Iontronics based on nanoconfined effects exhibit enhanced ion dynamics and have become more important in the fields such as energy harvesting and storage,sensors,and human-machine communications,which maybe an alterna...Iontronics based on nanoconfined effects exhibit enhanced ion dynamics and have become more important in the fields such as energy harvesting and storage,sensors,and human-machine communications,which maybe an alternative or supplementary solution to electronics due to their biocompatibility and safety.The enhanced ion dynamics can be attributable to the strong interactions between ions and the electrical double layer(EDL)in the nanoconfined spaces.Therefore,in this review,an overview of the EDL is firstly provided,with its distinctive nanoconfined effects in governing ion dynamics highlighted.The primary material frameworks associated with nanoconfined spaces,including nanopores,nanochannels,and multidimensional nanostructures,are systematically classified.Strategies for modulating ion dynamics through external physical and chemical fields are explored,forming the basis for iontronic applications driven by nanoconfined effects.These applications are presented,encompassing iontronic power sources,sensors,logic components such as memristors,diodes,and transistors,as well as iontronic filter capacitors,with their unparalleled advantages in biosafety,flexibility,cost-effectiveness,and environmental adaptability emphasized.Finally,existing challenges in nanoconfined iontronics are addressed,with the expectation that advancements in nanoconfined iontronics will catalyze more efficient energy and information flow.展开更多
Many natural organisms have evolved unique sensory systems over millions of years that have allowed them to detect various changes in their surrounding environments.Sensory systems feature numerous receptors—such as ...Many natural organisms have evolved unique sensory systems over millions of years that have allowed them to detect various changes in their surrounding environments.Sensory systems feature numerous receptors—such as photoreceptors,mechanoreceptors,and chemoreceptors—that detect various types of external stimuli,including light,pressure,vibration,sound,and chemical substances.These stimuli are converted into electrochemical signals,which are transmitted to the brain to produce the sensations of sight,touch,hearing,taste,and smell.Inspired by the biological principles of sensory systems,recent advancements in electronics have led to a wide range of applications in artificial sensors.In the current review,we highlight recent developments in artificial sensors inspired by biological sensory systems utilizing soft ionic materials.The versatile characteristics of these ionic materials are introduced while focusing on their mechanical and electrical properties.The features and working principles of natural and artificial sensing systems are investigated in terms of six categories:vision,tactile,hearing,gustatory,olfactory,and proximity sensing.Lastly,we explore several challenges that must be overcome while outlining future research directions in the field of soft ionic sensors.展开更多
The Moore’s law in silicone-based electronics is reaching its limit and the energy efficiency of the most sophisticated electronics to mimic the iontronic logic circuit in single-celled organisms is still inferior to...The Moore’s law in silicone-based electronics is reaching its limit and the energy efficiency of the most sophisticated electronics to mimic the iontronic logic circuit in single-celled organisms is still inferior to their natural counterpart.Unlike electronics,iontronics is widely present in nature,and provides the fundamentals for many life activities through the transmission and conversion of information and energy via ions.Moreover,as nanotechnology and fabrication processes continue to advance,highly efficient iontronics could be enabled by creation of asymmetry from nano-confined unipolar ion transport through various nanohierarchical structures of materials.The introduction of bionic design and nanostructures has made it possible for ions to demonstrate numerous anomalous behaviours and entirely new mechanisms,which are governed by complex interfacial interactions.In this review,we discuss the origins,development,mechanism,and applications of bionic iontronics and analyze the unique benefits as well as the practicality of iontronics from a variety of perspectives.Iontronics,as an emerging field of research with innumerable challenges and opportunities for exploring the theory and applications of ions as transport carriers,promises to provide new insights in many subjects covering energy and sensing,etc.,and establishes a new paradigm in investigating the ionic-electric signal transduction interface for futuristic iontronic logic circuit and neuromorphic computing.展开更多
Dry ion-conducting elastomers(ICEs)are emerging stretchable and ionic conductive materials that are demonstrated with excellent thermal stability and great promise in multifunctional iontronic devices.Nevertheless,the...Dry ion-conducting elastomers(ICEs)are emerging stretchable and ionic conductive materials that are demonstrated with excellent thermal stability and great promise in multifunctional iontronic devices.Nevertheless,the poor interface between the ICEs and the dielectric material is one of the issues hindering the application of the stretchable iontronic device.Herein,a polydimethylsiloxane(PDMS)based ion-conducting elastomer with dynamic crosslinking structures is reported,which achieves the stretchability of 475%and healing efficiency of 99%.More importantly,a robust interface bonding can be generated between the electrode and the dielectric material,which is beneficial to enhance the performance and lifespan of the flexible iontronic devices.Using this PDMS based ICE as the electrode and PDMS as the dielectric material,two stretchable iontronic devices(triboelectric nanogenerator and capacitive pressure sensor)are realized with overall self-healing and stretchable capabilities.These findings provide a promising strategy to achieve integrate stretchable iontronics or electronics with a robust interface between the electrode and dielectric materials.展开更多
Stretchable,self‐healing,and breathable skin‐biomimetic‐sensing iontronics play an important role in human physiological signal monitoring and human–computer interaction.However,previous studies have focused on th...Stretchable,self‐healing,and breathable skin‐biomimetic‐sensing iontronics play an important role in human physiological signal monitoring and human–computer interaction.However,previous studies have focused on the mimicking of skin tactile sensing(pressure,strain,and temperature),and the development of more functionalities is necessary.To this end,a superior humidity‐sensitive ionic skin is developed based on a self‐healing,stretchable,breathable,and biocompatible polyvinyl alcohol–cellulose nanofibers organohydrogel film,showing a pronounced thickness‐dependent humidity‐sensing performance.The as‐prepared 62.47‐μm‐thick organohydrogel film exhibits a high response(25,000%)to 98%RH,excellent repeatability,and long‐term stability(120 days).Moreover,this ionic skin has excellent resistance to large mechanical deformation and damage,and the worn‐out material can still retain its humidity‐sensing capabilities after self‐repair.Humidity‐sensing mechanism studies show that the induced response is mainly related to the increase of proton mobility and interfacial charge transport efficiency after water adsorption.The superior humidity responsiveness is attributed to the reduced thickness and the increased specific surface area of the organohydrogel film,allowing real‐time recording of physiological signals.Notably,by combining with a self‐designed printed circuit board,a continuous and wireless respiration monitoring system is developed,presenting its great potential in wearable and biomedical electronics.展开更多
The advancement of technology has had a profound impact on all areas of life, with an ever more intimate integration of the digital and biological spheres, but it may also be accompanied by an environmental crisis cau...The advancement of technology has had a profound impact on all areas of life, with an ever more intimate integration of the digital and biological spheres, but it may also be accompanied by an environmental crisis caused by the abuse of large quantities of electronics and petrochemicals.Next-generation "green" electronics or iontronics with high biocompatibility, biodegradation, low cost and mechanical compliance promise to mitigate these adverse effects, but are often limited by the finite choices of materials and strategies.Herein, maltose syrup, a traditional water-dissolvable saccharide food called "JiaoJiao" in Chinese, is engineered to replace unsustainable conductive components of current electronic devices. After churning and pulling with two chopsticks, known as aeration, the aerated maltose syrup has optimized viscoelasticity, mechanical adaptation, robustness,remodeling and self-healing capability, yet with transient behavior. Moreover, the structural and viscoelastic evolution during aeration is also analyzed to maximize the contribution from structures. As a proof-of-concept, a type of "green" skinlike iontronics is prepared, which exhibits reliable strain sensing ability and is subsequently applied for intelligent information encryption and transmission based on a novel concept of sending Morse code. This work greatly extends the current material choice and is expected to shed light on the development of a sustainable future.展开更多
Rehabilitation training is believed to be an effectual strategy that canreduce the risk of dysfunction caused by spasticity.However,achieving visualizationrehabilitation training for patients remains clinically challe...Rehabilitation training is believed to be an effectual strategy that canreduce the risk of dysfunction caused by spasticity.However,achieving visualizationrehabilitation training for patients remains clinically challenging.Herein,wepropose visual rehabilitation training system including iontronic meta-fabrics withskin-friendly and large matrix features,as well as high-resolution image modules fordistribution of human muscle tension.Attributed to the dynamic connection and dissociationof the meta-fabric,the fabric exhibits outstanding tactile sensing properties,such as wide tactile sensing range(0~300 kPa)and high-resolution tactile perception(50 Pa or 0.058%).Meanwhile,thanks to the differential capillary effect,the meta-fabric exhibits a“hitting three birds with one stone”property(dryness wearing experience,long working time and cooling sensing).Based on this,the fabrics can be integrated with garmentsand advanced data analysis systems to manufacture a series of large matrix structure(40×40,1600 sensing units)training devices.Significantly,the tunability of piezo-ionic dynamics of the meta-fabric and the programmability of high-resolution imaging modules allowthis visualization training strategy extendable to various common disease monitoring.Therefore,we believe that our study overcomes theconstraint of standard spasticity rehabilitation training devices in terms of visual display and paves the way for future smart healthcare.展开更多
A touch sensor is an essential component in meeting the growing demand for human-machine interfaces.These sensors have been developed in wearable,attachable,and even implantable forms to acquire a wide range of inform...A touch sensor is an essential component in meeting the growing demand for human-machine interfaces.These sensors have been developed in wearable,attachable,and even implantable forms to acquire a wide range of information from humans.To be applied to the human body,sensors are required to be biocompatible and not restrict the natural movement of the body.Ionic materials are a promising candidate for soft touch sensors due to their outstanding properties,which include high stretchability,transparency,ionic conductivity,and biocompatibility.Here,this review discusses the unique features of soft ionic touch point sensors,focusing on the ionic material and its key role in the sensor.The touch sensing mechanisms include piezocapacitive,piezoresistive,surface capacitive,piezoelectric,and triboelectric and triboresistive sensing.This review analyzes the implementation hurdles and future research directions of the soft ionic touch sensors for their transformative potential.展开更多
Flexible pressure sensors with high sensitivity are desired in the fields of electronic skins,human-machine interfaces,and health monitoring.Employing ionic soft materials with microstructured architectures in the fun...Flexible pressure sensors with high sensitivity are desired in the fields of electronic skins,human-machine interfaces,and health monitoring.Employing ionic soft materials with microstructured architectures in the functional layer is an effective way that can enhance the amplitude of capacitance signal due to generated electron double layer and thus improve the sensitivity of capacitive-type pressure sensors.However,the requirement of specific apparatus and the complex fabrication process to build such microstructures lead to high cost and low productivity.Here,we report a simple strategy that uses open-cell polyurethane foams with high porosity as a continuous three-dimensional network skeleton to load with ionic liquid in a one-step soak process,serving as the ionic layer in iontronic pressure sensors.The high porosity(95.4%) of PU-IL composite foam shows a pretty low Young's modulus of 3.4 kPa and good compressibility.A superhigh maximum sensitivity of 9,280 kPa^(-1) in the pressure regime and a high pressure resolution of 0.125% are observed in this foam-based pressure sensor.The device also exhibits remarkable mechanical stability over 5,000 compression-release or bending-release cycles.Such high porosity of composite structure provides a simple,cost-effective and scalable way to fabricate super sensitive pressure sensor,which has prominent capability in applications of water wave detection,underwater vibration sensing,and mechanical fault monitoring.展开更多
The pursuit to mimic skin exteroceptive ability has motivated the endeavors for epidermal artificial mechanoreceptors.Artificial mechanoreceptors are required to be highly sensitive to capture imperceptible skin defor...The pursuit to mimic skin exteroceptive ability has motivated the endeavors for epidermal artificial mechanoreceptors.Artificial mechanoreceptors are required to be highly sensitive to capture imperceptible skin deformations and preferably to be self-powered,breathable,lightweight and deformable to satisfy the prolonged wearing demands.It is still struggling to achieve these traits in single device,as it remains difficult to minimize device architecture without sacrificing the sensitivity or stability.In this article,we present an all-fiber iontronic triboelectric mechanoreceptor(ITM)to fully tackle these challenges,enabled by the high-output mechano-to-electrical energy conversion.The proposed ITM is ultralight,breathable and stretchable and is quite stable under various mechanical deformations.On the one hand,the ITM can achieve a superior instantaneous power density;on the other hand,the ITM shows excellent sensitivity serving as epidermal sensors.Precise health status monitoring is readily implemented by the ITM calibrating by detecting vital signals and physical activities of human bodies.The ITM can also realize acoustic-to-electrical conversion and distinguish voices from different people,and biometric application as a noise dosimeter is demonstrated.The ITM therefore is believed to open new sights in epidermal electronics and skin prosthesis fields.展开更多
Flexible pressure sensors are unprecedentedly studied on monitoring human physical activities and robotics.Simultaneously,improving the response sensitivity and sensing range of flexible pressure sensors is a great ch...Flexible pressure sensors are unprecedentedly studied on monitoring human physical activities and robotics.Simultaneously,improving the response sensitivity and sensing range of flexible pressure sensors is a great challenge,which hinders the devices’practical application.Targeting this obstacle,we developed a Ti_(3)C_(2)T_(x)-derived iontronic pressure sensor(TIPS)by taking the advantages of the high intercalation pseudocapacitance under high pressure and rationally designed structural configuration.TIPS achieved an ultrahigh sen-sitivity(S_(min)>200 kPa^(−1),S_(max)>45,000 kPa^(−1))in a broad sensing range of over 1.4 MPa and low limit of detection of 20 Pa as well as stable long-term working durability for 10,000 cycles.The practical application of TIPS in physical activity monitoring and flexible robot manifested its versatile potential.This study provides a demonstration for exploring pseudocapacitive materials for building flexible iontronic sensors with ultrahigh sensitivity and sensing range to advance the development of high-performance wearable electronics.展开更多
Ionic fluidic devices are gaining interest due to their role in enabling self-powered neuromorphic computing systems.In this study,we present an approach that integrates an iontronic fluidic memristive(IFM)device with...Ionic fluidic devices are gaining interest due to their role in enabling self-powered neuromorphic computing systems.In this study,we present an approach that integrates an iontronic fluidic memristive(IFM)device with low input impedance and a triboelectric nanogenerator(TENG)based on ferrofluid(FF),which has high input impedance.By incorporating contact separation electromagnetic(EMG)signals with low input impedance into our FF TENG device,we enhance the FF TENG’s performance by increasing energy harvesting,thereby enabling the autonomous powering of IFM devices for self-powered computing.Further,replicating neuronal activities using artificial iontronic fluidic systems is key to advancing neuromorphic computing.These fluidic devices,composed of soft-matter materials,dynamically adjust their conductance by altering the solution interface.We developed voltage-controlled memristor and memcapacitor memory in polydimethylsiloxane(PDMS)structures,utilising a fluidic interface of FF and polyacrylic acid partial sodium salt(PAA Na^(+)).The confined ion interactions in this system induce hysteresis in ion transport across various frequencies,resulting in significant ion memory effects.Our IFM successfully replicates diverse electric pulse patterns,making it highly suitable for neuromorphic computing.Furthermore,our system demonstrates synapse-like learning functions,storing and retrieving short-term(STM)and long-term memory(LTM).The fluidic memristor exhibits dynamic synapse-like features,making it a promising candidate for the hardware implementation of neural networks.FF TENG/EMG device adaptability and seamless integration with biological systems enable the development of advanced neuromorphic devices using iontronic fluidic materials,further enhanced by intricate chemical designs for self-powered electronics.展开更多
Tungsten oxides(WO_(3))are widely recognized as multifunctional systems owing to the existence of rich polymorphs.These diverse phases exhibit distinct octahedra-tilting patterns,generating substantial tunnels that ar...Tungsten oxides(WO_(3))are widely recognized as multifunctional systems owing to the existence of rich polymorphs.These diverse phases exhibit distinct octahedra-tilting patterns,generating substantial tunnels that are ideally suited for iontronics.However,a quantitative comprehension regarding the impact of distinct phases on the kinetics of intercalated conducting ions remains lacking.Herein,we employ first-principles calculations to explore the spatial and orientational correlations of ion transport inγ-and h-WO_(3),shedding light on the relationship between diffusion barriers and the size of the conducting ions.Our findings reveal that different types and concentrations of alkali-metals induce distinct and continuous lattice distortions in WO_(3)polymorphs.Specifically,γ-WO_(3)is more appropriate to accommodate Li+ions,exhibiting a diffusion barrier and coefficient of 0.25 eV and 9.31×10^(-8)cm^(2)s^(-1),respectively.Conversely,h-WO_(3)features unidirectional and sizeable tunnels that facilitate the transport of K+ions with an even lower barrier and a high coefficient of 0.11 e V and 2.12×10^(-5)cm^(2)s^(-1),respectively.Furthermore,the introduction of alkali-metal into WO_(3)tunnels tends to introduce n-type conductivity by contributing s-electrons to the unoccupied W 5d states,resulting in enhanced conductivity and tunable electronic structures.These alkali metals in WO_(3)tunnels are prone to charge transfer,forming small polaronic states and modulating the light absorption in the visible and nearinfrared regions.These tunable electronic and optical properties,combined with the high diffusion coefficient,underscore the potential of WO_(3)in applications such as artificial synapses and chromogenic devices.展开更多
The control of ion transport by responding to stimulus is a necessary condition for the existence of life.Bioinspired iontronics could enable anomalous ion dynamics in the nano-confined spaces,creating many efficient ...The control of ion transport by responding to stimulus is a necessary condition for the existence of life.Bioinspired iontronics could enable anomalous ion dynamics in the nano-confined spaces,creating many efficient energy systems and neuromorphic in-sensor computing networks:Unlike tradi-tional electronics based on von Neumann computing architec-ture,the Boolean logic computing based on the iontronics could avoid complex wiring with higher energy efficiency and programmable neuromorphic logic.Here,a systematic summary on the state of art in bioinspired iontronics is pre-sented and the stimulus from chemical potentials,electric fields,light,heat,piezo and magnetic fields on ion dynamics are reviewed.Challenges and perspectives are also addressed in the aspects of iontronic integrated systems.It is believed that comprehensive investigations in bioinspired ionic control will accelerate the development on more efficient energy and information flow for the futuristic human-machine interface.展开更多
Piezoionic materials consisting of a polymer matrix and mobile ions can produce an electrical output upon an applied pressure inducing an ion concentration gradient.Distinct from charges generated by the piezoelectric...Piezoionic materials consisting of a polymer matrix and mobile ions can produce an electrical output upon an applied pressure inducing an ion concentration gradient.Distinct from charges generated by the piezoelectric or triboelectric effects,the use of generated mobile ions to carry a signal closely resembles many ionic biological processes.Due to this similarity to biology,the piezoionic effect has great potential to enable seamless integration with biological systems,which accelerates the advancement of medical devices and personalized medicine.In this review,a comprehensive description of the piezoionic mechanism,methods,and applications are presented,with the aim to facilitate a dialogue among relevant scientific communities.First,the piezoionic effect is briefly introduced,then the development of mechanistic understanding over time is surveyed.Next,different types of piezoionic materials are reviewed and methods to enhance the piezoionic output via materials properties,electrode interfaces,and device architectures are detailed.Finally,applications,challenges,and outlooks are provided.With its novel properties,piezoionics is expected to play a key role in the overcoming of grand challenges in the areas of sensing,biointerfaces,and energy harvesting.展开更多
Flexible yarn sensors designed for integration into textiles have the potential to revolutionize wearable technology by continuously monitoring biomechanical strain.However,existing yarn-shaped sensors rely on capacit...Flexible yarn sensors designed for integration into textiles have the potential to revolutionize wearable technology by continuously monitoring biomechanical strain.However,existing yarn-shaped sensors rely on capacitance as a strain-dependent electrical signal and often face limitations in achieving high sensitivity,especially across a broad strain range.Here,we propose a waterproof all-in-one capacitive yarn sensor(ACYS)that is tailored to monitor a wide range of biophysical strains.Owing to the coaxial helical electrode and the ionic liquid-doped dielectric layer,the ACYS demonstrates remarkable stretchability,ultrahigh capacitance variation,and an outstanding gauge factor of 6.46 at 140%strain.With exceptional mechanical durability based on enduring 3300 stretching cycles and favorable resistance to sweat erosion,this 1D structure can be seamlessly integrated into textiles,making it ideal for use in wearable electronics.Demonstrating its application versatility,the ACYS accurately measures biomechanical strain in joint movements,facial expressions,and physiological assessments,making it a promising advancement in wearable technology.展开更多
Electronic skins and flexible pressure sensors are important devices for advanced healthcare and intelligent robotics.Sensitivity is a key parameter of flexible pressure sensors.Whereas introducing surface microstruct...Electronic skins and flexible pressure sensors are important devices for advanced healthcare and intelligent robotics.Sensitivity is a key parameter of flexible pressure sensors.Whereas introducing surface microstructures in a capacitive-type sensor can significantly improve its sensitivity,the signal becomes nonlinear and the pressure response range gets much narrower,significantly limiting the applications of flexible pressure sensors.Here,we designed a pressure sensor that utilizes a nanoscale iontronic interface of an ionic gel layer and a micropillared electrode,for highly linear capacitance-to-pressure response and high sensitivity over a wide pressure range.The micropillars undergo three stages of deformation upon loading:initial contact(0-6 k Pa)and structure buckling(6-12 k Pa)that exhibit a low and nonlinear response,as well as a post-buckling stage that has a high signal linearity with high sensitivity(33.16 k Pa-1)over a broad pressure range of 12-176 k Pa.The high linearity lies in the subtle balance between the structure compression and mechanical matching of the two materials at the gel-electrode interface.Our sensor has been applied in pulse detection,plantar pressure mapping,and grasp task of an artificial limb.This work provides a physical insight in achieving linear response through the design of appropriate microstructures and selection of materials with suitable modulus in flexible pressure sensors,which are potentially useful in intelligent robots and health monitoring.展开更多
基金supported by the National Natural Science Foundation of China(No.22479016).
文摘Iontronics based on nanoconfined effects exhibit enhanced ion dynamics and have become more important in the fields such as energy harvesting and storage,sensors,and human-machine communications,which maybe an alternative or supplementary solution to electronics due to their biocompatibility and safety.The enhanced ion dynamics can be attributable to the strong interactions between ions and the electrical double layer(EDL)in the nanoconfined spaces.Therefore,in this review,an overview of the EDL is firstly provided,with its distinctive nanoconfined effects in governing ion dynamics highlighted.The primary material frameworks associated with nanoconfined spaces,including nanopores,nanochannels,and multidimensional nanostructures,are systematically classified.Strategies for modulating ion dynamics through external physical and chemical fields are explored,forming the basis for iontronic applications driven by nanoconfined effects.These applications are presented,encompassing iontronic power sources,sensors,logic components such as memristors,diodes,and transistors,as well as iontronic filter capacitors,with their unparalleled advantages in biosafety,flexibility,cost-effectiveness,and environmental adaptability emphasized.Finally,existing challenges in nanoconfined iontronics are addressed,with the expectation that advancements in nanoconfined iontronics will catalyze more efficient energy and information flow.
基金supported by the National Research Foundation of Korea(NRF)(No.2021R1C1C2009703,2021R1C1C1004154)the Technology Innovation Program(No.20022003)funded by the Ministry of Trade,Industry&Energy(MOTIE,Korea).
文摘Many natural organisms have evolved unique sensory systems over millions of years that have allowed them to detect various changes in their surrounding environments.Sensory systems feature numerous receptors—such as photoreceptors,mechanoreceptors,and chemoreceptors—that detect various types of external stimuli,including light,pressure,vibration,sound,and chemical substances.These stimuli are converted into electrochemical signals,which are transmitted to the brain to produce the sensations of sight,touch,hearing,taste,and smell.Inspired by the biological principles of sensory systems,recent advancements in electronics have led to a wide range of applications in artificial sensors.In the current review,we highlight recent developments in artificial sensors inspired by biological sensory systems utilizing soft ionic materials.The versatile characteristics of these ionic materials are introduced while focusing on their mechanical and electrical properties.The features and working principles of natural and artificial sensing systems are investigated in terms of six categories:vision,tactile,hearing,gustatory,olfactory,and proximity sensing.Lastly,we explore several challenges that must be overcome while outlining future research directions in the field of soft ionic sensors.
文摘The Moore’s law in silicone-based electronics is reaching its limit and the energy efficiency of the most sophisticated electronics to mimic the iontronic logic circuit in single-celled organisms is still inferior to their natural counterpart.Unlike electronics,iontronics is widely present in nature,and provides the fundamentals for many life activities through the transmission and conversion of information and energy via ions.Moreover,as nanotechnology and fabrication processes continue to advance,highly efficient iontronics could be enabled by creation of asymmetry from nano-confined unipolar ion transport through various nanohierarchical structures of materials.The introduction of bionic design and nanostructures has made it possible for ions to demonstrate numerous anomalous behaviours and entirely new mechanisms,which are governed by complex interfacial interactions.In this review,we discuss the origins,development,mechanism,and applications of bionic iontronics and analyze the unique benefits as well as the practicality of iontronics from a variety of perspectives.Iontronics,as an emerging field of research with innumerable challenges and opportunities for exploring the theory and applications of ions as transport carriers,promises to provide new insights in many subjects covering energy and sensing,etc.,and establishes a new paradigm in investigating the ionic-electric signal transduction interface for futuristic iontronic logic circuit and neuromorphic computing.
基金The authors are thankful for the support from the National Natural Science Foundation of China(No.52173274)the National Key Research and Development Project from Ministry of Science and Technology(No.2021YFA1201603)the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA16021101).
文摘Dry ion-conducting elastomers(ICEs)are emerging stretchable and ionic conductive materials that are demonstrated with excellent thermal stability and great promise in multifunctional iontronic devices.Nevertheless,the poor interface between the ICEs and the dielectric material is one of the issues hindering the application of the stretchable iontronic device.Herein,a polydimethylsiloxane(PDMS)based ion-conducting elastomer with dynamic crosslinking structures is reported,which achieves the stretchability of 475%and healing efficiency of 99%.More importantly,a robust interface bonding can be generated between the electrode and the dielectric material,which is beneficial to enhance the performance and lifespan of the flexible iontronic devices.Using this PDMS based ICE as the electrode and PDMS as the dielectric material,two stretchable iontronic devices(triboelectric nanogenerator and capacitive pressure sensor)are realized with overall self-healing and stretchable capabilities.These findings provide a promising strategy to achieve integrate stretchable iontronics or electronics with a robust interface between the electrode and dielectric materials.
基金support from the National Natural Science Foundation of China(No.61801525)the Guangdong Basic and Applied Basic Research Foundation(No.2020A1515010693)the Fundamental Research Funds for the Central Universities,Sun Yat‐sen University(No.22lgqb17).
文摘Stretchable,self‐healing,and breathable skin‐biomimetic‐sensing iontronics play an important role in human physiological signal monitoring and human–computer interaction.However,previous studies have focused on the mimicking of skin tactile sensing(pressure,strain,and temperature),and the development of more functionalities is necessary.To this end,a superior humidity‐sensitive ionic skin is developed based on a self‐healing,stretchable,breathable,and biocompatible polyvinyl alcohol–cellulose nanofibers organohydrogel film,showing a pronounced thickness‐dependent humidity‐sensing performance.The as‐prepared 62.47‐μm‐thick organohydrogel film exhibits a high response(25,000%)to 98%RH,excellent repeatability,and long‐term stability(120 days).Moreover,this ionic skin has excellent resistance to large mechanical deformation and damage,and the worn‐out material can still retain its humidity‐sensing capabilities after self‐repair.Humidity‐sensing mechanism studies show that the induced response is mainly related to the increase of proton mobility and interfacial charge transport efficiency after water adsorption.The superior humidity responsiveness is attributed to the reduced thickness and the increased specific surface area of the organohydrogel film,allowing real‐time recording of physiological signals.Notably,by combining with a self‐designed printed circuit board,a continuous and wireless respiration monitoring system is developed,presenting its great potential in wearable and biomedical electronics.
基金supported by the National Natural Science Foundation of China (51733003)。
文摘The advancement of technology has had a profound impact on all areas of life, with an ever more intimate integration of the digital and biological spheres, but it may also be accompanied by an environmental crisis caused by the abuse of large quantities of electronics and petrochemicals.Next-generation "green" electronics or iontronics with high biocompatibility, biodegradation, low cost and mechanical compliance promise to mitigate these adverse effects, but are often limited by the finite choices of materials and strategies.Herein, maltose syrup, a traditional water-dissolvable saccharide food called "JiaoJiao" in Chinese, is engineered to replace unsustainable conductive components of current electronic devices. After churning and pulling with two chopsticks, known as aeration, the aerated maltose syrup has optimized viscoelasticity, mechanical adaptation, robustness,remodeling and self-healing capability, yet with transient behavior. Moreover, the structural and viscoelastic evolution during aeration is also analyzed to maximize the contribution from structures. As a proof-of-concept, a type of "green" skinlike iontronics is prepared, which exhibits reliable strain sensing ability and is subsequently applied for intelligent information encryption and transmission based on a novel concept of sending Morse code. This work greatly extends the current material choice and is expected to shed light on the development of a sustainable future.
基金supported by the National Key Research and Development Program(2022YFB3805800)National Natural Science Foundation of China(52473307,22208178,62301290)+9 种基金Taishan Scholar Program of Shandong Province in China(tsqn202211116)Shandong Provincial Universities Youth Innovation Technology Plan Team(2023KJ223)Natural Science Foundation of Shandong Province of China(ZR2023YQ037,ZR2020QE074,ZR2023QE043,ZR2022QE174)Shandong Province Science and Technology Small and Medium sized Enterprise Innovation Ability Enhancement Project(2023TSGC0344,2023TSGC1006)Natural Science Foundation of Qingdao(23-2-1-249-zyyd-jch,24-4-4-zrjj-56-jch)Anhui Province Postdoctoral Researcher Research Activity Funding Project(2023B706)Qingdao Key Technology Research and Industrialization Demonstration Projects(23-1-7-zdfn-2-hz)Qingdao Shinan District Science and Technology Plan Project(2022-3-005-DZ)Suqian Key Research and Development Plan(H202310)Jinan City-School Integration Development Strategy Project for the Year 2023 under Grant(JNSX2023088).
文摘Rehabilitation training is believed to be an effectual strategy that canreduce the risk of dysfunction caused by spasticity.However,achieving visualizationrehabilitation training for patients remains clinically challenging.Herein,wepropose visual rehabilitation training system including iontronic meta-fabrics withskin-friendly and large matrix features,as well as high-resolution image modules fordistribution of human muscle tension.Attributed to the dynamic connection and dissociationof the meta-fabric,the fabric exhibits outstanding tactile sensing properties,such as wide tactile sensing range(0~300 kPa)and high-resolution tactile perception(50 Pa or 0.058%).Meanwhile,thanks to the differential capillary effect,the meta-fabric exhibits a“hitting three birds with one stone”property(dryness wearing experience,long working time and cooling sensing).Based on this,the fabrics can be integrated with garmentsand advanced data analysis systems to manufacture a series of large matrix structure(40×40,1600 sensing units)training devices.Significantly,the tunability of piezo-ionic dynamics of the meta-fabric and the programmability of high-resolution imaging modules allowthis visualization training strategy extendable to various common disease monitoring.Therefore,we believe that our study overcomes theconstraint of standard spasticity rehabilitation training devices in terms of visual display and paves the way for future smart healthcare.
基金supported by the National Research Foundation of Korea(NRF)(No.2021R1C1C2009703)the Gachon University Research Fund of 2022(GCU-202300890001).
文摘A touch sensor is an essential component in meeting the growing demand for human-machine interfaces.These sensors have been developed in wearable,attachable,and even implantable forms to acquire a wide range of information from humans.To be applied to the human body,sensors are required to be biocompatible and not restrict the natural movement of the body.Ionic materials are a promising candidate for soft touch sensors due to their outstanding properties,which include high stretchability,transparency,ionic conductivity,and biocompatibility.Here,this review discusses the unique features of soft ionic touch point sensors,focusing on the ionic material and its key role in the sensor.The touch sensing mechanisms include piezocapacitive,piezoresistive,surface capacitive,piezoelectric,and triboelectric and triboresistive sensing.This review analyzes the implementation hurdles and future research directions of the soft ionic touch sensors for their transformative potential.
基金This work was financially supported by the funds of the National Natural Science Foundation of China(No.51903118 and U1613204)the Science Technology the Shenzhen Sci-Tech Fund(No.KYTDPT20181011104007)+2 种基金M.G.also thanks the support of“College Student’s Innovation and Entrepreneurship Program”(No.2018X33).Guangdong Provincial Key Laboratory Program(2021B1212040001)from the Department of Science and Technology of Guangdong Provincethe“Guangdong Innovative and Entrepreneurial Research Team Program”under contract no.2016ZT06G587the“Science Technology and Innovation Committee of Shenzhen Municipality”(Grant No.JCYJ20170817111714314).
文摘Flexible pressure sensors with high sensitivity are desired in the fields of electronic skins,human-machine interfaces,and health monitoring.Employing ionic soft materials with microstructured architectures in the functional layer is an effective way that can enhance the amplitude of capacitance signal due to generated electron double layer and thus improve the sensitivity of capacitive-type pressure sensors.However,the requirement of specific apparatus and the complex fabrication process to build such microstructures lead to high cost and low productivity.Here,we report a simple strategy that uses open-cell polyurethane foams with high porosity as a continuous three-dimensional network skeleton to load with ionic liquid in a one-step soak process,serving as the ionic layer in iontronic pressure sensors.The high porosity(95.4%) of PU-IL composite foam shows a pretty low Young's modulus of 3.4 kPa and good compressibility.A superhigh maximum sensitivity of 9,280 kPa^(-1) in the pressure regime and a high pressure resolution of 0.125% are observed in this foam-based pressure sensor.The device also exhibits remarkable mechanical stability over 5,000 compression-release or bending-release cycles.Such high porosity of composite structure provides a simple,cost-effective and scalable way to fabricate super sensitive pressure sensor,which has prominent capability in applications of water wave detection,underwater vibration sensing,and mechanical fault monitoring.
基金Research was supported by National Natural Science Foundation of China(52173274)the National Key R&D Project from Minister of Science and Technology(2021YFA1201603)+1 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA16021101)Open access funding provided by Shanghai Jiao Tong University
文摘The pursuit to mimic skin exteroceptive ability has motivated the endeavors for epidermal artificial mechanoreceptors.Artificial mechanoreceptors are required to be highly sensitive to capture imperceptible skin deformations and preferably to be self-powered,breathable,lightweight and deformable to satisfy the prolonged wearing demands.It is still struggling to achieve these traits in single device,as it remains difficult to minimize device architecture without sacrificing the sensitivity or stability.In this article,we present an all-fiber iontronic triboelectric mechanoreceptor(ITM)to fully tackle these challenges,enabled by the high-output mechano-to-electrical energy conversion.The proposed ITM is ultralight,breathable and stretchable and is quite stable under various mechanical deformations.On the one hand,the ITM can achieve a superior instantaneous power density;on the other hand,the ITM shows excellent sensitivity serving as epidermal sensors.Precise health status monitoring is readily implemented by the ITM calibrating by detecting vital signals and physical activities of human bodies.The ITM can also realize acoustic-to-electrical conversion and distinguish voices from different people,and biometric application as a noise dosimeter is demonstrated.The ITM therefore is believed to open new sights in epidermal electronics and skin prosthesis fields.
基金These authors would like to acknowledge the financial support of the project from the National Natural Science Foundation of China(No.61904141)the funding of Natural Science Foundation of Shaanxi Province(No.2020JQ-295)+4 种基金China Postdoctoral Science Foundation(2020M673340)the Fundamental Research Funds for the Central Universities(JB210407)the Key Research and Development Program of Shaanxi(Program No.2020GY-252No.2021GY-277)National Key Laboratory of Science and Technology on Vacuum Technology and Physics(HTKJ2019KL510007).
文摘Flexible pressure sensors are unprecedentedly studied on monitoring human physical activities and robotics.Simultaneously,improving the response sensitivity and sensing range of flexible pressure sensors is a great challenge,which hinders the devices’practical application.Targeting this obstacle,we developed a Ti_(3)C_(2)T_(x)-derived iontronic pressure sensor(TIPS)by taking the advantages of the high intercalation pseudocapacitance under high pressure and rationally designed structural configuration.TIPS achieved an ultrahigh sen-sitivity(S_(min)>200 kPa^(−1),S_(max)>45,000 kPa^(−1))in a broad sensing range of over 1.4 MPa and low limit of detection of 20 Pa as well as stable long-term working durability for 10,000 cycles.The practical application of TIPS in physical activity monitoring and flexible robot manifested its versatile potential.This study provides a demonstration for exploring pseudocapacitive materials for building flexible iontronic sensors with ultrahigh sensitivity and sensing range to advance the development of high-performance wearable electronics.
基金supported by the System on Chip Lab grant from the Khalifa University of Science and Technology under awards Nos.8474000134 and 8474000137.
文摘Ionic fluidic devices are gaining interest due to their role in enabling self-powered neuromorphic computing systems.In this study,we present an approach that integrates an iontronic fluidic memristive(IFM)device with low input impedance and a triboelectric nanogenerator(TENG)based on ferrofluid(FF),which has high input impedance.By incorporating contact separation electromagnetic(EMG)signals with low input impedance into our FF TENG device,we enhance the FF TENG’s performance by increasing energy harvesting,thereby enabling the autonomous powering of IFM devices for self-powered computing.Further,replicating neuronal activities using artificial iontronic fluidic systems is key to advancing neuromorphic computing.These fluidic devices,composed of soft-matter materials,dynamically adjust their conductance by altering the solution interface.We developed voltage-controlled memristor and memcapacitor memory in polydimethylsiloxane(PDMS)structures,utilising a fluidic interface of FF and polyacrylic acid partial sodium salt(PAA Na^(+)).The confined ion interactions in this system induce hysteresis in ion transport across various frequencies,resulting in significant ion memory effects.Our IFM successfully replicates diverse electric pulse patterns,making it highly suitable for neuromorphic computing.Furthermore,our system demonstrates synapse-like learning functions,storing and retrieving short-term(STM)and long-term memory(LTM).The fluidic memristor exhibits dynamic synapse-like features,making it a promising candidate for the hardware implementation of neural networks.FF TENG/EMG device adaptability and seamless integration with biological systems enable the development of advanced neuromorphic devices using iontronic fluidic materials,further enhanced by intricate chemical designs for self-powered electronics.
基金supported by the Guangdong Basic and Applied Basic Research Foundation(Grant No.2021B1515120025)the Guangdong Province International Science and Technology Cooperation Research Project(Grant No.2023A0505050101)+3 种基金the National Natural Science Foundation of China(Grant No.22022309)the Science and Technology Development Fund from Macao SAR(Grant Nos.0120/2023/RIA2,0085/2023/ITP2,and FDCT-0163/2019/A3)the Natural Science Foundation of Guangdong Province,China(Grant No.2021A1515010024)the University of Macao(Grant No.MYRG2020-00075-IAPME)。
文摘Tungsten oxides(WO_(3))are widely recognized as multifunctional systems owing to the existence of rich polymorphs.These diverse phases exhibit distinct octahedra-tilting patterns,generating substantial tunnels that are ideally suited for iontronics.However,a quantitative comprehension regarding the impact of distinct phases on the kinetics of intercalated conducting ions remains lacking.Herein,we employ first-principles calculations to explore the spatial and orientational correlations of ion transport inγ-and h-WO_(3),shedding light on the relationship between diffusion barriers and the size of the conducting ions.Our findings reveal that different types and concentrations of alkali-metals induce distinct and continuous lattice distortions in WO_(3)polymorphs.Specifically,γ-WO_(3)is more appropriate to accommodate Li+ions,exhibiting a diffusion barrier and coefficient of 0.25 eV and 9.31×10^(-8)cm^(2)s^(-1),respectively.Conversely,h-WO_(3)features unidirectional and sizeable tunnels that facilitate the transport of K+ions with an even lower barrier and a high coefficient of 0.11 e V and 2.12×10^(-5)cm^(2)s^(-1),respectively.Furthermore,the introduction of alkali-metal into WO_(3)tunnels tends to introduce n-type conductivity by contributing s-electrons to the unoccupied W 5d states,resulting in enhanced conductivity and tunable electronic structures.These alkali metals in WO_(3)tunnels are prone to charge transfer,forming small polaronic states and modulating the light absorption in the visible and nearinfrared regions.These tunable electronic and optical properties,combined with the high diffusion coefficient,underscore the potential of WO_(3)in applications such as artificial synapses and chromogenic devices.
基金supported by the Beijing Natural Science Foundation[Grant No.IS23040].
文摘The control of ion transport by responding to stimulus is a necessary condition for the existence of life.Bioinspired iontronics could enable anomalous ion dynamics in the nano-confined spaces,creating many efficient energy systems and neuromorphic in-sensor computing networks:Unlike tradi-tional electronics based on von Neumann computing architec-ture,the Boolean logic computing based on the iontronics could avoid complex wiring with higher energy efficiency and programmable neuromorphic logic.Here,a systematic summary on the state of art in bioinspired iontronics is pre-sented and the stimulus from chemical potentials,electric fields,light,heat,piezo and magnetic fields on ion dynamics are reviewed.Challenges and perspectives are also addressed in the aspects of iontronic integrated systems.It is believed that comprehensive investigations in bioinspired ionic control will accelerate the development on more efficient energy and information flow for the futuristic human-machine interface.
基金Hong Kong University Grants Committee,Grant/Award Number:CityU 11213222Hong Kong Innovation and Technology Commission(InnoHK)。
文摘Piezoionic materials consisting of a polymer matrix and mobile ions can produce an electrical output upon an applied pressure inducing an ion concentration gradient.Distinct from charges generated by the piezoelectric or triboelectric effects,the use of generated mobile ions to carry a signal closely resembles many ionic biological processes.Due to this similarity to biology,the piezoionic effect has great potential to enable seamless integration with biological systems,which accelerates the advancement of medical devices and personalized medicine.In this review,a comprehensive description of the piezoionic mechanism,methods,and applications are presented,with the aim to facilitate a dialogue among relevant scientific communities.First,the piezoionic effect is briefly introduced,then the development of mechanistic understanding over time is surveyed.Next,different types of piezoionic materials are reviewed and methods to enhance the piezoionic output via materials properties,electrode interfaces,and device architectures are detailed.Finally,applications,challenges,and outlooks are provided.With its novel properties,piezoionics is expected to play a key role in the overcoming of grand challenges in the areas of sensing,biointerfaces,and energy harvesting.
基金supported by the National Key Research and Development Project(2021YFA1201600)the Natural Science Foundation of Innovative Research Groups under Grant cstc2020jcyj-cxttX0005+4 种基金the Natural Science Foundation Projects of Chongqing(cstc2022ycjh-bgzxm0206)a grant from the science and technology project of State Grid(5700-202235208 A-1-1-ZN)the Science and Technology Funds of Chongqing Municipal Education Commission(KJQN202100539,KJQN202100533)the National Natural Science Foundation of China(Grant No.62271089)Natural Science Foundation Project of Chongqing(Grant No.CSTB2022NSCQ-MSX0425).
文摘Flexible yarn sensors designed for integration into textiles have the potential to revolutionize wearable technology by continuously monitoring biomechanical strain.However,existing yarn-shaped sensors rely on capacitance as a strain-dependent electrical signal and often face limitations in achieving high sensitivity,especially across a broad strain range.Here,we propose a waterproof all-in-one capacitive yarn sensor(ACYS)that is tailored to monitor a wide range of biophysical strains.Owing to the coaxial helical electrode and the ionic liquid-doped dielectric layer,the ACYS demonstrates remarkable stretchability,ultrahigh capacitance variation,and an outstanding gauge factor of 6.46 at 140%strain.With exceptional mechanical durability based on enduring 3300 stretching cycles and favorable resistance to sweat erosion,this 1D structure can be seamlessly integrated into textiles,making it ideal for use in wearable electronics.Demonstrating its application versatility,the ACYS accurately measures biomechanical strain in joint movements,facial expressions,and physiological assessments,making it a promising advancement in wearable technology.
基金supported by the Science Technology and Innovation Committee of Shenzhen Municipality(JCYJ20170817111714314)the National Natural Science Foundation of China(52073138 and 51771089)+2 种基金the Guangdong Innovative and Entrepreneurial Research Team Program(2016ZT06G587)the Shenzhen Sci-Tech Fund(KYTDPT20181011104007)the Tencent Robotics X Lab Rhino-Bird Focused Research Program(JR201984)。
文摘Electronic skins and flexible pressure sensors are important devices for advanced healthcare and intelligent robotics.Sensitivity is a key parameter of flexible pressure sensors.Whereas introducing surface microstructures in a capacitive-type sensor can significantly improve its sensitivity,the signal becomes nonlinear and the pressure response range gets much narrower,significantly limiting the applications of flexible pressure sensors.Here,we designed a pressure sensor that utilizes a nanoscale iontronic interface of an ionic gel layer and a micropillared electrode,for highly linear capacitance-to-pressure response and high sensitivity over a wide pressure range.The micropillars undergo three stages of deformation upon loading:initial contact(0-6 k Pa)and structure buckling(6-12 k Pa)that exhibit a low and nonlinear response,as well as a post-buckling stage that has a high signal linearity with high sensitivity(33.16 k Pa-1)over a broad pressure range of 12-176 k Pa.The high linearity lies in the subtle balance between the structure compression and mechanical matching of the two materials at the gel-electrode interface.Our sensor has been applied in pulse detection,plantar pressure mapping,and grasp task of an artificial limb.This work provides a physical insight in achieving linear response through the design of appropriate microstructures and selection of materials with suitable modulus in flexible pressure sensors,which are potentially useful in intelligent robots and health monitoring.