期刊文献+
共找到2,288篇文章
< 1 2 115 >
每页显示 20 50 100
Syntheses of Coumarins in Environmentally Friendly Ionics Liquids
1
作者 Sanita Pavlovica Andris Zicmanis 《Journal of Chemistry and Chemical Engineering》 2014年第3期243-249,共7页
Syntheses of 3-substituted coumarins by the condensation reaction of salicylaldehyde with activated methylene compounds (ethyl cyanoacetate, malonic acid) are discussed in media of ionic liquids--(2-hydroxyethyl)a... Syntheses of 3-substituted coumarins by the condensation reaction of salicylaldehyde with activated methylene compounds (ethyl cyanoacetate, malonic acid) are discussed in media of ionic liquids--(2-hydroxyethyl)ammonium carboxylates (formates, acetates, lactates) without utilization of any other catalysts. The dependence of yields of the reaction product is investigated on the structure of ionic liquids (their cations, anions, total polarity and pseudo-pH values). 3-Substituted coumarins are prepared in high yields in media of these environmentally friendly ionic liquids which serve simultaneously as reaction media and as catalysts. The mentioned ionic liquids are prepared by reactions of corresponding hydroxyethyl-amines with carboxylic acids, and their quantitative analyses being made by potentiometric titration of ionic liquids with perchloric acid in 100% acetic acid. 展开更多
关键词 COUMARIN condensation reaction ionic liquid potentiometric titration.
在线阅读 下载PDF
Piezoionics:Mechanical-to-ionic transduction for sensing,biointerface,and energy harvesting
2
作者 Kongqi Chen Derek Ho 《Aggregate》 EI CAS 2024年第1期85-94,共10页
Piezoionic materials consisting of a polymer matrix and mobile ions can produce an electrical output upon an applied pressure inducing an ion concentration gradient.Distinct from charges generated by the piezoelectric... Piezoionic materials consisting of a polymer matrix and mobile ions can produce an electrical output upon an applied pressure inducing an ion concentration gradient.Distinct from charges generated by the piezoelectric or triboelectric effects,the use of generated mobile ions to carry a signal closely resembles many ionic biological processes.Due to this similarity to biology,the piezoionic effect has great potential to enable seamless integration with biological systems,which accelerates the advancement of medical devices and personalized medicine.In this review,a comprehensive description of the piezoionic mechanism,methods,and applications are presented,with the aim to facilitate a dialogue among relevant scientific communities.First,the piezoionic effect is briefly introduced,then the development of mechanistic understanding over time is surveyed.Next,different types of piezoionic materials are reviewed and methods to enhance the piezoionic output via materials properties,electrode interfaces,and device architectures are detailed.Finally,applications,challenges,and outlooks are provided.With its novel properties,piezoionics is expected to play a key role in the overcoming of grand challenges in the areas of sensing,biointerfaces,and energy harvesting. 展开更多
关键词 flexible electronics intelligent soft matter ionic hydrogel iontronics mechanical energy harvesting
在线阅读 下载PDF
An ionically conductive and compressible sulfochloride solid-state electrolyte for stable all-solid-state lithium-based batteries
3
作者 Zhangran Ye Zhixuan Yu +8 位作者 Jingming Yao Lei Deng Yunna Guo Hantao Cui Chongchong Ma Chao Tai Liqiang Zhang Lingyun Zhu Peng Jia 《Chinese Chemical Letters》 2025年第8期505-511,共7页
Halide electrolytes,renowned for their excellent electrochemical stability and wide voltage window,exhibit significant potential in the development of high energy density solid-state batteries featuring high voltage c... Halide electrolytes,renowned for their excellent electrochemical stability and wide voltage window,exhibit significant potential in the development of high energy density solid-state batteries featuring high voltage cathode materials.In this study,we present the development and synthesis of a 0.6Li_(2)S-ZrCl_(4)solid electrolyte,demonstrating an ion conductivity of 1.9×10^(–3)S/cm at 25°C.Under a pressure of 500 MPa,the relative density of the electrolyte can reach 97.37%,showcasing its commendable compressibility.0.6Li_(2)S-ZrCl_(4)served as the electrolyte,and we assembled batteries utilizing a LiCoO_(2)(LCO)positive electrode,Li_(9.54)Si_(1.74)P_(1.44)S_(11.7)Cl_(0.3)(LSPSCl)coating,and Li-In negative electrode for laboratory testing.At 25°C,this all-solid-state battery demonstrated an impressive discharge capacity retention rate of86.99%(with a final discharge specific capacity of 110.5 m Ah/g)after 250 cycles at 24 m A/g and 100 MPa stack pressure.Upon substituting the positive electrode material with LiNi_(0.8)Mn_(0.1)Co_(0.1)O_(2)(NMC811)and assembling an all-solid-state battery,it demonstrated a discharge capacity retention rate of 74.17%after200 cycles at 3.6 m A/g and 100 MPa stack pressure in an environment at 25°C(with a final discharge specific capacity of 103.3 m A/g).Our findings hold significant implications for the design of novel superionic conductors,thereby contributing to the advancement of all-solid-state battery technology. 展开更多
关键词 All-solid-state battery Halide solid electrolyte Sulfide substitution Lithium-ion conductor Solid-state ionics
原文传递
Alternative Strategy for Development of Dielectric Calcium Copper Titanate‑Based Electrolytes for Low‑Temperature Solid Oxide Fuel Cells 被引量:1
4
作者 Sajid Rauf Muhammad Bilal Hanif +8 位作者 Zuhra Tayyab Matej Veis MAKYousaf Shah Naveed Mushtaq Dmitry Medvedev Yibin Tian Chen Xia Martin Motola Bin Zhu 《Nano-Micro Letters》 SCIE EI CAS 2025年第1期310-332,共23页
The development of low-temperature solid oxide fuel cells(LT-SOFCs)is of significant importance for realizing the widespread application of SOFCs.This has stimulated a substantial materials research effort in developi... The development of low-temperature solid oxide fuel cells(LT-SOFCs)is of significant importance for realizing the widespread application of SOFCs.This has stimulated a substantial materials research effort in developing high oxide-ion conductivity in the electrolyte layer of SOFCs.In this context,for the first time,a dielectric material,CaCu_(3)Ti_(4)O_(12)(CCTO)is designed for LT-SOFCs electrolyte application in this study.Both individual CCTO and its heterostructure materials with a p-type Ni_(0.8)Co_(0.15)Al_(0.05)LiO_(2−δ)(NCAL)semiconductor are evaluated as alternative electrolytes in LT-SOFC at 450–550℃.The single cell with the individual CCTO electrolyte exhibits a power output of approximately 263 mW cm^(-2) and an open-circuit voltage(OCV)of 0.95 V at 550℃,while the cell with the CCTO–NCAL heterostructure electrolyte capably delivers an improved power output of approximately 605 mW cm^(-2) along with a higher OCV over 1.0 V,which indicates the introduction of high hole-conducting NCAL into the CCTO could enhance the cell performance rather than inducing any potential short-circuiting risk.It is found that these promising outcomes are due to the interplay of the dielectric material,its structure,and overall properties that led to improve electrochemical mechanism in CCTO–NCAL.Furthermore,density functional theory calculations provide the detailed information about the electronic and structural properties of the CCTO and NCAL and their heterostructure CCTO–NCAL.Our study thus provides a new approach for developing new advanced electrolytes for LT-SOFCs. 展开更多
关键词 LT-SOFCs Dielectric CaCu_(3)Ti_(4)O_(12) Semiconductor Ni_(0.8)Co_(0.15)Al_(0.05)LiO_(2−δ) Ionic conductivity Heterostructure electrolyte
在线阅读 下载PDF
Axial emission characteristics of an ionic liquid electrospray thruster with a circular emitter 被引量:2
5
作者 Cheng YANG Jiawei LUO +1 位作者 Xiangbei WU Yan SHEN 《Chinese Journal of Aeronautics》 2025年第1期297-305,共9页
Ionic Liquid Electrospray Thrusters(ILETs)are well suited for micro-nano satellite applications due to their small size,low power consumption,and high specific impulse.However,the limited thrust of a single-emitter IL... Ionic Liquid Electrospray Thrusters(ILETs)are well suited for micro-nano satellite applications due to their small size,low power consumption,and high specific impulse.However,the limited thrust of a single-emitter ILET restricts its use in space missions.To optimize the performance of ILETs and make them suitable for a wider range of space missions,we designed a Circular-emitter ILET(CILET)to convert a one-dimensional(point)emission into a twodimensional(line)emission.The CILET can self-organize multiple Taylor cones simultaneously.The cones were photographed and the axial emission currents were measured under different voltage and pressure difference conditions with a CILET experimental system.The emission can be divided into two stable states and one unstable state based on the flow and current characteristics.The current in Stable state Ⅰ increases non-linearly with the voltage,while that in Stable state Ⅱ is nearly linear with respect to the voltage.The number of cones increases with the voltage in stable states,while the cones become short and crowded under high-voltage conditions.The variation law of the number of cones can be explained with the self-organization theory.The variation in the current exhibits a good correlation with the number of cones.This study demonstrates the feasibility of circular emitters and experimentally indicates that the emission current is improved by approximately two orders of magnitude compared to that of a single capillary. 展开更多
关键词 ELECTROSPRAY Ionic liquid thruster Self-organize EMITTER Taylor cone
原文传递
Polyoxometalates containing aluminum atoms 被引量:1
6
作者 Li-Min Cui Wei-Hui Fang Jian Zhang 《Chinese Chemical Letters》 2025年第10期226-234,共9页
For a long time,researchers have been fascinated by the structurally diverse and high-performance characteristics of polyoxometalates(POMs).Modifying POMs with various types and properties of metals has broadened thei... For a long time,researchers have been fascinated by the structurally diverse and high-performance characteristics of polyoxometalates(POMs).Modifying POMs with various types and properties of metals has broadened their applications in fields such as magnetism,luminescence,and catalysis.However,despite the discovery of numerous POM structures doped with transition metal ions,the development of aluminum(Al)as aⅢA group metal in the POM field has been slow.Aluminum,the most abundant metal in nature,offers innate electron-deficient properties that,when combined with highly charged POMs,could introduce novel structures and excellent functionalities like proton conduction to this field.Therefore,this review will address the gap in summarizing Al-containing POMs by categorizing and summarizing the synthesis,structural characteristics,and properties of Al-containing POMs,aiming to provide a theoretical foundation for exploring POM structures doped with Al atoms.The review also analyzes and forecasts the prospects in this field. 展开更多
关键词 POLYOXOMETALATE ALUMINUM Polyoxoaluminate Ionic crystal CATALYSIS
原文传递
Synthesis and characterization of Ce_(1-x)(Gd_(1/5)Sm_(1/5)Er_(1/5)Y_(1/5)Bi_(1/5))_(x)O_(2-δ)solid electrolyte for SOFCs 被引量:1
7
作者 Minzheng Zhu Chang Du +4 位作者 Rui Zhou Dong Li Shiqi Wang Chang'an Tian Chao Chen 《Journal of Rare Earths》 2025年第4期774-783,I0005,共11页
This study focuses on the impact of Gd^(3+),Sm^(3+),Er^(3+).Y^(3+),and Bi^(3+)multi-doping on the crystal structure,microscopic surface features,and ionic conductivity of cerium dioxide in the Ce_(1-x)(Gd_(1/5)Sm_(1/5... This study focuses on the impact of Gd^(3+),Sm^(3+),Er^(3+).Y^(3+),and Bi^(3+)multi-doping on the crystal structure,microscopic surface features,and ionic conductivity of cerium dioxide in the Ce_(1-x)(Gd_(1/5)Sm_(1/5)Er_(1/5)Y_(1/)_5Bi_(1/5))_(x)O_(2-δ)(GSEYB)system.This system holds promise as a solid electrolyte material for low and medium-temperature solid oxide fuel cells.The powders of Ce_(1-x)(Gd_(1/5)Sm_(1/5)Er_(1/5)Y_(1/5)Bi_(1/5))_(x)O_(2-δ)(x=0,0.10,0.15,0.20,0.25,0.30)were synthesized using the solid-phase reaction method.The GSEYB electrolytes were comprehensively investigated for their phase structure,microstructure,oxygen vacancy concentration,and ionic conductivity using X-ray diffraction(XRD),scanning electron microscopy(SEM),energy dispersive spectroscopy(EDS),transmission electron microscopy(TEM),X-ray photoelectron spectroscopy(XPS),and impedance spectroscopy.XRD diffraction patterns confirm a cubic fluorite-type structure with Fm3m space groups in all multi-doped systems.After sintering at 1400℃for 10 h,the relative density of doped samples exceeds 96%.In terms of electrical properties,the Ce_(0.75)Gd_(0.05)Sm_(0.05)Er_(0.05)Y_(0.05)Bi_(0.05)O_(2-δ)(x=0.25)electrolyte exhibits the highest ionic conductivity(σ_(t)=4.45×10^(-2)S/cm)and the lowest activation energy(E_(a)=0.79 eV)at 800℃.The coefficient of thermal expansion of the developed electrolyte aligns well with that of the commonly used electrode materials.This compatibility positions it as a highly promising candidate for utilization as an electrolyte material in solid oxide fuel cells(SOFCs). 展开更多
关键词 SOFCS Electrolytes Ionic conductivity Multi-doped Rare earths
原文传递
Tailoring the morphology and charge transfer pathways of ultrathin Cd_(0.8)Zn_(0.2)S nanosheets via ionic liquid-modified Ti_(3)C_(2)MXenes towards remarkable photocatalytic hydrogen evolution 被引量:2
8
作者 Qianqian Hu Haiyan Yin +5 位作者 Yifan Liu Abdusalam Ablez Zhuangzhuang Wang Yue Zhan Chengfeng Du Xiaoying Huang 《Journal of Materials Science & Technology》 2025年第1期47-59,共13页
Small-sized Cd_(x) Zn_(1-x) S solid solution nanomaterial is an important candidate for efficient photocatalytic hydrogen evolution(PHE),but it still suffers from easy agglomeration,severe photo corrosion,and fast pho... Small-sized Cd_(x) Zn_(1-x) S solid solution nanomaterial is an important candidate for efficient photocatalytic hydrogen evolution(PHE),but it still suffers from easy agglomeration,severe photo corrosion,and fast photogenerated electron-hole recombination.To tackle these issues,herein,we propose a new strategy to modify Cd_(x) Zn_(1-x) S nanoreactors by the simultaneous utilization of ionic-liquid-assisted morphology engineering and MXene-incorporating method.That is,we designed and synthesized a novel hierarchi-cal Cd_(0.8) Zn_(0.2) S/Ti_(3) C_(2) Schottky junction composite through the in-situ deposition of ultrathin Cd_(0.8) Zn_(0.2) S nanosheets on unique IL-modified Ti_(3) C_(2) MXenes by a one-pot solvothermal method for efficiently PHE.The unique construction strategy tailors the thickness of ultrathin Cd_(0.8) Zn_(0.2) S nanosheets and prevents them from stacking and agglomeration,and especially,optimizes their charge transfer pathways during the photocatalytic process.Compared with pristine Cd_(0.8) Zn_(0.2) S nanosheets,Cd_(0.8) Zn_(0.2) S/Ti_(3) C_(2) has abun-dant photogenerated electrons available on the Ti_(3) C_(2) surface for proton reduction reaction,owing to the absence of deep-trapped electrons,suppression of electron-hole recombination in Cd_(0.8) Zn_(0.2) S and high-efficiency charge separation at the Cd_(0.8) Zn_(0.2) S/Ti_(3) C_(2) Schottky junction interface.Moreover,the hy-drophilicity,electrical conductivity,visible-light absorption capacity,and surficial hydrogen desorption of Cd_(0.8) Zn_(0.2) S/Ti_(3) C_(2) heterostructure are significantly improved.As a result,the heterostructure exhibits out-standing photocatalytic stability and super high apparent quantum efficiency,being rendered as one of the best noble-metal-free Cd-Zn-S-based photocatalysts.This work illustrates the mechanisms of mor-phology control and heterojunction construction in controlling the catalytic behavior of photocatalysts and highlights the great potential of the IL-assisted route in the synthesis of high-performance MXene-based heterostructures for photocatalytic hydrogen evolution. 展开更多
关键词 Ionic liquid Ultrathin Cd_(0.8)Zn_(0.2)S nanosheets MXene Schottky junction Photoexcited charge separation Photocatalytic H_(2)evolution
原文传递
Performance Enhancement of Aquivion-based Ionic Polymer Metal Composites for Cylindrical Actuators 被引量:1
9
作者 Xiaojie Tong Min Yu +3 位作者 Guoxiao Yin Yuwei Wu Chengbo Tian Gengying Wang 《Journal of Bionic Engineering》 2025年第1期1-11,共11页
As a kind of ionic artificial muscle material,Ionic Polymer-Metal Composites(IPMCs)have the advantages of a low drive current,light weight,and significant flexibility.IPMCs are widely used in the fields of biomedicine... As a kind of ionic artificial muscle material,Ionic Polymer-Metal Composites(IPMCs)have the advantages of a low drive current,light weight,and significant flexibility.IPMCs are widely used in the fields of biomedicine,soft robots,etc.However,the displacement and blocking force of the traditional sheet-type Nafion-IPMC need to be improved,and it has the limitation of unidirectional actuation.In this paper,a new type of short side chain Aquivion material is used as the polymer in the IPMC.The cylindrical IPMC is prepared by extrusion technology to improve its actuation performance and realize multi-degree-of-freedom motion.In comparison to the traditional Nafion-IPMC,the ion exchange capacity,specific capacitance,and conductivity of Aquivion-IPMC are improved by 28%,27%,and 32%,respectively,and the displacement and blocking force are improved by 57%and 25%,respectively.The cylindrical actuators can be deflected in eight directions.This indicates that Aquivion,as a polymer membrane for IPMC,holds significant application potential.By designing a cylindrical IPMC electrode distribution,the multi-degree-of-freedom deflection of IPMC can be realized. 展开更多
关键词 Ionic polymer-metal composite Equivalent weight Aquivion NAFION Actuation performance
在线阅读 下载PDF
Water-Restrained Hydrogel Electrolytes with Repulsion-Driven Cationic Express Pathways for Durable Zinc-Ion Batteries 被引量:1
10
作者 Dewu Lin Yushuang Lin +10 位作者 Ruihong Pan Jiapei Li Anquan Zhu Tian Zhang Kai Liu Dongyu Feng Kunlun Liu Yin Zhou Chengkai Yang Guo Hong Wenjun Zhang 《Nano-Micro Letters》 2025年第8期320-332,共13页
The development of flexible zinc-ion batteries(ZIBs)faces a threeway trade-off among the ionic conductivity,Zn^(2+)mobility,and the electrochemical stability of hydrogel electrolytes.To address this challenge,we desig... The development of flexible zinc-ion batteries(ZIBs)faces a threeway trade-off among the ionic conductivity,Zn^(2+)mobility,and the electrochemical stability of hydrogel electrolytes.To address this challenge,we designed a cationic hydrogel named PAPTMA to holistically improve the reversibility of ZIBs.The long cationic branch chains in the polymeric matrix construct express pathways for rapid Zn^(2+)transport through an ionic repulsion mechanism,achieving simultaneously high Zn^(2+)transference number(0.79)and high ionic conductivity(28.7 mS cm−1).Additionally,the reactivity of water in the PAPTMA hydrogels is significantly inhibited,thus possessing a strong resistance to parasitic reactions.Mechanical characterization further reveals the superior tensile and adhesion strength of PAPTMA.Leveraging these properties,symmetric batteries employing PAPTMA hydrogel deliver exceeding 6000 h of reversible cycling at 1 mA cm^(−2) and maintain stable operation for 1000 h with a discharge of depth of 71%.When applied in 4×4 cm2 pouch cells with MnO_(2) as the cathode material,the device demonstrates remarkable operational stability and mechanical robustness through 150 cycles.This work presents an eclectic strategy for designing advanced hydrogels that combine high ionic conductivity,enhanced Zn^(2+)mobility,and strong resistance to parasitic reactions,paving the way for long-lasting flexible ZIBs. 展开更多
关键词 Zinc-ion battery Hydrogel electrolyte Cation conduction Ionic repulsion Water state
在线阅读 下载PDF
Structure factors dictate the ionic conductivity and chemical stability for cubic garnet-based solid-state electrolyte 被引量:1
11
作者 Jingyu Shi Xiaofeng Wu +7 位作者 Yutong Chen Yi Zhang Xiangyan Hou Ruike Lv Junwei Liu Mengpei Jiang Keke Huang Shouhua Feng 《Chinese Chemical Letters》 2025年第5期198-210,共13页
Solid-state electrolytes(SSEs),as the core component within the next generation of key energy storage technologies-solid-state lithium batteries(SSLBs)-are significantly leading the development of future energy storag... Solid-state electrolytes(SSEs),as the core component within the next generation of key energy storage technologies-solid-state lithium batteries(SSLBs)-are significantly leading the development of future energy storage systems.Among the numerous types of SSEs,inorganic oxide garnet-structured superionic conductors Li7La3Zr2O12(LLZO)crystallized with the cubic Iaˉ3d space group have received considerable attention owing to their highly advantageous intrinsic properties encompassing reasonable lithium-ion conductivity,wide electrochemical voltage window,high shear modulus,and excellent chemical stability with electrodes.However,no SSEs possess all the properties necessary for SSLBs,thus both the ionic conductivity at room temperature and stability in ambient air regarding cubic garnet-based electrolytes are still subject to further improvement.Hence,this review comprehensively covers the nine key structural factors affecting the ion conductivity of garnet-based electrolytes comprising Li concentration,Li vacancy concentration,Li carrier concentration and mobility,Li occupancy at available sites,lattice constant,triangle bottleneck size,oxygen vacancy defects,and Li-O bonding interactions.Furthermore,the general illustration of structures and fundamental features being crucial to chemical stability is examined,including Li concentration,Li-site occupation behavior,and Li-O bonding interactions.Insights into the composition-structure-property relations among cubic garnet-based oxide ionic conductors from the perspective of their crystal structures,revealing the potential compatibility conflicts between ionic transportation and chemical stability resulting from Li-O bonding interactions.We believe that this review will lay the foundation for future reasonable structural design of oxide-based or even other types of superionic conductors,thus assisting in promoting the rapid development of alternative green and sustainable technologies. 展开更多
关键词 Garnet-structured solid-state electrolyte Structure factors Ionic conductivity Chemical stability Li-ion battery
原文传递
Impregnation of ionic liquid into porous Fe-N-C electrocatalyst to improve electrode kinetics and mass transport for polymer electrolyte fuel cells 被引量:1
12
作者 Siming Li Enyang Sun +8 位作者 Pengfei Wei Wei Zhao Suizhu Pei Ying Chen Jie Yang Huili Chen Xi Yin Min Wang Yawei Li 《Chinese Journal of Catalysis》 2025年第5期277-288,共12页
Developing efficient and stable non-precious metal catalysts is essential for replacing platinum-based catalysts in polymer electrolyte membrane fuel cells(PEMFCs).The transition metal and nitrogen co-doped carbon ele... Developing efficient and stable non-precious metal catalysts is essential for replacing platinum-based catalysts in polymer electrolyte membrane fuel cells(PEMFCs).The transition metal and nitrogen co-doped carbon electrocatalyst(M-N-C)is considered an effective alternative to precious metal catalysts.However,its relatively poor performance in acidic environments has always been a problem plaguing its practical application in PEMFCs.This study presents a sequential deposition methodology for constructing a composite catalytic system of Fe-N-C and ionic liquid(IL),which exhibits improved performance at both half-cell and membrane electrode assembly scales.The presence of IL significantly inhibits H_(2)O_(2)production,preferentially promoting the 4e–O_(2)reduction reaction,resulting in improved electrocatalytic activity and stability.Additionally,the enhanced PEMFC performance of IL containing electrodes is a direct result of the improved ionic and reactant accessibility of the pore confined Fe-N-C catalysts where the IL minimizes local resistive transport losses.This study establishes a strategic foundation for the practical utilization of non-precious metal catalysts in PEMFCs and other energy converting technologies. 展开更多
关键词 Fuel cell ELECTROCATALYSIS Oxygen reduction reaction Ionic liquid Non-platinum group metal
在线阅读 下载PDF
Ni–Zn bimetal-organic framework nanoprobes reinforced polymeric coating to achieve dual-responsive warning of coating damage and interfacial corrosion 被引量:1
13
作者 Dezhi Jiao Chengbao Liu +5 位作者 Yujie Qiang Shuoqi Li Cong Sun Peimin Hou Lanyue Cui Rongchang Zeng 《Nano Materials Science》 2025年第3期326-339,共14页
Coating microdefects and localized corrosion in coating/metal system are inevitable,accelerating the degradation of metal infrastructure.Early evaluating coating microdefects and detecting corrosion sites are urgent y... Coating microdefects and localized corrosion in coating/metal system are inevitable,accelerating the degradation of metal infrastructure.Early evaluating coating microdefects and detecting corrosion sites are urgent yet remain challenge to achieve.Herein,we propose a robust,universal and efficient fluorescence-based strategy for hierarchical warning of coating damage and metal corrosion by introducing the concepts of damage-induced fluorescence enhancement effect(DIE)and ionic-recognition induced quenching effect(RIQ).The coatings with dualresponsiveness for coating defect and steel corrosion are constructed by incorporating synthesized nanoprobes composed of metal organic frameworks(Ni–Zn-MOFs)loaded with Rhodamine B(RhB@MOFs).The initial damage to the coating causes an immediate intensification of fluorescence,while the specific ionic-recognition characteristic of RhB with Fe3t results in an evident fluorescence quenching,enabling the detection of coating damage and corrosion.Importantly,this nanoprobes are insensitive to the coating matrix and exhibit stable corrosion warning capability across various coating systems.Meanwhile,electrochemical investigations indicate that the impedance values of RM/EP maintain above 10^(8)Ωcm^(2)even after 60 days of immersion.Therefore,the incorporation of fluorescent nanoprobes greatly inhibits the intrusion of electrolytes into polymer and improves the corrosion protection performance of the coating.This powerful strategy towards dual-level damage warning provides insights for the development of long-term smart protective materials. 展开更多
关键词 Smart coating Damage warning Corrosion detecting Metal organic frameworks Fluorescence quenching Ionic recognition
在线阅读 下载PDF
Ultrathin two-dimensional medium-entropy alloy as a highly efficient and stable electrocatalyst for oxygen evolution reaction 被引量:1
14
作者 Guangyuan Yan Tianlu Wang +4 位作者 Haoze Xue Minglei Zhang Zihan Xu Fei Chen Wenbo Yu 《International Journal of Minerals,Metallurgy and Materials》 2025年第11期2767-2776,共10页
The development of highly active, durable, and low-cost electrocatalysts is crucial for electrocatalytic hydrogen production. Ultrathin two-dimensional (2D) nanomaterials have extremely large specific surface areas, m... The development of highly active, durable, and low-cost electrocatalysts is crucial for electrocatalytic hydrogen production. Ultrathin two-dimensional (2D) nanomaterials have extremely large specific surface areas, making them highly desirable electrocatalyst morphologies. Medium-entropy alloys (MEAs) exhibit compositional tunability and entropy-driven structural stability, making them ideal electrocatalyst candidates. In this study, MoCoNi MEA with ultrathin 2D morphology was successfully developed using a facile ionic lay-er epitaxial method. The ultrathin 2D MoCoNi MEA showed an excellent oxygen evolution reaction (OER) electrocatalytic performance, with a low overpotential of 167 mV at a current density of 10 mA/cm^(2) and small Tafel slope of 33.2 mV/dec. At the overpotential of 167 mV, the ultrathin 2D MoCoNi MEA exhibited ultrahigh mass activity of 3359.6 A/g, which is three orders of magnitude higher than that of the commercial noble metal oxide RuO_(2) (1.15 A/g). This excellent electrocatalytic performance was attributed to the synergy of multiple active metal-induced medium entropies, as well as the ultrathin thickness, which considerably shortened the charge-transfer dis-tance and thus significantly promoted charge transfer. Owing to the natural entropy-stabilizing effect, the ultrathin 2D MoCoNi MEA maintained 90% of the initial current after a continuous OER electrocatalytic test for 134 h, showing impressive electrocatalytic stability. This study opens new avenues for the development of high-performance and low-cost electrocatalyst materials by creating MEAs with ultrathin 2D morphology. 展开更多
关键词 medium-entropy alloys 2D nanomaterials ionic layer epitaxy oxygen evolution reaction ELECTROCATALYSIS
在线阅读 下载PDF
Constructing ether-rich and carboxylate hydrogen bonding sites in protic ionic liquids for efficient and simultaneous membrane separation of H_(2)S and CO_(2) from CH_(4) 被引量:1
15
作者 Ping Zhang Xingyun Ma +3 位作者 Zhuoheng Tu Xiaomin Zhang Xingbang Hu Youting Wu 《Green Energy & Environment》 2025年第3期560-572,共13页
Removing H_(2)S and CO_(2)is of great significance for natural gas purification.With excellent gas affinity and tunable structure,ionic liquids(ILs) have been regarded as nontrivial candidates for fabricating polymer-... Removing H_(2)S and CO_(2)is of great significance for natural gas purification.With excellent gas affinity and tunable structure,ionic liquids(ILs) have been regarded as nontrivial candidates for fabricating polymer-based membranes.Herein,we firstly reported the incorporation of protic ILs (PILs) having ether-rich and carboxylate sites (ECPILs) into poly(ether-block-amide)(Pebax) matrix for efficient separation H_(2)S and CO_(2)from CH_(4).Notably,the optimal permeability of H_(2)S reaches up to 4310 Barrer (40C,0.50 bar) in Pebax/ECPIL membranes,along with H_(2)S/CH_(4)and (H_(2)StCO_(2))/CH_(4)selectivity of 97.7 and 112.3,respectively.These values are increased by 1125%,160.8%and 145.9%compared to those in neat Pebax membrane.Additionally,the solubility and diffusion coefficients of the gases were measured,demonstrating that ECPIL can simultaneously strengthen the dissolution and diffusion of H_(2)S and CO_(2),thus elevating the permeability and permselectivity.By using quantum chemical calculations and FT-IR spectroscopy,the highly reversible multi-site hydrogen bonding interaction between ECPILs and H_(2)S was revealed,which is responsible for the fast permeation of H_(2)S and good selectivity.Furthermore,H_(2)S/CO_(2)/CH_(4)(3/3/94 mol/mol) ternary mixed gas can be efficiently and stably separated by Pebax/ECPIL membrane for at least 100 h.Overall,this work not only illustrates that PILs with ether-rich and carboxylate hydrogen bonding sites are outstanding materials for simultaneous removal of H_(2)S and CO_(2),but may also provide a novel insight into the design of membrane materials for natural gas upgrading. 展开更多
关键词 H_(2)S Protic ionic liquid Multi-site hydrogen bonding interaction Membrane separation Natural gas purification
在线阅读 下载PDF
Vacuum Consistent Electrochemistry in Ionic Liquid Combined with Oxide Epitaxy
16
作者 Yuji Matsumoto 《电化学(中英文)》 北大核心 2025年第6期19-37,共19页
We introduce our state-of-the art of“vacuum consistent electrochemistry”to an investigation of the interfaces between oxides and ionic liquid(IL).Pulsed laser deposition(PLD)has been one of the powerful and sophisti... We introduce our state-of-the art of“vacuum consistent electrochemistry”to an investigation of the interfaces between oxides and ionic liquid(IL).Pulsed laser deposition(PLD)has been one of the powerful and sophisticated techniques to realize nanoscale preparation of high-quality epitaxial oxide thin films.On the other hand,electrochemistry is a simple,very sensitive,and non-destructive analysis technique for solid-liquid interfaces.To ensure the reproducibility in experiment of the interfaces of such epitaxial oxide films,as well as bulk oxide single-crystals,with IL,we employ a home-built PLD-electrochemical(EC)system with IL as an electrolyte.The system allows one to perform all-in-vacuum experiments during the preparation of well-defined oxide electrode surfaces to their electrochemical analyses.The topics include electrochemical evaluations of the oxide’s own properties,such as carrier density and relative permittivity,and the interfacial properties of oxides in contact with IL,such as flat band potential and electric double layer(EDL)capacitance,ending with future perspectives in all-solid-state electrochemistry. 展开更多
关键词 Vacuum electrochemistry Oxide epitaxy Electric double layer Ionic liquids Pulsed laser deposition
在线阅读 下载PDF
Efficient fixation of CO_(2) to cyclic carbonates and oxazolidinones with multi-hydroxyl bis-(quaternary ammonium) ionic liquids as catalysts under mild conditions
17
作者 BAI Yumeng YANG Haijian 《中南民族大学学报(自然科学版)》 CAS 2025年第1期1-8,共8页
A series of multi-hydroxyl bis-(quaternary ammonium)ionic liquids(Ils1‒7)was prepared as bifunctional catalysts for the chemical fixation of CO_(2).All these ionic liquid compounds were efficient for the catalytic syn... A series of multi-hydroxyl bis-(quaternary ammonium)ionic liquids(Ils1‒7)was prepared as bifunctional catalysts for the chemical fixation of CO_(2).All these ionic liquid compounds were efficient for the catalytic synthesis of cyclic carbonates and oxazolidinones via the cycloaddition reactions between CO_(2) and epoxides or aziridines with excellent yield and high selectivity in the absence of co-catalyst,metal and solvent.Due to the synergistic effects of hydroxyl groups and halogen anion,the cycloaddition reactions proceeded smoothly either at atmospheric pressure or room temperature.The selectivity for substituted oxazolidinones at 5-and 4-positions can be tuned via changing the reaction conditions.Finally,possible mechanisms including the activation of both CO_(2) and epoxide or aziridines were proposed based on the literatures and experimental results. 展开更多
关键词 chemical conversion of CO_(2) multi-hydroxyl bis-(quaternary ammonium) ionic liquids
在线阅读 下载PDF
Dual-site Doping of Tungsten and Fluorine Enhances the Interface Stability of Na_(3)SbS_(4) in All-solid-state Sodium Metal Batteries
18
作者 GUO Yihao HU Xiaoyu YUAN Yongfeng 《材料科学与工程学报》 北大核心 2025年第5期743-756,共14页
Practical application of Na_(3)SbS_(4)(NSS)solid-state electrolyte in sodium metal batteries has been significantly hindered by poor interfacial stability and insufficient ionic conductivity.In this study,a series of ... Practical application of Na_(3)SbS_(4)(NSS)solid-state electrolyte in sodium metal batteries has been significantly hindered by poor interfacial stability and insufficient ionic conductivity.In this study,a series of dual-site doped Na_(3-2x)Sb_(1-x)W_(x)S_(4-x)F_(x)(x=0,0.12,0.24,0.36)electrolytes through high-energy ball milling followed by high-temperature sintering is prepared,where tungsten(W)substitutes for antimony(Sb)and fluorine(F)replaces sulfur(S)in the NSS lattice.The co-doping of W and F not only broadens the interplanar spacing of NSS but also promotes the stable formation of the cubic phase of NSS,thereby effectively enhancing the transport ability of sodium ions within NSS.Among them,Na_(2.52)Sb_(0.76)W_(0.24)S_(3.76)F_(0.24) exhibits the highest ionic conductivity of 4.45 mS·cm^(-1).Furthermore,F doping facilitates the in-situ formation of NaF between the electrolyte and metallic sodium,significantly improving interfacial stability.Electrochemical evaluation shows that the Na/Na_(2.52)Sb_(0.76)W_(0.24)S_(3.76)F_(0.24)/Na symmetric cell achieves a high critical current density of 1.65 mA·cm^(-2) and maintains stable sodium plating/stripping cycling for 500 h at 0.1 mA·cm^(-2).Additionally,the TiS2/Na_(2.52)Sb_(0.76)W_(0.24)S_(3.76)F_(0.24)/Na full cell exhibits outstanding cycling stability and rate capability. 展开更多
关键词 Tungsten and fluorine co-doping Ionic conductivity Interface stability Allsolid-state sodium metal batteries
在线阅读 下载PDF
Ionic Liquid Enhanced Proton Transfer for Neutral Oxygen Evolution Reaction
19
作者 Ming-Xing Chen Nian Liu +2 位作者 Zi-He Du Jing Qi Rui Cao 《电化学(中英文)》 北大核心 2025年第7期27-36,共10页
The development of highly active catalyst in pH-neutral media for oxygen evolution reaction(OER)is critical in the field of renewable energy storage and conversion.Nevertheless,the slow kinetics of proton-coupled elec... The development of highly active catalyst in pH-neutral media for oxygen evolution reaction(OER)is critical in the field of renewable energy storage and conversion.Nevertheless,the slow kinetics of proton-coupled electron transfer(PCET)hinders the overall OER efficiency.Herein,we report an ionic liquid(IL)modified CoSn(OH)_(6)nanocubes(denoted as CoS-n(OH)_(6)-IL),which could be prepared through a facile strategy.The modified IL would not change the structural character-istics of CoSn(OH)_(6),but could effectively regulate the local proton activity near the active sites.The CoSn(OH)_(6)-IL exhibited higher intrinsic OER performances than the pristine CoSn(OH)_(6)in neutral media.For example,the current density of CoS-n(OH)_(6)-IL at 1.8 V versus reversible hydrogen electrode(RHE)was about 4 times higher than that of CoSn(OH)_(6).According to the pH-dependent kinetic investigations,operando electrochemical impedance spectroscopic,chemical probe tests,and deuterium kinetic isotope effects,the interfacial layer of IL could be utilized as a proton transfer mediator to promote the proton transfer,which enhances the surface coverage of OER intermediates and reduces the activation barrier.Consequent-ly,the sluggish OER kinetics would be efficiently accelerated.This study provides a facile and effective strategy to facilitate the PCET processes and is beneficial to guide the rational design of OER electrocatalysts. 展开更多
关键词 ELECTROCATALYSIS Oxygen evolution reaction Ionic liquid Proton transfer CoSn(OH)_(6)nanocube
在线阅读 下载PDF
上一页 1 2 115 下一页 到第
使用帮助 返回顶部