期刊文献+
共找到36篇文章
< 1 2 >
每页显示 20 50 100
Effects of long-term application of different green manures on ferric iron reduction in a red paddy soil in Southern China 被引量:9
1
作者 GAO Song-juan CAO Wei-dong +5 位作者 GAO Ju-sheng HUANG Jing BAI Jin-shun ZENG Nao-hua CHANG Dan-na SHIMIZU Katsuyoshi 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2017年第4期959-966,共8页
Dissimilatory Fe(Ⅲ) reduction is an important process in the geochemical cycle of iron in anoxic environment. As the main products of dissimilatory iron reduction, the Fe(Ⅱ) species accumulation could indicate t... Dissimilatory Fe(Ⅲ) reduction is an important process in the geochemical cycle of iron in anoxic environment. As the main products of dissimilatory iron reduction, the Fe(Ⅱ) species accumulation could indicate the reduction ability. The effects of different green manures on Fe(Ⅲ) reduction in paddy soil were explored based on a 31-year rice-rice-winter green manure cropping experiment. Four treatments were involved, i.e., rice-rice-milk vetch (RRV), rice-rice-rape (RRP), rice-rice-ryegrass (RRG) and rice-rice-winter fallow (RRF). Soils were sampled at flowering stage of milk vetch and rape (S1), before transplantation (S2), at tillering (S3), jointing (S4), and mature (S5) stages of the early rice, and after the harvest of the late rice (S6). The contents of TFeHa (HCI-extractable total Fe), Fe(Ⅱ)HCI (HCI-extractable Fe(Ⅱ) species) and Fe(Ⅲ)HCI (HCI- extractable Fe(Ⅲ) species) were measured. The correlations among those Fe species with selected soil environmental factors and the dynamic characteristics of Fe(Ⅱ)HCI accumulation were investigated. The results showed that TFeHc~ in RRF was significantly higher than those in the green manure treatments at most of the sampling stages. Fe(II)Ha increased rapidly after the incorporation of green manures in all treatments and kept rising with the growth of early rice. Fe(Ⅱ)Ha in RRG was quite different from those in other treatments, i.e., it reached the highest at the S2 stage, then increased slowly and became the lowest one at the S4 and S5 stages. Fe(Ⅲ)Ha showed oppositely, and Fe(Ⅱ)HCI/Fe(Ⅲ)HCI performed similarly to Fe(Ⅱ)HCI The maximum accumulation potential of Fe(Ⅱ)HCI was significantly higher in RRF, while the highest maximum reaction rate of Fe(Ⅱ)Ha accumulation appeared in RRG. Significant correlations were found between the indexes of Fe(Ⅱ)HCI accumulation and soil pH, oxidation-reduction potential (Eh) and total organic acids, respectively. In together, we found that long-term application of green manures decreased the TFeHa in red paddy soils, but promoted the ability of Fe(lll) reduction, especially the ryegrass; Fe(Ⅱ)Ha increased along with the growth of rice and was affected by soil conditions and environmental factors, especially the water and redox ability. 展开更多
关键词 green manure red paddy soil ferric iron reduction rice-rice-winter green manure cropping system
在线阅读 下载PDF
Kinetics of nitrobenzene degradation coupled to indigenous microorganism dissimilatory iron reduction stimulated by emulsified vegetable oil 被引量:4
2
作者 Jun Dong Linjie Ding +2 位作者 Zifang Chi Jiansen Lei Yan Su 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2017年第4期206-216,共11页
Widespread contamination by nitrobenzene(NB) in sediments and groundwater requires better understanding of the biogeochemical removal process of the pollutant. NB degradation, coupled with dissimilatory iron reducti... Widespread contamination by nitrobenzene(NB) in sediments and groundwater requires better understanding of the biogeochemical removal process of the pollutant. NB degradation, coupled with dissimilatory iron reduction, is one of the most efficient pollutant removal methods. However, research on NB degradation coupled to indigenous microorganism dissimilatory iron reduction stimulated by electron donors is still experimental. A model for remediation in an actual polluted site does not currently exist.Therefore, in this study, the dynamics was derived from the Michaelis–Menten model(when the mass ratio of emulsified vegetable oil and NB reached the critical value 91:1). The effect of SO4^(2-), NO3^-, Ca^(2+)/Mg^(2+), and the grain size of aquifer media on the dynamics were studied, and the NB degradation dynamic model was then modified based on the most significant factors. Utilizing the model, the remediation time could be calculated in a contaminated site. 展开更多
关键词 Nitrobenzene degradation model iron reduction Groundwater Emulsified vegetable oil Site remediation
原文传递
Dissimilatory iron reduction contributes to anaerobic mineralization of sediment in a shallow transboundary lake 被引量:2
3
作者 Yuxiang Yuan Cong Ding +10 位作者 Haitao Wu Xue Tian Min Luo Weiyi Chang Lei Qin Liang Yang Yuanchun Zou Kaikai Dong Xiaoyan Zhu Ming Jiang Marinus L.Otte 《Fundamental Research》 CSCD 2023年第6期844-851,共8页
Dissimilatory iron reduction(DIR)coupled with carbon cycling is increasingly being recognized as an influential process in freshwater wetland soils and sediments.The role of DIR in organic matter(OM)mineralization,how... Dissimilatory iron reduction(DIR)coupled with carbon cycling is increasingly being recognized as an influential process in freshwater wetland soils and sediments.The role of DIR in organic matter(OM)mineralization,however,is still largely unknown in lake sediment environments.In this study,we clarified rates and pathways of OM mineralization in two shallow lakes with seasonal hydrological connectivity and different eutrophic situations.We found that in comparison with the domination of DIR(55%)for OM mineralization in Lake Xiaoxingkai,the contribution of methanogenesis was much higher(68%)in its connected lake(Lake Xingkai).The differences in rates and pathways of sediment OM mineralization between the two lakes were attributed to higher concentrations of carbonate associated iron oxides(Fecarb)in Lake Xiaoxingkai compared to Lake Xingkai(P=0.002),due to better deposition mixing,more contributions of terrigenous detrital materials,and higher OM content in Lake Xiaoxingkai.Results of structural equation modeling showed that Fecarb and total iron content(TFe)regulated 25%of DIR in Lake Xiaoxingkai and 76%in Lake Xingkai,accompanied by a negative effect of TFe on methanogenesis in Lake Xingkai.The relative abundance and diversity of Fe-reducing bacteria were significantly different between the two lakes,and showed a weak effect on sediment OM mineralization.Our findings emphasize the role of iron minerals and geochemical characterizations in regulating rates and pathways of OM mineralization,and deepen the understanding of carbon cycling in lake sediments. 展开更多
关键词 Dissimilatory iron reduction Organic matter mineralization Methane production iron oxides Carbon cycling
原文传递
Thermodynamic and experimental study of high-temperature roasting of blast furnace gas ash for recovery of metallic zinc and iron 被引量:3
4
作者 Zi-han Wang Jing Guo +1 位作者 Han-jie Guo Bin Li 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2024年第1期108-120,共13页
A high-temperature reduction roasting method was used to achieve metallic iron and zinc recovery from blast furnace gas ash(BFA).The reduction processes for Zn-containing and Fe-containing oxides were analyzed in deta... A high-temperature reduction roasting method was used to achieve metallic iron and zinc recovery from blast furnace gas ash(BFA).The reduction processes for Zn-containing and Fe-containing oxides were analyzed in detail by using ther-modynamic equilibrium calculation and the principle of minimum free energy.The results showed that the main reaction in the system is the reduction of ZnFe_(2)_(4)and iron oxides.Over the full temperature range,iron oxides were more easily reduced than zinc oxides.Regardless of the amount of CO contained in the system,the reduction of ZnO to Zn was difficult to proceed below the boiling point(906℃)of Zn.When the reduction temperature is below 906℃,the reduction process of zinc ferrate was ZnFe_(2)_(4)→ZnO;when the reduction temperature is above 906℃,its reduction process becomed ZnFe_(2)_(4)→ZnO→Zn(g).The metallization and dezincification rates of the BFA gradually increased with increasing reaction temperature.As the C/O ratio increased,the metallization and dezincification rates first increased and then decreased.The effect of reduction time on BFA reduction was similar to that of reaction temperature. 展开更多
关键词 Blast furnace gas ash THERMODYNAMICS Zinc removal iron reduction High-temperature reduction roasting Integrated utilization
原文传递
Biochar regulates biogeochemical cycling of iron and chromium in a soil-rice system by stimulating Geobacter and Clostridium
5
作者 Min XU Yang LIN +7 位作者 Jing MA Lulu LONG Chao CHEN Gang YANG Chun SONG Jun WU Xiaohong ZHANG Peng GAO 《Pedosphere》 SCIE CAS CSCD 2024年第5期929-940,共12页
In soil-rice systems,microbial reduction of iron(Fe)has been recognized as a crucial biogeochemical process that regulates Fe and chromium(Cr)translocation;however,the underlying processes are unknown.To investigate t... In soil-rice systems,microbial reduction of iron(Fe)has been recognized as a crucial biogeochemical process that regulates Fe and chromium(Cr)translocation;however,the underlying processes are unknown.To investigate the impacts of biochar on the biochemical cycling of Fe and Cr and their toxicity to rice,maize straw biochar was applied at 1%(weight/weight)to a paddy soil spiked with 300 mg kg^(-1)Cr under two phosphorus(P)levels(0 or 90 mg kg^(-1))in a pot experiment.The key microbial groups affecting Fe dissimilatory reduction and their environmental drivers were explored.Biochar inhibited root Cr uptake by 36%,owing to the promoted iron plaque(IP)formation on the rice root surface.Correlation analysis showed that Fe concentration in pore water was strongly linked to the abundances of Geobacter(r=0.81-0.94,P<0.05)and Clostridium(r=0.83-0.95,P<0.05),indicating that Geobacter and Clostridium played essential roles in Fe reduction.Redundancy analysis showed that labile carbon and pore water P concentrations were the key determinants influencing Fe-reducing bacterial abundances,accounting for 42%and 32%of the variation in community composition,respectively.Besides,biochar increased Fe and P concentrations in root cell walls,which retained more Cr.Overall,Cr stress in rice under biochar treatment was relieved through increasing IP formation and altering subcellular distribution.These mechanistic insights had important implications for reducing Cr uptake by rice. 展开更多
关键词 chromium translocation iron plaque iron reduction maize straw biochar microbial reduction paddy soil phosphorus fertilization subcellular distribution
原文传递
Recovery of iron from high phosphorus oolitic iron ore using coal-based reduction followed by magnetic separation 被引量:44
6
作者 Yong-sheng Sun Yue-xin Han +2 位作者 Peng Gao Ze-hong Wang Duo-zhen Ren 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2013年第5期411-419,共9页
Oolitic iron ore is one of the most important iron resources. This paper reports the recovery of iron from high phosphorus oolitic iron ore using coal-based reduction and magnetic separation. The influences of reducti... Oolitic iron ore is one of the most important iron resources. This paper reports the recovery of iron from high phosphorus oolitic iron ore using coal-based reduction and magnetic separation. The influences of reduction temperature, reduction time, C/O mole ratio, and CaO content on the metallization degree and iron recovery were investigated in detail. Experimental results show that reduced products with the metallization degree of 95.82% could be produced under the optimal conditions (i.e., reduction temperature, 1250℃; reduction time, 50 min; C/O mole ratio, 2.0; and CaO content, 10wt%). The magnetic concentrate containing 89.63wt% Fe with the iron recovery of 96.21% was obtained. According to the mineralogical and morphologic analysis, the iron minerals had been reduced and iron was mainly enriched into the metallic iron phase embedded in the slag matrix in the form of spherical particles. Apatite was also reduced to phosphorus, which partially migrated into the metallic iron phase. 展开更多
关键词 oolitic iron ore iron ore reduction magnetic separation PHOSPHORUS
在线阅读 下载PDF
Effect of carbon species on the reduction and melting behavior of boron-bearing iron concentrate/carbon composite pellets 被引量:13
7
作者 Guang Wang Yin-gui Ding +2 位作者 Jing-song Wang Xue-feng She Qing-guo Xue 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2013年第6期522-528,共7页
Iron nugget and boron-rich slag can be obtained in a short time through high-temperature reduction of boron- bearing iron concentrate by carbonaceous material, both of which are agglomerated together as a carbon compo... Iron nugget and boron-rich slag can be obtained in a short time through high-temperature reduction of boron- bearing iron concentrate by carbonaceous material, both of which are agglomerated together as a carbon composite pellet. This is a novel flow sheet for the comprehensive utilization of boron-bearing iron concentrate to produce a new kind of man-made boron ore. The effect of reducing agent species (i.e., carbon species) on the reduction and melting process of the composite pellet was investigated at a laboratory scale in the present work. The results show that, the reduction rate of the composite pellet increases from bituminite, anthracite, to coke at temperatures ranging from 950 to 1300~C. Reduction temperature has an important effect on the microstructure of reduced pellets. Carbon species also affects the behavior of reduced metallic iron particles. The anthracite-bearing composite pellet melts faster than the bituminite- bearing composite pellet, and the coke-bearing composite pellet cannot melt due to the high fusion point of coke ash. With anthracite as the reducing agent, the recovery rates of iron and boron are 96.5% and 95.7%, respectively. This work can help us get a further understanding of the new process mechanism. 展开更多
关键词 iron ore pellets iron ore reduction BORON bituminite ANTHRACITE COKE
在线阅读 下载PDF
Upgrading and dephosphorization of Western Australian iron ore using reduction roasting by adding sodium carbonate 被引量:12
8
作者 De-qing Zhu Tie-jun Chun +2 位作者 Jian Pan Li-ming Lu Zhen He 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2013年第6期505-513,共9页
The technology of direct reduction by adding sodium carbonate (Na2CO3) and magnetic separation was developed to treat Western Australian high phosphorus iron ore. The iron ore and reduced product were investigated b... The technology of direct reduction by adding sodium carbonate (Na2CO3) and magnetic separation was developed to treat Western Australian high phosphorus iron ore. The iron ore and reduced product were investigated by optical microscopy and scanning electron microscopy. It is found that phosphorus exists within limonite in the form of solid solution, which cannot be removed through traditional ways. During reduction roasting, Na2CO3 reacts with gangue minerals (SiO2 and A1203), forming aluminum silicate-containing phosphorus and damaging the ore structure, which promotes the separation between iron and phosphorus during magnetic separation. Meanwhile, Na2CO3 also improves the growth of iron grains, increasing the iron grade and iron recovery. The iron concentrate, assaying 94.12wt% Fe and 0.07wt% P at the iron recovery of 96.83% and the dephosphorization rate of 74.08%, is obtained under the optimum conditions. The final product (metal iron powder) after briquetting can be used as the burden for steelmaking by an alactrie a.re furnace to rer)la,ce scrar) steel. 展开更多
关键词 iron ore reduction sodium carbonate ore roasting magnetic separation phosphorus removal
在线阅读 下载PDF
Formation and characterization of metallic iron grains in coal-based reduction of oolitic iron ore 被引量:10
9
作者 Yong-sheng Sun Yue-xin Han +1 位作者 Yan-feng Li Yan-jun Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2017年第2期123-129,共7页
To reveal the formation and characteristics of metallic iron grains in coal-based reduction, oolitic iron ore was isothermally re- duced in various reduction times at various reduction temperatures. The microstructure... To reveal the formation and characteristics of metallic iron grains in coal-based reduction, oolitic iron ore was isothermally re- duced in various reduction times at various reduction temperatures. The microstructure and size of the metallic iron phase were investigated by scanning electron microscopy, energy-dispersive X-ray spectroscopy, and a Bgrimm process mineralogy analyzer. In the results, the re- duced Fe separates from the ore and forms metallic iron protuberances, and then the subsequent reduced Fe diffuses to the protuberances and grows into metallic iron grains. Most of the metallic iron grains exist in the quasi-spherical shape and inlaid in the slag matrix. The cumula- tive frequency of metallic iron grain size is markedly influenced by both reduction time and temperature. With increasing reduction temperature and time, the grain size of metallic iron obviously increases. According to the classical grain growth equation, the growth kinetic parameters, i.e., time exponent, growth activation energy, and pre-exponential constant, are estimated to be 1.3759 ± 0.0374, 103.18 kJ·mol^-1, and 922.05, respec- tively. Using these calculated parameters, a growth model is established to describe the growth behavior of metallic iron grains. 展开更多
关键词 iron ore reduction metallic iron grain size growth kinetics activation energy
在线阅读 下载PDF
Thermodynamic analysis of the carbothermic reduction of a high-phosphorus oolitic iron ore by FactSage 被引量:8
10
作者 Wen Yu Qiong-yao Tang +1 位作者 Jiang-an Chen Ti-chang Sun 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2016年第10期1126-1132,共7页
A thermodynamic analysis of the carbothermic reduction of high-phosphorus oolitic iron ore(HPOIO) was conducted by the Fact Sage thermochemical software. The effects of temperature, C/O ratio, additive types, and do... A thermodynamic analysis of the carbothermic reduction of high-phosphorus oolitic iron ore(HPOIO) was conducted by the Fact Sage thermochemical software. The effects of temperature, C/O ratio, additive types, and dosages both on the reduction of fluorapatite and the formation of liquid slag were studied. The results show that the minimum thermodynamic reduction temperature of fluorapatite by carbon decreases to about 850°C, which is mainly ascribed to the presence of SiO_2, Al_2O_3, and Fe. The reduction rate of fluorapatite increases and the amount of liquid slag decreases with the rise of C/O ratio. The reduction of fluorapatite is hindered by the addition of CaO and Na_2CO_3, thereby allowing the selective reduction of iron oxides upon controlled C/O ratio. The thermodynamic results obtain in the present work are in good agreement with the experimental results available in the literatures. 展开更多
关键词 thermodynamic analysis oolitic iron ore carbothermal reduction
在线阅读 下载PDF
Effects of embedding direct reduction followed by magnetic separation on recovering titanium and iron of beach titanomagnetite concentrate 被引量:10
11
作者 Chao Geng Ti-chang Sun +2 位作者 You-wen Ma Cheng-yan Xu Hui-fen Yang 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2017年第2期156-164,共9页
Embedding direct reduction followed by magnetic separation was conducted to fully recover iron and titanium separately from beach titanomagnetite (TTM). The influences of reduction conditions, such as molar ratio of... Embedding direct reduction followed by magnetic separation was conducted to fully recover iron and titanium separately from beach titanomagnetite (TTM). The influences of reduction conditions, such as molar ratio of C to Fe, reduction time, and reduction temperature, were studied. The results showed that the TTM concentrate was reduced to iron and iron-titanium oxides, depending on the reduction time, and the reduction sequence at 1 200℃ was suggested as follows : Fe2.75 Ti0.25O4→Fe2TiO4→FeTiO3→FeTi2O5. The reduction temperature played a considerable role in the reduction of TTM concentrates. Increasing temperature from 1 100 to 1 200℃ was beneficial to recovering titanium and iron, whereas the results deteriorated as temperature increased further. The results of X-ray diffraction and scanning electron microscopy analyses showed that low temperature (≤1100℃) was unfavorable for the gasification of reductant, resulting in insufficient reducing atmosphere in the reduction process. The molten phase was formed at high temperatures of 1250-1 300℃, which accelerated the migration rate of metallic particles and suppressed the diffusion of reduction gas, resulting in poor reduction. The optimum conditions for reducing TTM concentrate are as follows: molar ratio of C to Fe of 1.68, reduction time of 150 min, and reduction temperature of 1 200℃. Under these conditions, direct reduction iron powder, assaying 90.28 mass% TFe and 1.73 mass% TiO2 with iron recovery of 90.85%, and titanium concentrate, assaying 46.24 mass% TiO2 with TiO2 recovery of 91.15%, were obtained. 展开更多
关键词 Titanomagnetite concentrate Direct reduction reduction condition Direct reduction iron powder Magnetic separation
原文传递
Effect of Ca-Fe oxides additives on NOx reduction in iron ore sintering 被引量:13
12
作者 Zhi-yuan Yu Xiao-hui Fan +1 位作者 Min Gan Xu-ling Chen 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2017年第12期1184-1189,共6页
As the emission control regulations get stricter,the NO;reduction in the sintering process becomes an important environmental concern owing to its role in the formation of photochemical smog and acid rain.The NOxemiss... As the emission control regulations get stricter,the NO;reduction in the sintering process becomes an important environmental concern owing to its role in the formation of photochemical smog and acid rain.The NOxemissions from the sintering machine account for 48% of total amount from the iron and steel industry.Thus,it is essential to reduce NO;emissions from the sintering machine,for the achievement of clean production of sinter.Ca-Fe oxides,serving as the main binding phase in the sinter,are therefore used as additives into the sintering mixture to reduce NOxemissions.The results show that the NO;reduction ratio achieves 27.76% with 8% Ca-Fe oxides additives since the Ca-Fe oxides can advance the ignition and inhibit the nitrogen oxidation compared with the conventional condition.Meanwhile,the existence of Ca-Fe oxides was beneficial to the sinter quality since they were typical low melting point compounds.The optimal mass fraction of Ca-Fe oxides additives should be less than 8%since the permeability of sintering bed was significantly decreased with a further increase of the Ca-Fe oxides fines,inhibiting the mineralization reaction of sintering mixture.Additionally,the appropriate particle size can be obtained when mixing an equal amount of Ca-Fe oxides additives of-0.5 mm and 0.5-3.0 mm in size. 展开更多
关键词 iron ore sintering NOx reduction Ca-Fe oxide Coke combustion Sinter index
原文传递
Kinetic studies on the reduction of iron ore nuggets by devolatilization of lean-grade coal 被引量:1
13
作者 Chanchal Biswas Prithviraj Gupta +2 位作者 Arnab De Mahua Ghosh Chaudhuri Rajib Dey 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2016年第12期1360-1368,共9页
An isothermal kinetic study of a novel technique for reducing agglomerated iron ore by volatiles released by pyrolysis of lean-grade non-coking coal was carried out at temperature from 1050 to 1200℃ for 10-120 min. T... An isothermal kinetic study of a novel technique for reducing agglomerated iron ore by volatiles released by pyrolysis of lean-grade non-coking coal was carried out at temperature from 1050 to 1200℃ for 10-120 min. The reduced samples were characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, and chemical analysis. A good degree of metallization and reduction was achieved. Gas diffusion through the solid was identified as the reaction-rate-controlling resistance; however, during the initial period, particularly at lower temperatures, resistance to interfacial chemical reaction was also significant, though not dominant. The apparent rate constant was observed to increase marginally with decreasing size of the particles constituting the nuggets. The apparent activation energy of reduction was estimated to be in the range from 49.640 to 51.220 kJ/mol and was not observed to be affected by the particle size. The sulfur and carbon contents in the reduced samples were also determined. 展开更多
关键词 iron ore reduction COAL DEVOLATILIZATION kinetic studies
在线阅读 下载PDF
Effects of CaO on Precipitation Morphology of Metallic Iron in Reduction of Iron Oxides Under CO Atmosphere 被引量:7
14
作者 ZHAO Zhi-long TANG Hui-qing GUO Zhan-cheng 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2013年第7期16-24,共9页
Growth process of iron whiskers and mechanism of CaO influence on precipitation morphology of metallic iron at the gas-solid interfaces was studied. Analytical reagents of Fe(NO3)3 and Ca(NO3)2 aqueous solution we... Growth process of iron whiskers and mechanism of CaO influence on precipitation morphology of metallic iron at the gas-solid interfaces was studied. Analytical reagents of Fe(NO3)3 and Ca(NO3)2 aqueous solution were used to prepare sheet film sample of Fe2 O3-CAO by thermal decomposition at high temperature. In-situ observation was con-ducted using a stereo optical microscope and a hot-stage. And reduction kinetics of samples was studied by thermo gravimetrie (TG) method. Some samples after reduction were analyzed by using the scanning electron microscope (SEM), energy dispersive spectrometer (EDS) and fourier transform infrared (FT-IR) spectrometer. Results indi-cate that during the reduction of iron oxides with CO, metallic iron is mostly precipitated as whisker and the precipi- tation behavior mainly depends on reduction rate. Doping CaO can significantly increase the reduction rate and effec-tively change the precipitation morphology of metallic iron after the reduction. When CaO doping concentration is less than 4% (mass percent), CaO can promote whisker formation of reduced iron; as it reaches 6% (mass per- cent), CaO inhibits iron whiskers growth; as it is more than 8% (mass percent), no whiskers could be observed. Therefore, controlling the quantity of Ca^2+ is effective to control the formation and growth of iron whiskers during gaseous reduction and thus eliminating ore grain sticking caused by intertexture of iron whiskers. 展开更多
关键词 stereo optical microscopes in-situ observations gaseous direct reductions iron whiskers sticking
原文传递
Effect of Sodium Sulfate on Direct Reduction of Beach Titanomagnetite for Separation of Iron and Titanium 被引量:8
15
作者 En-xia GAO Ti-chang SUN +2 位作者 Zhi-guo LIU Chao GENG Cheng-yan XU 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2016年第5期428-433,共6页
The effect of sodium sulfate on direct reduction of beach titanomagnetite,followed by magnetic separation,to separate iron and titanium was investigated. Direct reduced iron( DRI) with a high Fe content,low TiO_2 co... The effect of sodium sulfate on direct reduction of beach titanomagnetite,followed by magnetic separation,to separate iron and titanium was investigated. Direct reduced iron( DRI) with a high Fe content,low TiO_2 content and low iron recovery was obtained after adding sodium sulfate. When the sodium sulfate dosage was increased from 0 to 10 mass%,the Fe content of the DRI increased from 90. 00 mass% to 93. 55 mass% and the TiO_2 content decreased from 1. 27 mass% to 0. 70 mass%. The reduction mechanism of sodium sulfate was investigated by X-ray diffraction( XRD) and scanning electron microscopy( SEM) with energy dispersive spectrometer( EDS). Results revealed that the metallic iron grains in the reduced ore with sodium sulfate were larger than those in the ore without sodium sulfate. Sodium sulfate promoted the migration of iron as well as the accumulation and growth of metallic iron grains by low-melting-point carnegieite and troilite formed in the redox system. Low-melting-point carnegieite decreased the melting point of the system and then promoted liquefaction. Troilite could decrease the surface tension and melting point of metallic iron grains. 展开更多
关键词 beach titanomagnetite sodium sulfate direct reduction separation iron titanium
原文传递
Recovery of boron from high-boron iron concentrate using reduction roasting and magnetic separation 被引量:4
16
作者 Jian-wen Yu Yue-xin Han +1 位作者 Peng Gao Yan-jun Li 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2017年第2期131-137,共7页
The comprehensive utilization of abundant high-boron iron concentrate is of particular significance to Chi- na, and the high-boron iron concentrate has not yet been utilized as a source for boron at an industrial scal... The comprehensive utilization of abundant high-boron iron concentrate is of particular significance to Chi- na, and the high-boron iron concentrate has not yet been utilized as a source for boron at an industrial scale due to its complex mineralogy and fine mineral dissemination. An innovative method was proposed for recovery of boron and iron from high-boron iron concentrate by reduction roasting and magnetic sepa- ration. The effects of reduction temperature and roasting time were investigated and their optimum condi- tions were determined. The mineralogical changes during roasting were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results showed that the pyrrhotite (FeS) contained in the high-boron iron concentrate and the new-formed FeS-Fe solid solution softened or melted at high temperatures owing to their low melting points, and then decreased the metallic iron ratio and accelerated the growth of metallic iron particles. Meanwhile, the magnetite and szaibelyite were converted into metal- lic iron and suanite, respectively. Consequently, boron was readily enriched into the non-magnetic product and the metallic iron was aggregated to the magnetic concentrate by magnetic separation. Boron recovery of 88.6% with corresponding B2O3 content of 14.5% and iron recovery of 95.1% with an iron grade of 92.7% were achieved when high-boron iron concentrate was reduced at 1 125℃ for 150 min. Besides, the boron reactivity of the boron-rich non-magnetic product was up to 80.8%. 展开更多
关键词 High-boron ironconcentrateCarbothermic reduction Magnetic separation Metallic iron Boron-rich non magnetic product
原文传递
Corrosion of Magnesia-chrome Brick by Smelting Reduction Slag with Iron Bath
17
作者 LI Jianqiang WANG Wenwu +1 位作者 GAN Feifang WU Jiguang 《China's Refractories》 CAS 2013年第3期32-37,共6页
Effects of FeO content (0, 5%, 10%, and 15% in mass, respectively ) in lab-synthesized smelting redttc- tion slag with iron bath and test temperature (1 450, 1 500, 1550, anti 1 600 ℃ ) on corrosion am,amount and... Effects of FeO content (0, 5%, 10%, and 15% in mass, respectively ) in lab-synthesized smelting redttc- tion slag with iron bath and test temperature (1 450, 1 500, 1550, anti 1 600 ℃ ) on corrosion am,amount and microstructure of fused rebonded magnesia - chrome brick with 26.02 massqc of Cr2O3 were researched by rotary cylinder method. The results show that : ( 1 ) the corro- sion amolult of magnesia -chrome brick by slag without FeO is higher than that by the slag with 5% FeO, and the vorrosion amount increases when FeO content increa- ses from 5% to 15% ; (2) the test temperature is one of the important factors affecting the slag corrosion resist- ance of magnesia - chrome brick, and the corrosion of smelting reduction slag to brick increases with the temperature rising. 展开更多
关键词 smelting reduction slag with iron bath magnesia - chrome brick CORROSION
在线阅读 下载PDF
Characterization of iron diagenesis in marine sediments using refined iron speciation and quantized iron(Ⅲ)-oxide reactivity:a case study in the Jiaozhou Bay,China 被引量:2
18
作者 TAO Jing MA Weiwei +2 位作者 ZHU Maoxu LI Tie YANG Rujun 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2017年第7期48-55,共8页
As a case study, refined iron(Fe) speciation and quantitative characterization of the reductive reactivity of Fe(Ⅲ)oxides are combined to investigate Fe diagenetic processes in a core sediment from the eutrophic ... As a case study, refined iron(Fe) speciation and quantitative characterization of the reductive reactivity of Fe(Ⅲ)oxides are combined to investigate Fe diagenetic processes in a core sediment from the eutrophic Jiaozhou Bay.The results show that a combination of the two methods can trace Fe transformation in more detail and offer nuanced information on Fe diagenesis from multiple perspectives. This methodology may be used to enhance our understanding of the complex biogeochemical cycling of Fe and sulfur in other studies. Microbial iron reduction(MIR) plays an important role in Fe(Ⅲ) reduction over the upper sediments, while a chemical reduction by reaction with dissolved sulfide is the main process at a deeper(〉 12 cm) layer. The most bioavailable amorphous Fe(Ⅲ) oxides [Fe(Ⅲ)am] are the main source of the MIR, followed by poorly crystalline Fe(Ⅲ) oxides [Fe(Ⅲ)pc)]and magnetite. Well crystalline Fe(Ⅲ) oxides [Fe(Ⅲ)wc] have barely participated in Fe diagenesis. The importance of the MIR over the upper layer may be a combined result of the high availability of highly reactive Fe oxides and low availability of labile organic matter, and the latter is also the ultimate factor limiting sulfate reduction and sulfide accumulation in the sediments. Microbially reducible Fe(Ⅲ) [MR-Fe(Ⅲ)], which is quantified by kinetics of Fe(II)-oxide reduction, mainly consists of the most reactive Fe(Ⅲ)am and less reactive Fe(Ⅲ)pc. The bulk reactivity of the MR-Fe(Ⅲ) pool is equivalent to aged ferrihydrite, and shows down-core decrease due to preferential reduction of highly reactive phases of Fe oxides. 展开更多
关键词 iron oxides Jiaozhou Bay in China marine sediments microbial iron reduction reactivity speciation
在线阅读 下载PDF
Reduction Behavior With CO Under Micro-Fluidized Bed Conditions 被引量:3
19
作者 LIN Yin-he GUO Zhan-cheng TANG Hui-qing 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2013年第2期8-13,共6页
To process optimization and improve the degree of reduction, a two-step experiment was designed. The experiment was carried out in the micro-fluidized bed. The reactor in the micro-fluidized bed is operated as a diffe... To process optimization and improve the degree of reduction, a two-step experiment was designed. The experiment was carried out in the micro-fluidized bed. The reactor in the micro-fluidized bed is operated as a differential reactor to ensure an equal temperature and residence time with the reactor volume. The experiment used Brazilian iron ore and reducing gas of CO. The operating temperature was 400 to 800 ℃ and the residence time was between 10 and 60 min. In correspondence with experiment, microscopic technique was applied too. The test shows that temperature and residence time of the pre-reduction stage have an important effect on the degree of reduction. By using two-step experiment, the maximum value of reduction degree increases by 44.1% compared with the maximum value of traditional reduction experiment. Microscopic analysis shows that the specific surface area, surface morphology and texture of reduced iron ore after pre-reduction stage have an important effect on the degree of final reduction too. 展开更多
关键词 iron ore reduction two-step experiment specific suriace area MORPHOLOGY pre-reduction degree finalreduction degree
原文传递
Kinetics of Reduction Reaction in Micro-Fluidized Bed 被引量:3
20
作者 LIN Yin-he GUO Zhan-cheng +2 位作者 TANG Hui-qing REN Shan LI Jing-wei 《Journal of Iron and Steel Research International》 SCIE CAS CSCD 2012年第6期6-8,共3页
Micro-fluidized bed reactor is a new research method for the reduction of iron ore fines. The reactor is op- erated as a differential reactor to ensure a constant gas concentration and temperature within the reactor v... Micro-fluidized bed reactor is a new research method for the reduction of iron ore fines. The reactor is op- erated as a differential reactor to ensure a constant gas concentration and temperature within the reactor volume. In order to understand the dynamic process of the reduction reaction in micro-fluidized bed, a series of kinetic experi- ments were designed. In the micro fluidized bed, the use of shrinking core model describes the dynamic behavior of reduction of iron ore. And the apparent activation energy is calculated in the range of 700--850 ~C while the initial atmosphere is 100% content of CO. 展开更多
关键词 iron ore reduction micro-fluidized bed DYNAMICS
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部