle resolved photoemission spectroscopy(ARPES)with sub-micron spatial resolution,we investigate the intrinsic electronic structures of superconducting FeS from individual single crystalline domains.Unlike FeTe or FeSe,FeS remains identical tetragonal structure from room temperature down to 5 K,and the band structures observed can be well reproduced by our ab-initio calculations.Remarkably,mixed with the 1×1 tetragonal metallic phase,we also observe the coexistence of √5×√5 reconstructed insulating phase in the crystal,which not only helps explain the unusual properties of FeS,but also demonstrates the importance of using spatially resolved experimental tools in the study of this compound. 展开更多
关键词 angle-resolved PHOTOEMISSION with spatially resolution scanning TUNNELING microscopy iron-based SUPERCONDUCTOR electronic band structure
原文传递
Polymerization of Norbornene via an Iron-Based Complex/MAO Catalytic System 被引量:1
17
作者 MI Xia MA Zhi +4 位作者 YAN Wei-dong LIU Yuan-xia WANG Hang KE Yu-cai HU You-liang 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2002年第4期462-465,共4页
Polynorbornenes were synthesized in the presence of an iron based catalyst, 2,6-bis[1-(2,6-diisopropyl-phenylimino)ethyl]pyridine iron(Ⅱ) dichloride. The FTIR, 1H NMR and 13C NMR analysis results revealed t... Polynorbornenes were synthesized in the presence of an iron based catalyst, 2,6-bis[1-(2,6-diisopropyl-phenylimino)ethyl]pyridine iron(Ⅱ) dichloride. The FTIR, 1H NMR and 13C NMR analysis results revealed that the structure of the obtained polynorbornenes consisted of vinyl addition polymer substructures without any ring-opening structures. The polymers were amorphous with a short-range order, displayed in the WAXD(wide angle X-ray diffraction) diagrams. The glass transition temperatures ranged from 200 to 400 ℃. The effects of the polymerization reaction conditions, such as Al/Fe molar ratio and toluene/CH_2Cl_2 volume ratio, on the activity, intrinsic viscosity and T_g were also studied. 展开更多
关键词 POLYNORBORNENE iron-based complex Vinyl addition polymer Short-range order Norbornene polymerization
在线阅读 下载PDF
Application and mechanism of Fenton-like iron-based functional materials for arsenite removal 被引量:1
18
作者 Qing-wei WANG Xue-lei YAN +3 位作者 Mei-juan MA Ben-sheng LI Zong-run LI Qing-zhu LI 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2022年第12期4139-4155,共17页
Between the two major arsenic-containing salts in natural water, arsenite(As(Ⅲ)) is far more harmful to human and the environment than arsenate(As(V)) due to its high toxicity and transportability. Therefore, preoxid... Between the two major arsenic-containing salts in natural water, arsenite(As(Ⅲ)) is far more harmful to human and the environment than arsenate(As(V)) due to its high toxicity and transportability. Therefore, preoxidation of As(Ⅲ) to As(V) is considered to be an effective means to reduce the toxicity of arsenic and to promote the removal efficiency of arsenic. Due to their high catalytic activity and arsenic affinity, iron-based functional materials can quickly oxidize As(Ⅲ) to As(V) in heterogeneous Fenton-like systems, and then remove As(V) from water through adsorption and surface coprecipitation. In this review, the effects of different iron-based functional materials such as zero-valent iron and iron(hydroxy) oxides on arsenic removal are compared, and the catalytic oxidation mechanism of As(Ⅲ) in heterogeneous Fenton process is further clarified. Finally, the main challenges and opportunities faced by iron-based As(Ⅲ) oxidation functional materials are prospected. 展开更多
关键词 Fenton-like reaction iron-based functional materials catalytic oxidation arsenic removal
在线阅读 下载PDF
Exploring Majorana zero modes in iron-based superconductors 被引量:1
19
作者 Geng Li Shiyu Zhu +2 位作者 Peng Fan Lu Cao Hong-Jun Gao 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第8期1-13,共13页
Majorana zero modes(MZMs) are Majorana-fermion-like quasiparticles existing in crystals or hybrid platforms with topologically non-trivial electronic structures. They obey non-Abelian braiding statistics and are consi... Majorana zero modes(MZMs) are Majorana-fermion-like quasiparticles existing in crystals or hybrid platforms with topologically non-trivial electronic structures. They obey non-Abelian braiding statistics and are considered promising to realize topological quantum computing. Discovery of MZM in the vortices of the iron-based superconductors(IBSs)has recently fueled the Majorana research in a way which not only removes the material barrier requiring construction of complicated hybrid artificial structures, but also enables observation of pure MZMs under higher temperatures. So far,MZMs have been observed in iron-based superconductors including FeTe_(0.55)Se_(0.45),(Li_(0.84)Fe_(0.16))OHFe Se, Ca KFe_(4)As_(4),and Li Fe As. In this topical review, we present an overview of the recent STM studies on the MZMs in IBSs. We start with the observation of MZMs in the vortices in FeTe_(0.55)Se_(0.45)and discuss the pros and cons of FeTe_(0.55)Se_(0.45) compared with other platforms. We then review the following up discovery of MZMs in vortices of Ca KFe_(4)As_(4), impurity-assisted vortices of Li Fe As, and quantum anomalous vortices in FeTe_(0.55)Se_(0.45), illustrating the pathway of the developments of MZM research in IBSs. Finally, we give perspective on future experimental works in this field. 展开更多
关键词 Majorana zero mode iron-based superconductors topological surface states scanning tunneling microscopy
原文传递
Review of nuclear magnetic resonance studies on iron-based superconductors 被引量:1
20
作者 马龙 于伟强 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第8期181-197,共17页
The newly discovered iron-based superconductors have triggered renewed enormous research interest in the condensed matter physics community. Nuclear magnetic resonance (NMR) is a low-energy local probe for studying ... The newly discovered iron-based superconductors have triggered renewed enormous research interest in the condensed matter physics community. Nuclear magnetic resonance (NMR) is a low-energy local probe for studying strongly correlated electrons, and particularly important for high-Tc superconductors. In this paper, we review NMR studies on the structural transition, antiferromagnetic order, spin fluctuations, and superconducting properties of several iron-based high-Tc superconductors, including LaFeAsOl_xFx, LaFeAsOl_x, BaFe2As2, Bal_xKxFe2As2, Cao.23Nao.67Fe2As2, BaFe2(Asl_xPx)2, Ba(Fel_xRux)2As2, Ba(Fel_xCox)2As2, Lil+xFeAs, LiFel_xCoxAs, NaFeAs, NaFel_xCoxAs, KyFe2_xSe2, and (T1,Rb)yFe2_xSe2. 展开更多
关键词 iron-based superconductors nuclear magnetic resonance (NMR) spin fluctuation superconduc-tivity
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部