期刊文献+
共找到146,372篇文章
< 1 2 250 >
每页显示 20 50 100
A lithium–tin fluoride anode enabled by ionic/electronic conductive paths for garnet-based solid-state lithium metal batteries
1
作者 Lei Zhang Qian-Kun Meng +8 位作者 Xiang-Ping Feng Ming Shen Yu-Qing Zhang Quan-Chao Zhuang Run-Guo Zheng Zhi-Yuan Wang Yan-Hua Cui Hong-Yu Sun Yan-Guo Liu 《Rare Metals》 SCIE EI CAS CSCD 2024年第2期575-587,共13页
The high energy density and stability of solid-state lithium metal batteries(SSLMBs)have garnered great attention.Garnet-type oxides,especially Li_(6.4)La_(3)Zr_(1.4)Ta_(0.6)O_(12)(LLZTO),with high ionic conductivity,... The high energy density and stability of solid-state lithium metal batteries(SSLMBs)have garnered great attention.Garnet-type oxides,especially Li_(6.4)La_(3)Zr_(1.4)Ta_(0.6)O_(12)(LLZTO),with high ionic conductivity,wide electrochemical window,and stability to Li metal anode,are promising solid-state electrolyte(SSEs)materials for SSLMBs.However,Li/LLZTO interface issues including high interface resistance,inhomogeneous Li deposition,and Li dendrite growth have hindered the practical application of SSLMBs.Herein,a multi-functional Li–SnF_(2) composite anode with Li,LiF,and Li-Sn alloy was specifically designed and prepared.The composite anode improves the wettability to LLZTO,constructing an intimate contact interface between it and LLZTO.Meanwhile,ionic/electronic conductive paths in situ formed at the interface can effectively uniform Li deposition and suppress Li dendrite.The solid-state symmetric cell exhibits low interface resistance(11Ω·cm^(2)) and high critical current density(1.3 mA·cm^(−2))at 25℃.The full SSLMB based on LiFePO_(4) or LiNi_(0.5)Co_(0.2)Mn_(0.3)O_(2) cathode also shows stable cycling performance and high rate capability.This work provides a new composite anode strategy for achieving high-energy density and high-safety SSLMBs. 展开更多
关键词 Solid-state lithium metal batteries(SSLMBs) Lithium-tin fluoride anode ionic/electronic conductive Interface resistance Lithium dendrite
原文传递
Hybrid ionic/electronic interphase enabling uniform nucleation and fast diffusion kinetics for stable lithium metal anode
2
作者 Lun Li Pengxia Ji +5 位作者 Meng Huang Zixin Zhang Hong Wang Francis Verpoort Jinlong Yang Daping He 《Chinese Chemical Letters》 SCIE CAS CSCD 2024年第2期626-633,共8页
Lithium(Li)dendrite issue,which is usually caused by inhomogeneous Li nucleation and fragile solid electrolyte interphase(SEI),impedes the further development of high-energy Li metal batteries.However,the integrated c... Lithium(Li)dendrite issue,which is usually caused by inhomogeneous Li nucleation and fragile solid electrolyte interphase(SEI),impedes the further development of high-energy Li metal batteries.However,the integrated construction of a high-stable SEI layer that can regulate uniform nucleation and facilitate fast Li-ion diffusion kinetics for Li metal anode still falls short.Herein,we designed an artificial SEI with hybrid ionic/electronic interphase to regulate Li deposition by in-situ constructing metal Co clusters embedded in LiF matrix.The generated Co and LiF both enable fast Li-ion diffusion kinetics,meanwhile,the lithiophilic properties of Co clusters can serve as Li-ion nucleation sites,thereby contributing to uniform Li nucleation and non-dendritic growth.As a result,a dendrite-free Li deposition with a low overpotential(16.1 mV)is achieved,which enables an extended lifespan over 750 h under strict conditions.The full cells with high-mass-loading LiFePO_(4)(11.5 mg/cm^(2))as cathodes exhibit a remarkable rate capacity of 84.1 mAh/g at 5 C and an improved cycling performance with a capacity retention of 96.4%after undergoing 180 cycles. 展开更多
关键词 Lithium metal anode Hybrid ionic/electronic interphase Solid electrolyte interphase Fast diffusion kinetics Dendritic growth of lithium
原文传递
Ionic/electronic conductivity regulation of n-type polyoxadiazole lithium sulfonate conductive polymer binders for high-performance silicon microparticle anodes 被引量:1
3
作者 Yuanyuan Yu Huihui Gao +6 位作者 Jiadeng Zhu Dazhe Li Fengxia Wang Chunhui Jiang Tianhaoyue Zhong Shuheng Liang Mengjin Jiang 《Chinese Chemical Letters》 SCIE CAS CSCD 2021年第1期203-209,共7页
Low-cost silicon microparticles(SiMP),as a substitute for nanostructured silicon,easily suffer from cracks and fractured during the electrochemical cycle.A novel n-type conductive polymer binder with excellent electro... Low-cost silicon microparticles(SiMP),as a substitute for nanostructured silicon,easily suffer from cracks and fractured during the electrochemical cycle.A novel n-type conductive polymer binder with excellent electronic and ionic conductivities as well as good adhesion,has been successfully designed and applied for high-performance SiMP anodes in lithium-ion batteries to address this problem.Its unique features are attributed to the stro ng electron-withdrawing oxadiazole ring structure with sulfonate polar groups.The combination of rigid and flexible components in the polymer ensures its good mechanical strength and ductility,which is beneficial to suppress the expansion and contraction of SiMP s during the charge/discharge process.By fine-tuning the monomer ratio,the conjugation and sulfonation degrees of the polymer can be precisely controlled to regulate its ionic and electronic conductivities,which has been systematically analyzed with the help of an electrochemical test method,filling in the gap on the conductivity measurement of the polymer in the doping state.The experimental results indicate that the cell with the developed n-type polymer binder and SiMP(~0.5 μm) anodes achieves much better cycling performance than traditional non-conductive binders.It has been considered that the initial capacity of the SiMP anode is controlled by the synergetic effect of ionic and electronic conductivity of the binder,and the capacity retention mainly depends on its electronic conductivity when the ionic conductivity is sufficient.It is worth noting that the fundamental research of this wo rk is also applicable to other battery systems using conductive polymers in order to achieve high energy density,broadening their practical applications. 展开更多
关键词 N-DOPING Conductive binder electronic conductivity ionic conductivity High-performance silicon microparticle anodes
原文传递
Short-Term Synaptic Plasticity Mimicked on Ionic/Electronic Hybrid Oxide Synaptic Transistor Gated by Nanogranular SiO_2 Films
4
作者 Zhaojun Guo Liqiang Guo +1 位作者 Liqiang Zhu Yuejin Zhu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2014年第11期1141-1144,共4页
An indium-zinc-oxide (IZO) based ionic/electronic hybrid synaptic transistor gated by field-configurable nanogranular SiO2 films was reported. The devices exhibited a high current ON/OFF ratio of above 107, a high e... An indium-zinc-oxide (IZO) based ionic/electronic hybrid synaptic transistor gated by field-configurable nanogranular SiO2 films was reported. The devices exhibited a high current ON/OFF ratio of above 107, a high electron mobility of ~14 cm2 V^-1 s^-1 and a low subthreshold swing of ~80 mV/decade. The gate bias would modulate the interplay between protons and electrons at the channel/dielectric interface. Due to the dynamic modulation of the transient protons flux within the nanogranular SiO2 films, the channel current would be modified dynamically. Short-term synaptic plasticities, such as short-term potentiation and short- term depression, were mimicked on the proposed IZO synaptic transistor. The results indicate that the synaptic transistor proposed here has potential applications in future neuromorphic devices. 展开更多
关键词 Synaptic transistor Short-term synaptic plasticity Protonic/electronic hybrid
原文传递
Robust and Biodegradable Heterogeneous Electronics with Customizable Cylindrical Architecture for Interference-Free Respiratory Rate Monitoring
5
作者 Jing Zhang Wenqi Wang +9 位作者 Sanwei Hao Hongnan Zhu Chao Wang Zhouyang Hu Yaru Yu Fangqing Wang Peng Fu Changyou Shao Jun Yang Hailin Cong 《Nano-Micro Letters》 2026年第1期914-934,共21页
A rapidly growing field is piezoresistive sensor for accurate respiration rate monitoring to suppress the worldwide respiratory illness.However,a large neglected issue is the sensing durability and accuracy without in... A rapidly growing field is piezoresistive sensor for accurate respiration rate monitoring to suppress the worldwide respiratory illness.However,a large neglected issue is the sensing durability and accuracy without interference since the expiratory pressure always coupled with external humidity and temperature variations,as well as mechanical motion artifacts.Herein,a robust and biodegradable piezoresistive sensor is reported that consists of heterogeneous MXene/cellulose-gelation sensing layer and Ag-based interdigital electrode,featuring customizable cylindrical interface arrangement and compact hierarchical laminated architecture for collectively regulating the piezoresistive response and mechanical robustness,thereby realizing the long-term breath-induced pressure detection.Notably,molecular dynamics simulations reveal the frequent angle inversion and reorientation of MXene/cellulose in vacuum filtration,driven by shear forces and interfacial interactions,which facilitate the establishment of hydrogen bonds and optimize the architecture design in sensing layer.The resultant sensor delivers unprecedented collection features of superior stability for off-axis deformation(0-120°,~2.8×10^(-3) A)and sensing accuracy without crosstalk(humidity 50%-100%and temperature 30-80).Besides,the sensor-embedded mask together with machine learning models is achieved to train and classify the respiration status for volunteers with different ages(average prediction accuracy~90%).It is envisioned that the customizable architecture design and sensor paradigm will shed light on the advanced stability of sustainable electronics and pave the way for the commercial application in respiratory monitory. 展开更多
关键词 Wearable electronics Piezoresistive sensor HETEROGENEOUS CELLULOSE Respiratory monitoring
在线阅读 下载PDF
On-Skin Epidermal Electronics for Next-Generation Health Management
6
作者 Jinbin Xu Xiaoliang Chen +7 位作者 Sheng Li Yizhuo Luo Shizheng Deng Bo Yang Jian Lv Hongmiao Tian Xiangming Li Jinyou Shao 《Nano-Micro Letters》 2026年第1期609-646,共38页
Continuous monitoring of biosignals is essential for advancing early disease detection,personalized treatment,and health management.Flexible electronics,capable of accurately monitoring biosignals in daily life,have g... Continuous monitoring of biosignals is essential for advancing early disease detection,personalized treatment,and health management.Flexible electronics,capable of accurately monitoring biosignals in daily life,have garnered considerable attention due to their softness,conformability,and biocompatibility.However,several challenges remain,including imperfect skin-device interfaces,limited breathability,and insufficient mechanoelectrical stability.On-skin epidermal electronics,distinguished by their excellent conformability,breathability,and mechanoelectrical robustness,offer a promising solution for high-fidelity,long-term health monitoring.These devices can seamlessly integrate with the human body,leading to transformative advancements in future personalized healthcare.This review provides a systematic examination of recent advancements in on-skin epidermal electronics,with particular emphasis on critical aspects including material science,structural design,desired properties,and practical applications.We explore various materials,considering their properties and the corresponding structural designs developed to construct high-performance epidermal electronics.We then discuss different approaches for achieving the desired device properties necessary for long-term health monitoring,including adhesiveness,breathability,and mechanoelectrical stability.Additionally,we summarize the diverse applications of these devices in monitoring biophysical and physiological signals.Finally,we address the challenges facing these devices and outline future prospects,offering insights into the ongoing development of on-skin epidermal electronics for long-term health monitoring. 展开更多
关键词 On-skin epidermal electronics ADHESIVENESS Breathability Mechanoelectrical stability Long-term biosignal monitoring
在线阅读 下载PDF
Quantum-Size FeS_(2) with Delocalized Electronic Regions Enable High-Performance Sodium-Ion Batteries Across Wide Temperatures
7
作者 Tianlin Li Danyang Zhao +8 位作者 Meiyu Shi Chao Tian Jie Yi Qing Yin Yongzhi Li Bin Xiao Jiqiu Qi Peng Cao Yanwei Sui 《Nano-Micro Letters》 2026年第1期355-374,共20页
Wide-temperature applications of sodium-ion batteries(SIBs)are severely limited by the sluggish ion insertion/diffusion kinetics of conversion-type anodes.Quantum-sized transition metal dichalcogenides possess unique ... Wide-temperature applications of sodium-ion batteries(SIBs)are severely limited by the sluggish ion insertion/diffusion kinetics of conversion-type anodes.Quantum-sized transition metal dichalcogenides possess unique advantages of charge delocalization and enrich uncoordinated electrons and short-range transfer kinetics,which are crucial to achieve rapid low-temperature charge transfer and high-temperature interface stability.Herein,a quantum-scale FeS_(2) loaded on three-dimensional Ti_(3)C_(2) MXene skeletons(FeS_(2) QD/MXene)fabricated as SIBs anode,demonstrating impressive performance under wide-temperature conditions(−35 to 65).The theoretical calculations combined with experimental characterization interprets that the unsaturated coordination edges of FeS_(2) QD can induce delocalized electronic regions,which reduces electrostatic potential and significantly facilitates efficient Na+diffusion across a broad temperature range.Moreover,the Ti_(3)C_(2) skeleton reinforces structural integrity via Fe-O-Ti bonding,while enabling excellent dispersion of FeS_(2) QD.As expected,FeS_(2) QD/MXene anode harvests capacities of 255.2 and 424.9 mAh g^(−1) at 0.1 A g^(−1) under−35 and 65,and the energy density of FeS_(2) QD/MXene//NVP full cell can reach to 162.4 Wh kg^(−1) at−35,highlighting its practical potential for wide-temperatures conditions.This work extends the uncoordinated regions induced by quantum-size effects for exceptional Na^(+)ion storage and diffusion performance at wide-temperatures environment. 展开更多
关键词 Quantum-size effect electron delocalization Efficient short-range transfer kinetics Wide-temperature Sodium-ion batteries
在线阅读 下载PDF
Protocol for a global electronic Delphi on integrating artificial intelligence into solid organ transplantation
8
作者 Rowan Abuyadek Sara A Ghitani +6 位作者 Ramy Shaaban Muhammad AbdelAziz Quoritem Mohammed S Foula Rodaina Osama Abdel Majid Manar Mokhtar Yasir Ahmed Mohammed Elhadi Amr Alnagar 《World Journal of Transplantation》 2026年第1期9-16,共8页
Artificial intelligence(AI)is increasingly recognized as a transformative force in the field of solid organ transplantation.From enhancing donor-recipient matching to predicting clinical risks and tailoring immunosupp... Artificial intelligence(AI)is increasingly recognized as a transformative force in the field of solid organ transplantation.From enhancing donor-recipient matching to predicting clinical risks and tailoring immunosuppressive therapy,AI has the potential to improve both operational efficiency and patient outcomes.Despite these advancements,the perspectives of transplant professionals-those at the forefront of critical decision-making-remain insufficiently explored.To address this gap,this study utilizes a multi-round electronic Delphi approach to gather and analyses insights from global experts involved in organ transplantation.Participants are invited to complete structured surveys capturing demographic data,professional roles,institutional practices,and prior exposure to AI technologies.The survey also explores perceptions of AI’s potential benefits.Quantitative responses are analyzed using descriptive statistics,while open-ended qualitative responses undergo thematic analysis.Preliminary findings indicate a generally positive outlook on AI’s role in enhancing transplantation processes,particularly in areas such as donor matching and post-operative care.These mixed views reflect both optimism and caution among professionals tasked with integrating new technologies into high-stakes clinical workflows.By capturing a wide range of expert opinions,the findings will inform future policy development,regulatory considerations,and institutional readiness frameworks for the integration of AI into organ transplantation. 展开更多
关键词 Artificial intelligence Solid organ transplantation electronic Delphi Expert consensus Donor matching Digital health
在线阅读 下载PDF
Utilizing electronic assisted enhancement:An innovative approach for studying the thermal decomposition and combustion of ionic liquids
9
作者 Cailing Zhang Yutao Wang +5 位作者 Baiquan Chen Zhenguo Pang Hongqi Nie Quan Zhu Peijin Liu Wei He 《Defence Technology(防务技术)》 2025年第2期179-189,共11页
Flammable ionic liquids exhibit high conductivity and a broad electrochemical window,enabling the generation of combustible gases for combustion via electrochemical decomposition and thermal decomposition.This charact... Flammable ionic liquids exhibit high conductivity and a broad electrochemical window,enabling the generation of combustible gases for combustion via electrochemical decomposition and thermal decomposition.This characteristic holds significant implications in the realm of novel satellite propulsion.Introducing a fraction of the electrical energy into energetic ionic liquid fuels,the thermal decomposition process is facilitated by reducing the apparent activation energy required,and electrical energy can trigger the electrochemical decomposition of ionic liquids,presenting a promising approach to enhance combustion efficiency and energy release.This study applied an external voltage during the thermal decomposition of 1-ethyl-3-methylimidazole nitrate([EMIm]NO_(3)),revealing the effective alteration of the activation energy of[EMIm]NO_(3).The pyrolysis,electrochemical decomposition,and electron assisted enhancement products were identified through Thermogravimetry-Differential scanning calorimetry-Fourier transform infrared-Mass spectrometry(TG-DSC-FTIR-MS)and gas chromatography(GC)analyses,elucidating the degradation mechanism of[EMIm]NO_(3).Furthermore,an external voltage was introduced during the combustion of[EMIm]NO_(3),demonstrating the impact of voltage on the combustion process. 展开更多
关键词 Flammable ionic liquids Kinetic methods electron assisted enhanced thermal decomposition electron assisted enhanced combustion
在线阅读 下载PDF
Mixed ionic/electronic conducting framework enabled by transition metal-ion reduction in Li-LLTO composite anodes for ultrafast lithium diffusion
10
作者 Huilin Zhu Shiwei Deng +4 位作者 Xinyi Kong Xing Xiang Yan Duan Jian-Fang Wu jilei Liu 《Science China Materials》 2025年第8期2775-2782,共8页
The development of Li_(7)La_(3)Zr_(2)O_(12)(LLZO)solid electrolytes is challenged by the unstable Li/LLZO interface during lithium stripping and plating processes,which impedes interfacial charge transport and acceler... The development of Li_(7)La_(3)Zr_(2)O_(12)(LLZO)solid electrolytes is challenged by the unstable Li/LLZO interface during lithium stripping and plating processes,which impedes interfacial charge transport and accelerates lithium dendrite growth.Here,a freestanding ultrathin Li_(0.3)La_(0.5)TiO_(3)(LLTO)composite anode with a three-dimensional interconnected mixed ionic/electronic conducting LLTO framework was developed.The mixed ionic/electronic conduction of LLTO arises from the in-situ reduction of transition metal ions(Ti^(4+))by metallic lithium.The Li-LLTO composite anode possesses good affinity toward LLZO solid electrolytes,achieving a low interfacial resistance of 11.7Ωcm^(2),and a high lithium self-diffusion coefficient reaching 4.5×10^(−11)cm^(2)/s,about one order of magnitude higher than that of pure lithium anode.These features collectively enhance the Li-LLTO/LLZO interfacial stability,increasing the critical current density fourfold and enabling a 1300-h symmetrical cell cycling life.It delivers high-performance solid-state lithium batteries with an 80%capacity retention after 220 cycles.This advancement not only improves the performance of lithium metal anodes in solid-state batteries but also offers promising insights for next-generation high-energy-density electrochemical energy storage systems. 展开更多
关键词 ELECTROCHEMISTRY ELECTROCATALYSIS Fuel Cells Perovskites SUPERCAPACITORS ionic Liquids
原文传递
Understanding anionic redox chemistry from the perspective of electronic structure
11
作者 Zhen Yu Peng-Fei Yu Xiao-Song Liu 《Rare Metals》 2025年第6期3709-3734,共26页
The rapidly growing electric cars and energy storage systems have extremely promoted the development of advanced lithium and sodium ion batteries and stimulated evolution of high-capacity cathodes.Li/Na-rich layered c... The rapidly growing electric cars and energy storage systems have extremely promoted the development of advanced lithium and sodium ion batteries and stimulated evolution of high-capacity cathodes.Li/Na-rich layered cathodes consisting cationic and anionic reactions as the most typical representative of high-capacity cathodes have shown its tremendous potential.However,there is a long way to go before commercialization because of unsatisfactory performances including large voltage hysteresis,voltage fade and poor cycle performance.Numerous investigations on redox mechanisms and engineering strategies have been performed from the point view of structure and made significant progress,which has been well reviewed.Meanwhile,the unacceptable issues are essentially correlated to the electronic configuration of anionic redox and its interaction with adjacent transition metal cations,which can be well depicted from electronic structure.However,the investigations on anionic reaction process in the viewpoint of electronic structure have been much less summarized.This review aims to compile the current knowledge of anionic redox from the point view of electronic structure,including configuration,origination,evolution,detection and coupling relationship with cationic redox.This work is attempted to inspire new perspectives and design approaches for the development of high-capacity cathodes. 展开更多
关键词 Anionic redox electronic structure Li/Narichlayered cathodes
原文传递
Innovating ionic liquids as repairable electronics for liquid robots 被引量:4
12
作者 Jianji Wang 《Green Energy & Environment》 SCIE CSCD 2020年第2期122-123,共2页
When I read the paper of“Crystal-Confined Freestanding Ionic Liquids for Reconfigurable and Repairable Electronics”that was published on Nature Communications(Nat.Commun.2019,10,547),I felt excited as it led to a ne... When I read the paper of“Crystal-Confined Freestanding Ionic Liquids for Reconfigurable and Repairable Electronics”that was published on Nature Communications(Nat.Commun.2019,10,547),I felt excited as it led to a new application of ionic liquids in addition to the enormous studies on chemical synthesis,catalysis,gas adsorption,processing biomass,and electrochemistry.This paper intended to mimic the liquid robot which was a classic character in the famous movie of Terminator 2:Judgment Day.The authors successfully exploited an approach to overcome the leakage problem of ionic liquids in the absence of encapsulation layers.It seems that ionic liquids would be one of the promising materials for green electronics with less production of electronic waste.In these regards,I would be delighted to write a highlight for this innovative work and hopefully it may raise more interests in the areas of ionic liquids. 展开更多
关键词 ionic liquids Liquid sensors Self-healing electronics
在线阅读 下载PDF
Self-healing Ionic Liquid-based Electronics and Beyond 被引量:1
13
作者 Shenglong Liao Xiaodong Lian Yapei Wang 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2021年第10期1235-1245,I0005,共12页
Owing to the advantages of non-volatility,outstanding fluidity and easy recyclability,ionic liquid-based electronics,such as thermometer,strain sensors and thermoelectric converters,have been growing as attractive alt... Owing to the advantages of non-volatility,outstanding fluidity and easy recyclability,ionic liquid-based electronics,such as thermometer,strain sensors and thermoelectric converters,have been growing as attractive alternatives to traditionally solid electronics.The fluidic character endows the ionic liquid-based circuit with self-healing ability,satisfying the needs of longer lifetime and less waste generation for electronics,while at the same time brings the risk of leakage.Avoiding the leakage without sacrifice of self-healing ability is one of the major challenges for constructing ionic liquid-based electronic devices.In this feature article,we summarize our recent progresses in developing two types of self-healing electrical devices based on ionic liquids with little risk of leakage.One type involves the encapsulation of ionic liquids in self-healing polymers,and the other type uses ionic polymers or free-standing ionic liquids which are successfully formulated as intrinsically conductive,self-healing,and recyclable electronic devices without additional encapsulation.In the end,a comprehensive outlook is prospected for the future development of ionic liquid-based self-healing electronics,which is expected to spur more innovative work in this field. 展开更多
关键词 Self-healing electronics Self-healing materials Recyclable electronics ionic liquid Liquid leakage
原文传递
Structural, electronic, and optical studies of chalcogenides stannite Cu_(2)CdSnX_(4)(X=S, Se, and Te): insights from the DFT study 被引量:1
14
作者 Jamal GUERROUM Mohamed AL-HATTAB +3 位作者 Lhoucine MOUDOU Khalid RAHMANI Youssef LACHTIOUI Omar BAJJOU 《Optoelectronics Letters》 2025年第2期69-76,共8页
In this paper,we have calculated the structural,electronic,and optical properties of chalcogenide stannite Cu_(2)CdSnX4(X=S,Se,Te) materials.The calculations are based on the density functional theory (DFT) method and... In this paper,we have calculated the structural,electronic,and optical properties of chalcogenide stannite Cu_(2)CdSnX4(X=S,Se,Te) materials.The calculations are based on the density functional theory (DFT) method and are performed using the Cambridge sequential total energy package (CASTEP) code included in the Biovia Material Studio 20 software.All optical properties have been studied in a domain that extends energetically from 10 meV to 40 eV.Our results show that Cu_(2)CdSnX4(X=S,Se,Te) stannite exhibits absorption in the visible region,the refractive index decreases with increasing energy,and the refractive index values are n=3.2,3.73 and 3.75 for Cu_(2)CdSnS_(4),Cu_(2)CdSnSe_(4)and Cu_(2)CdSnTe_(4),respectively.They show also high conductivity,which implies that this material is promising for solar cells.These results argue in favor of the use of these materials in various potential applications.The density of state,band structures,and structural properties of Cu_(2)CdSnX4(X=S,Se,and Te) stannite are also studied in this work. 展开更多
关键词 materials electronic refractive
原文传递
The Even-Odd and the Isoelectronicity Rules Applied to Single Covalent Bonds in Ionic, Double-Face-Centered Cubic and Diamond-Like Crystals 被引量:6
15
作者 Geoffroy Auvert Marine Auvert 《Open Journal of Physical Chemistry》 2016年第2期21-33,共13页
Although atom configuration in crystals is precisely known thanks to imaging techniques, there is no experimental way to know the exact location of bonds or charges. Many different representations have been proposed, ... Although atom configuration in crystals is precisely known thanks to imaging techniques, there is no experimental way to know the exact location of bonds or charges. Many different representations have been proposed, yet no theory to unify conceptions. The present paper describes methods to derive bonds and charge location in double-face-centered cubic crystals with 4 and 6 atoms per unit cell using two novel rules introduced in earlier works: the even-odd and the isoelectronicity rules. Both of these rules were previously applied to ions, molecules and some solids, and the even-odd rule was also tested on two covalent crystal structures: centered-cubic and single-face-centered cubic crystals. In the present study, the diamond-like structure was subjected to the isoelectronicity rule in order to derive Zinc-blende structures. Rock-salt-like crystals were derived from each other using both rules. These structures represent together more than 230 different crystals. Findings for these structures are threefold: both rules describe a very sure method to obtain valid single covalent-bonded structures;single covalent structures can be used in every case instead of the classical ionic model;covalent bonds and charges positions do not have any relation with the valence number given in the periodic table. 展开更多
关键词 Covalent Bond Even-Odd RULE Single Bond Chemical Structure CRYSTAL Solid ionic Crystal Face-Centered Crystal DIAMOND-LIKE
在线阅读 下载PDF
Bioelectronic medicine in modulation of cortical spreading depolarization and beyond
16
作者 Khaled Alok Timothy G.White Chunyan Li 《Neural Regeneration Research》 SCIE CAS 2025年第2期481-482,共2页
Bioelectronic interventions,specifically trigeminal nerve st imulat ion(TNS),have attracted considerable attention in conditions where cortical spreading depolarizations(CSDs)accompanied by compromised cerebral perfus... Bioelectronic interventions,specifically trigeminal nerve st imulat ion(TNS),have attracted considerable attention in conditions where cortical spreading depolarizations(CSDs)accompanied by compromised cerebral perfusion may exacerbate neurological damage.While pharmacological interventions have demonstrated initial potential in addressing CSDs,a standardized treatment approach has not yet been established.The objective of this perspective is to explore emerging bioelectronic methodologies for addressing CSDs,particularly emphasizing TNS,and to underscore TNS’s capacity to enhance neurovascular coupling and cerebral perfusion. 展开更多
关键词 CEREBRAL PERFUSION electronic
暂未订购
Transformation of discarded biomass into value-added flexible electronic materials 被引量:1
17
作者 Sijia Bao Xuenan Yang +2 位作者 Ziqi Yu Yuanbo Shi Yuan Lu 《Green Energy & Environment》 2025年第3期452-470,共19页
The development of electronic products and increased electronic waste have triggered a series of ecological problems on Earth.Meanwhile,amidst energy crises and the pursuit of carbon neutrality,the recycling of discar... The development of electronic products and increased electronic waste have triggered a series of ecological problems on Earth.Meanwhile,amidst energy crises and the pursuit of carbon neutrality,the recycling of discarded biomass has attracted the attention of many researchers.In recent years,the transformation of discarded biomass into value-added electronic products has emerged as a promising endeavor in the field of green and flexible electronics.In this review,the attempts and advancements in biomass conversion into flexible electronic materials and devices are systematically summarized.We focus on reviewing the research progress in biomass conversion into substrates,electrodes,and materials tailored for optical and thermal management.Furthermore,we explore component combinations suitable for applications in environmental monitoring and health management.Finally,we discuss the challenges in techniques and cost-effectiveness currently faced by biomass conversion into flexible electronic devices and propose improvement strategies.Drawing insights from both fundamental research and industrial applications,we offer prospects for future developments in this burgeoning field. 展开更多
关键词 Biomass conversion Flexible electronics Green process Sustainable development
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部