期刊文献+
共找到105篇文章
< 1 2 6 >
每页显示 20 50 100
Self-assembled ultrathick MoS_(2)conductive hydrogel membrane via ionic gelation for superior capacitive energy storage
1
作者 Yayun Shi Congcong Liu +1 位作者 Zhijun Zuo Xiaowei Yang 《Chinese Chemical Letters》 2025年第6期682-687,共6页
Conductive hydrogel membranes with nanofluids channels represent one of the most promising capacitive electrodes due to their rapid kinetics of ion transport.The construction of these unique structures always requires... Conductive hydrogel membranes with nanofluids channels represent one of the most promising capacitive electrodes due to their rapid kinetics of ion transport.The construction of these unique structures always requires new self-assembly behaviors with different building blocks,intriguing phenomena of colloidal chemistry.In this work,by delicately balancing the electrostatic repulsions between 2D inorganic nanosheets and the electrostatic adsorption with cations,we develop a general strategy to fabricate stable free-standing 1T molybdenum disulphide(MoS_(2))hydrogel membranes with abundant fluidic channels.Given the interpenetrating ionic transport network,the MoS_(2)hydrogel membranes exhibit a highlevel capacitive performance 1.34 F/cm^(2)at an ultrahigh mass loading of 11.2 mg/cm^(2).Furthermore,the interlayer spacing of MoS_(2)in the hydrogel membranes can be controlled with angstrom-scale precision using different cations,which can promote further fundamental studies and potential applications of the transition-metal dichalcogenides hydrogel membranes. 展开更多
关键词 Capacitive electrodes Channel structure 2D inorganic nanosheets ionic transport MoS_(2)hydrogel membranes
原文传递
Balanced Ionic-Electronic Conductors Enabling Organic Electrochemical Memristors
2
作者 Yani Wang Linlin Pang +7 位作者 Hengyi Ma Mingyu Liu Yongchao Jia Yu Wei Shangzhi Chen Hengda Sun Yuanchun Zhao Kai Xu 《SmartMat》 2025年第3期131-141,共11页
Despite great advancements in organic mixed ionic-electronic conductors(OMIECs),their applications remain predominantly restricted to three-electrode organic electro-chemical transistors(OECTs),which rely on an additi... Despite great advancements in organic mixed ionic-electronic conductors(OMIECs),their applications remain predominantly restricted to three-electrode organic electro-chemical transistors(OECTs),which rely on an additional electrolyte layer to balance ionic and electronic transport,resulting in indirect coupling of charge carriers.While direct coupling has the potential to greatly simplify device architectures,it remains underexplored in OMIECs due to the inherent imbalance between electronic and ionic conductivities.In this study,we introduce a straightforward approach to achieve balanced OMIECs and employ them as channel materials in two-electrode organic electrochemical memristors.These devices provide clear evidence of direct coupling between electronic and ionic carriers and exhibit exceptional performance in synaptic device applications.Our findings offer new insights into charge carrier transport mechanisms in OMIECs and establish organic electrochemical memristors as a promising new class of organic electronic devices for next-generation neuromorphic applications. 展开更多
关键词 ionic and electronic coupled transport mixed ionic-electronic conductors organic electrochemical memristors synaptic devices
原文传递
Computational insights into the ionic transport mechanism and interfacial stability of the Li_(2)OHCl solid-state electrolyte 被引量:3
3
作者 Bo Liu Qianglin Hu +6 位作者 Tianyu Gao Peiguang Liao Yufeng Wen Ziheng Lu Jiong Yang Siqi Shi Wenqing Zhang 《Journal of Materiomics》 SCIE 2022年第1期59-67,共9页
Lithium-rich antiperovskites are promising solid-state electrolytes for all-solid-state lithium-ion batteries because of their high structural tolerance and good formability.However,the experimentally reported proton-... Lithium-rich antiperovskites are promising solid-state electrolytes for all-solid-state lithium-ion batteries because of their high structural tolerance and good formability.However,the experimentally reported proton-free Li_(3)OCl is plagued by its inferior interfacial compatibility and harsh synthesis conditions.In contrast,Li_(2)OHCl is a thermodynamically favored phases and is easier to achieve than Li_(3)OCl.Due to the proton inside this material,it exhibits interesting lithium diffusion mechanisms.Herein,we present a systematic investigation of the ionic transport,phase stability,and electrochemicalchemical stability of Li_(2)OHCl using first-principles calculations.Our results indicate that Li_(2)OHCl is thermodynamically metastable and is an electronic insulator.The wide electrochemical stability window and high chemical stability of Li_(2)OHCl against various electrodes are confirmed.The charged defects are the dominant conduction mechanism for Li-transport,with a low energy barrier of~0.50 eV.The Li-ion conductivity estimated by ab initio molecular dynamics simulations is about 1.3×10^(-4) S cm^(-1) at room temperature.This work identifies the origin of the high interfacial stability and ionic conductivity of Li_(2)OHCl,which can further lead to the design of such as a cathode coating.Moreover,all computational methods for calculating the properties of Li_(2)OHCl are general and can guide the design of highperformance solid-state electrolytes. 展开更多
关键词 Solid-state electrolyte Electrochemical stability Chemical stability ionic transport First-principles calculation
原文传递
Water Dissociation Phenomena on a Bipolar Membrane──Current-voltage Curve in Relation with IonicTransport and Limiting Current Density 被引量:1
4
作者 XU Tong-wen YANG Wei-hua 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2001年第4期457-464,共8页
The water dissociation mechanism on a bipolar membrane under the electrical field was investigated and characterized in terms of ionic transport and limiting current density. It is considered that the depletion layer ... The water dissociation mechanism on a bipolar membrane under the electrical field was investigated and characterized in terms of ionic transport and limiting current density. It is considered that the depletion layer exists at the junction of a bipolar membrane, which is coincided with the viewpoint of the most literatures, but we also consider that the thickness and conductivity of this layer is not only related with the increase of the applied voltage but also with the limiting current density. Below the limiting current density, the thickness of the depletion layer keeps a constant and the conductivity decreases with the increase of the applied voltage; while above the limiting current density, the depletion thickness will increase with the increase of the applied voltage and the conductivity keeps a very low constant. Based on the data reported in the literatures and independent determinations, the limiting current density was calculated and the experimental curves Ⅰ-Ⅴ in the two directions were com 展开更多
关键词 Bipolar membrane Water dissociation ionic transport Limiting current density
在线阅读 下载PDF
Wetting sub-nanochannels via ionic hydration effect for improving charging dynamics 被引量:1
5
作者 Yayun Shi Xiaoli Zhao +5 位作者 Qihang Liu Zhenghui Pan Congcong Liu Shanyi Zhu Zhijun Zuo Xiaowei Yang 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第3期473-480,共8页
The ionic transport in sub-nanochannels plays a key role in energy storage,yet suffers from a high energy barrier.Wetting sub-nanochannels is crucial to accelerate ionic transport,but the introduction of water is chal... The ionic transport in sub-nanochannels plays a key role in energy storage,yet suffers from a high energy barrier.Wetting sub-nanochannels is crucial to accelerate ionic transport,but the introduction of water is challenging because of the hydrophobic extreme confinement.We propose wetting the channels by the exothermic hydration process of pre-intercalated ions,the effect of which varies distinctly with different ionic hydration structures and energies.Compared to the failed pre-intercalation of SO_(4)^(2-),HSO_(4)^(-) with weak hydration energy results in a marginal effect on the HOMO(Highest Occupied Molecular Orbital)level of water to avoid water splitting during the electrochemical intercalation.Meanwhile,the ability of water introduction is reserved by the initial incomplete dissociation state of HSO_(4)^(-),so the consequent exothermic reionization and hydration processes of the intercalated HSO_(4)^(-) promote the water introduction into sub-nanochannels,finally forming the stable confined water through hydrogen bonding with functional groups.The wetted channels exhibit a significantly enhanced ionic diffusion coef-ficient by~9.4 times. 展开更多
关键词 Sub-nanochannels ionic hydration ionic transport SUPERCAPACITORS Confined water
在线阅读 下载PDF
Revealing the role and working mechanism of confined ionic liquids in solid polymer composite electrolytes
6
作者 Haiman Hu Jiajia Li +3 位作者 Yue Wu Wenhao Fang Haitao Zhang Xiaoyan Ji 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第12期110-119,共10页
The confined ionic liquid(IL) in solid polymer composite electrolytes(SCPEs) can improve the performance of lithium metal batteries. However, the impact/role and working mechanism of confined IL in SCPEs remain ambigu... The confined ionic liquid(IL) in solid polymer composite electrolytes(SCPEs) can improve the performance of lithium metal batteries. However, the impact/role and working mechanism of confined IL in SCPEs remain ambiguous. Herein, IL was immobilized on SiO_(2)(SiO_(2)@IL-C) and then used to prepare the confined SCPEs together with LiTFSI and PEO to study the impacts of confined-IL on the properties and performance of electrolytes and reveal the Li+transport mechanism. The results show that, compared to the IL-unconfined SCPE, the IL-confined ones exhibit better performance of electrolytes and cells, such as higher ionic conductivity, higher t+Li, and wider electrochemical windows, as well as more stable cycle performance, due to the increased dissociation degree of lithium salt and enlarged polymer amorphousness. The finite-element/molecular-dynamics simulations suggest that the IL confined on the SiO_(2) provided an additional Li+transport pathway(Li+→ SiO_(2)@IL-C) that can accelerate ion transfer and alleviate lithium dendrites, leading to ultrastable stripping/plating cycling over 1900 h for the Li/SCPEs/Li symmetric cells. This study demonstrates that IL-confinement is an effective strategy for the intelligent approach of high-performance lithium metal batteries. 展开更多
关键词 ionic liquid CONFINEMENT ionic transport pathway Lithium-ion transport kinetics Lithium metal batteries
在线阅读 下载PDF
Ti3C2Tx MXene enhanced high-performance LiFePO4 cathode for all-solid-state lithium battery
7
作者 Hao Xu Shuai Liu +5 位作者 Zhiang Li Fan Ding Weimin Wang Kaikai Song Ting Liu Lina Hu 《Journal of Materials Science & Technology》 2025年第20期104-113,共10页
All-solid-state lithium batteries(ASSLBs)are important for enhancing safety across various applications related to lithium-ion batteries(LIBs).Lithium iron phosphate(LiFePO4)is a widely utilized commercial cathode in ... All-solid-state lithium batteries(ASSLBs)are important for enhancing safety across various applications related to lithium-ion batteries(LIBs).Lithium iron phosphate(LiFePO4)is a widely utilized commercial cathode in LIBs,prized for its stable cycling performance,thermal stability,and low cost.However,low electronic conductivity and slow ion diffusion kinetics limit its application at high rates and low temper-atures.Herein,Ti3C2Tx MXene nanosheets(NSs)are introduced into the LiFePO4 cathode.The continu-ous electron-conducting networks are constructed due to the high electrical conductivity of Ti3C2Tx NSs.Meanwhile,the coordination environment of lithium ions in the cathode is weakened by the oxygenated end groups of Ti3C2Tx NSs,and thus efficient ion-percolating networks are constructed.Therefore,the ionic and electronic conductivities of the modified cathode are significantly improved.Assembled all-solid-state LiFePO4/Li full cells with poly(ethylene oxide)as electrolyte exhibits high initial discharged capacities of 91.5 mAh g^(-1) at 10 C,and capacities of 155.1 mAh g^(-1) after 1000 cycles at 1 C with a re-tention rate of 93.8%.Furthermore,the cells still deliver excellent performance at high loading,room temperature,and low temperature.This work offers a facile and scalable strategy for designing high-performance ASSLBs. 展开更多
关键词 Lithium-ion batteries Solid-state batteries LiFePO4 cathode Conductive networks ionic transport
原文传递
Investigation of concentration-dependent solvation structure evolution and glass transition in MgCl_(2) electrolytes:Implications for aqueous magnesium ion battery performance
8
作者 Liyuan Jiang Yulin Zhou +4 位作者 Yan Jiang Zongyao Zhang Zhengdao Li Xinxin Zhao Jianbao Wu 《Journal of Energy Chemistry》 2025年第10期466-478,共13页
The high safety of aqueous magnesium ion batteries(AMIBs)contrasts with their limited electrochemical performance.To overcome electrolyte-induced parasitic reactions,it is essential to understand the dynamic evolution... The high safety of aqueous magnesium ion batteries(AMIBs)contrasts with their limited electrochemical performance.To overcome electrolyte-induced parasitic reactions,it is essential to understand the dynamic evolution of concentration-dependent metal ion solvation structures(MISSs).This study systematically reveals the solvation structure evolution of MgCl_(2) aqueous solutions across a full concentration range(0-30 M)and its impact on electrochemical properties using molecular dynamics simulations and density functional theory calculations.Results indicate that six characteristic solvation configurations exist,exhibiting a dynamic,concentration-dependent inter-evolution defined as the solvation structure evolutionary processes(SSEP).The four-phase glass transition mechanism in solvation structure evolution is revealed by analyzing the percentage of each type of solvation structure in different concentrations.The study shows that conductivity is directly related to the dynamic transitions of dominant solvation structures,with a shift in the Mg^(2+) coordination mode—from octahedral through pentahedral intermediates to tetrahedral—revealing a concentration-dependent ion transport mechanism.At low concentrations,free-state stochastic diffusion predominates,reaching a maximum conductivity before transitioning to relay transport within a restricted network at high concentrations.Key contributions include:a general strategy for electrolyte design based on the solvation structure evolution process,which quantitatively correlates structural occupancy with migration properties,and the“Concentration Window”regulation model that balances high conductivity with reduced side reactions.These findings clarify the structural origins of anomalous conductivity in highly concentrated electrolytes and establish a mapping between microstructural evolution and macroscopic performance,providing a theoretical basis for engineering high-security electrolytes of AMIBs. 展开更多
关键词 AMIBs Solvation structure evolutionary process VITRIFICATION ionic transport
在线阅读 下载PDF
Study of Transport and Separation of Rare Earth Ions through the Emulsion Liquid Membrane of Bis(2,4,4-trimethylpentyl)phosphinic Acid-Span 80-Toluene 被引量:3
9
作者 李克安 邹长英 +1 位作者 姚晓华 童沈阳 《Journal of Rare Earths》 SCIE EI CAS CSCD 1993年第4期241-245,共5页
It is indicated from a study of transport of rare earth ions through the emulsion liquid mem- brane of bis(2,4,4-trimethylpentyl)phosphinic acid-Span 80-toluene that transporting rare earth ions com- pletely and rapid... It is indicated from a study of transport of rare earth ions through the emulsion liquid mem- brane of bis(2,4,4-trimethylpentyl)phosphinic acid-Span 80-toluene that transporting rare earth ions com- pletely and rapidly was realized under the optimum experimental conditions:1.0×10^(-3)~3.0×10^(-3)mol/L bis(2,4,4-trimethylpentyl)phosphinic acid and 2%~4%(W/V)Span 80 in toluene solution as membrane phase,0.50~2.0 mol/L HCl as inner phase,rare earth ion solutions with pH 3.5~5.0 as outer phase.Ac- cording to the differences of transport behavior for rare earth ions,it is possible to separate rare earth ions from mixed solutions of rare earth ions by this liquid membrane system. 展开更多
关键词 Emulsion liquid membrane ionic transport Rare earth separation Bis(2 4 4-trimethylpentyl)phosphinic acid(Cyanex 272)
在线阅读 下载PDF
固态锂离子电池电解质材料应用性能的研究进展
10
作者 张笑儒 宋静 +5 位作者 罗来马 孙宏骞 赵聪聪 田硕 田亮亮 吴玉程 《材料导报》 北大核心 2025年第13期1-20,共20页
随着新能源汽车和5G通信技术的快速发展,对锂离子电池作为动力源的综合性能提出了更高的要求。在众多锂离子电池技术的研发中,固态锂离子电池因其卓越的能量密度和安全性而受到广泛关注。固态电解质是锂离子电池的关键组成部分,其性能... 随着新能源汽车和5G通信技术的快速发展,对锂离子电池作为动力源的综合性能提出了更高的要求。在众多锂离子电池技术的研发中,固态锂离子电池因其卓越的能量密度和安全性而受到广泛关注。固态电解质是锂离子电池的关键组成部分,其性能直接影响着电池的整体性能,设计和制造具有优良性能的固态电解质是推动锂离子电池实际应用的关键。本文分别对无机固态电解质、聚合物固态电解质和复合固态电解质中Li^(+)传输机制进行了介绍,结合近年发表的文献,全面综述了研究人员利用离子掺杂和引入新的制备技术等方法对固态电解质性能进行改善的研究进展,总结了不同类型固态电解质在国内外各企业中的应用情况,最后对固态电解质存在的挑战和未来的发展趋势进行了展望。本文旨在为开发综合性能优异的新型固态电解质材料提供参考,促进固态电解质的产业化快速发展。 展开更多
关键词 固态锂离子电池 固态电解质 Li+传输机制 离子电导率 电化学稳定性 循环性能
在线阅读 下载PDF
双极膜的工作原理及其在废水处理与资源回收领域的应用研究进展
11
作者 汪晟 王力 《环境工程》 2025年第3期57-69,共13页
双极膜是一种独特的离子交换膜,其结构由阳离子交换层和阴离子交换层组成,能够通过水解离机制生成质子和氢氧根离子。这一特性使得双极膜在诸多领域中具有广泛的应用前景,包括(生物)化学工业、食品加工、环境保护以及能源转换与储存等... 双极膜是一种独特的离子交换膜,其结构由阳离子交换层和阴离子交换层组成,能够通过水解离机制生成质子和氢氧根离子。这一特性使得双极膜在诸多领域中具有广泛的应用前景,包括(生物)化学工业、食品加工、环境保护以及能源转换与储存等。由于其独特的结构,双极膜在电化学应用中表现优异,例如在燃料电池和电解水制氢等领域。在反向偏置条件下,双极膜能有效促进水分子的解离,从而提高电化学反应效率。双极膜在废水处理与资源回收领域展现出显著潜力。通过双极膜电渗析技术,可以有效地将高盐废水中的无机盐转化为相应的酸和碱,实现资源的回收与利用,此外,并可选择性地回收氨氮。相比传统工艺,双极膜展现了出显著的技术进步和环境友好性。该文章回顾了过去双极膜相关的研究,全面阐述了双极膜的特性、理论模型及其应用现状,并介绍了双极膜的新兴应用及其面临的一系列挑战,为未来的发展指明方向。 展开更多
关键词 双极膜 电化学 离子传输 废水处理 资源回收
原文传递
氧缺陷钙钛矿ZnFe_(3)O_(11)固态电解质的制备及离子扩散机制
12
作者 郝佳芳 高国伟 +1 位作者 廖擎玮 秦雷 《微纳电子技术》 2025年第2期81-88,共8页
全固态结构的关键因素是固态电解质材料具有良好的稳定性和在室温下的高离子电导率。采用传统的固相烧结法制备了新型氧缺陷钙钛矿介质材料ZnFe_(3)O_(11),并研究了其微观结构、铁电特性、介电特性和电导率特性等。所制备的电解质在室... 全固态结构的关键因素是固态电解质材料具有良好的稳定性和在室温下的高离子电导率。采用传统的固相烧结法制备了新型氧缺陷钙钛矿介质材料ZnFe_(3)O_(11),并研究了其微观结构、铁电特性、介电特性和电导率特性等。所制备的电解质在室温下离子电导率可达0.838×10^(-5) S/cm,活化能为1.82 eV,电阻率较高为2.06×10^(7)~1.03×10^(7)Ω·cm(20~75℃)。随后通过第一性原理结合分子动力学对离子扩散机制进行研究,研究结果表明Fe离子在(010)和(001)(y轴和z轴)方向上有二维扩散路径,Fe离子在晶体中以亚晶格扩散方式扩散,因而可以通过改变Fe的含量改善Fe离子迁移性能、增加表面带隙,从而提高离子电导率。该工作为进一步提高固态电解质的电子电导率提供了参考。 展开更多
关键词 固态电解质 离子导电率 第一性原理 晶体结构 离子输运
原文传递
Research Advance on the Mechanism of Cadmium Transport in Rice 被引量:10
13
作者 Liu Zhongqi 《Meteorological and Environmental Research》 CAS 2014年第5期48-52,共5页
Soils in part of rice production areas have been seriously contaminated by cadmium (Cd). Rice with high Cd content over allowable limit produced in these areas is widely concerned. Low accumulation varieties can rem... Soils in part of rice production areas have been seriously contaminated by cadmium (Cd). Rice with high Cd content over allowable limit produced in these areas is widely concerned. Low accumulation varieties can remarkably decrease the Cd content in rice as well as the risk of food safety. The translocation of Cd either from soil to root system or from roots to aboveground parts is identified by a lot of ion transport proteins. Transport efficiency of Cd in some rice varieties is regulated by special metal ionic transporters. However, most varieties transport Cd by cation transporters or universal ionic transporters. Both the expression levels and time of gens controlling ionic transporters directly influence the Cd transport rates inside rice plant and the accumulation amount in different organs. Screening and utilizing specific Cd transport genes are the genetic basis of breeding low accumulation varieties. 展开更多
关键词 RICE Cadium ionic channel transport mechanism Low accumulation China
在线阅读 下载PDF
Lithium-ion transport in inorganic solid state electrolyte 被引量:3
14
作者 高健 赵予生 +1 位作者 施思齐 李泓 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第1期139-173,共35页
An overview of ion transport in lithium-ion inorganic solid state electrolytes is presented, aimed at exploring and de signing better electrolyte materials. Ionic conductivity is one of the most important indices of t... An overview of ion transport in lithium-ion inorganic solid state electrolytes is presented, aimed at exploring and de signing better electrolyte materials. Ionic conductivity is one of the most important indices of the performance of inorganic solid state electrolytes. The general definition of solid state electrolytes is presented in terms of their role in a working cell (to convey ions while isolate electrons), and the history of solid electrolyte development is briefly summarized. Ways of using the available theoretical models and experimental methods to characterize lithium-ion transport in solid state elec- trolytes are systematically introduced. Then the various factors that affect ionic conductivity are itemized, including mainly structural disorder, composite materials and interface effects between a solid electrolyte and an electrode. Finally, strategies for future material systems, for synthesis and characterization methods, and for theory and calculation are proposed, aiming to help accelerate the design and development of new solid electrolytes. 展开更多
关键词 lithium-ion batteries solid state electrolyte ionic conductivity ion transport mechanism
原文传递
Mathematical analysis of SOFC based on co-ionic conducting electrolyte 被引量:2
15
作者 Ke-Qing Zheng Meng Ni +1 位作者 Qiong Sun Li-Yin Shen 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2013年第3期388-394,共7页
In co-ionic conducting solid oxide fuel cell (SOFC), both oxygen ion (O2) and proton (H+) can transport through the electrolyte, generating steam in both the an-ode and cathode. Thus the mass transport phenomen... In co-ionic conducting solid oxide fuel cell (SOFC), both oxygen ion (O2) and proton (H+) can transport through the electrolyte, generating steam in both the an-ode and cathode. Thus the mass transport phenomenon in the electrodes is quite different from that in conventional SOFC with oxygen ion conducting electrolyte (O-SOFC) or with proton conducting electrolyte (H-SOFC). The generation of steam in both electrodes also affects the concentration over-potential loss and further the SOFC performance. However, no detailed modeling study on SOFCs with co-ionic electrolyte has been reported yet. In this paper, a new mathematical model for SOFC based on co-ionic electrolyte was developed to predict its actual performance considering three major kinds of overpotentials. Ohm's law and the Butler-Volmer formula were used to model the ion conduction and electrochemical reactions, respectively. The dusty gas model (DGM) was employed to simulate the mass transport processes in the porous electrodes. Parametric simulations were performed to investigate the effects of proton transfer number (tH) and current density (jtotal) on the cell performance. It is interesting to find that the co-ionic conducting SOFC could perform better than O-SOFC and H-SOFC by choosing an appropriate proton transfer number. In addition, the co-ionic SOFC shows smaller difference between the anode and cathode concentration overpotentials than O-SOFC and H-SOFC at certain t H values. The results could help material selection for enhancing SOFC performance. 展开更多
关键词 Co-ionic electrolyte Proton transport number Concentration overpotential Mass transport Model
在线阅读 下载PDF
Unraveling the Fundamental Mechanism of Interface Conductive Network Influence on the Fast‑Charging Performance of SiO‑Based Anode for Lithium‑Ion Batteries 被引量:3
16
作者 Ruirui Zhang Zhexi Xiao +6 位作者 Zhenkang Lin Xinghao Yan Ziying He Hairong Jiang Zhou Yang Xilai Jia Fei Wei 《Nano-Micro Letters》 SCIE EI CSCD 2024年第3期53-68,共16页
Progress in the fast charging of high-capacity silicon monoxide(SiO)-based anode is currently hindered by insufficient conductivity and notable volume expansion.The construction of an interface conductive network effe... Progress in the fast charging of high-capacity silicon monoxide(SiO)-based anode is currently hindered by insufficient conductivity and notable volume expansion.The construction of an interface conductive network effectively addresses the aforementioned problems;however,the impact of its quality on lithium-ion transfer and structure durability is yet to be explored.Herein,the influence of an interface conductive network on ionic transport and mechanical stability under fast charging is explored for the first time.2D modeling simulation and Cryo-transmission electron microscopy precisely reveal the mitigation of interface polarization owing to a higher fraction of conductive inorganic species formation in bilayer solid electrolyte interphase is mainly responsible for a linear decrease in ionic diffusion energy barrier.Furthermore,atomic force microscopy and Raman shift exhibit substantial stress dissipation generated by a complete conductive network,which is critical to the linear reduction of electrode residual stress.This study provides insights into the rational design of optimized interface SiO-based anodes with reinforced fast-charging performance. 展开更多
关键词 Fast charging SiO anode Interface conductive network ionic transport Mechanical stability
在线阅读 下载PDF
Constructing high-toughness polyimide binder with robust polarity and ion-conductive mechanisms ensuring long-term operational stability of silicon-based anodes 被引量:1
17
作者 Yongjun Kang Nanxi Dong +5 位作者 Fangzhou Liu Daolei Lin Bingxue Liu Guofeng Tian Shengli Qi Dezhen Wu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期580-591,I0014,共13页
Silicon-based materials have demonstrated remarkable potential in high-energy-density batteries owing to their high theoretical capacity.However,the significant volume expansion of silicon seriously hinders its utiliz... Silicon-based materials have demonstrated remarkable potential in high-energy-density batteries owing to their high theoretical capacity.However,the significant volume expansion of silicon seriously hinders its utilization as a lithium-ion anode.Herein,a functionalized high-toughness polyimide(PDMI) is synthesized by copolymerizing the 4,4'-Oxydiphthalic anhydride(ODPA) with 4,4'-oxydianiline(ODA),2,3-diaminobenzoic acid(DABA),and 1,3-bis(3-aminopropyl)-tetramethyl disiloxane(DMS).The combination of rigid benzene rings and flexible oxygen groups(-O-) in the PDMI molecular chain via a rigidness/softness coupling mechanism contributes to high toughness.The plentiful polar carboxyl(-COOH) groups establish robust bonding strength.Rapid ionic transport is achieved by incorporating the flexible siloxane segment(Si-O-Si),which imparts high molecular chain motility and augments free volume holes to facilitate lithium-ion transport(9.8 × 10^(-10) cm^(2) s^(-1) vs.16 × 10^(-10) cm^(2) s~(-1)).As expected,the SiO_x@PDMI-1.5 electrode delivers brilliant long-term cycle performance with a remarkable capacity retention of 85% over 500 cycles at 1.3 A g^(-1).The well-designed functionalized polyimide also significantly enhances the electrochemical properties of Si nanoparticles electrode.Meanwhile,the assembled SiO_x@PDMI-1.5/NCM811 full cell delivers a high retention of 80% after 100 cycles.The perspective of the binder design strategy based on polyimide modification delivers a novel path toward high-capacity electrodes for high-energy-density batteries. 展开更多
关键词 Polyimide binder High toughness Robust ionic transport Silicon-based anodes Lithium-ion batteries
在线阅读 下载PDF
Ionic Conduction of ANovel Comb Polvmer Electrolyte Based on Maleic Anhydride Copolymer with Oligo-oxyethylene Side Chains
18
《Chemical Research in Chinese Universities》 SCIE CAS CSCD 1995年第3期243-249,共7页
comb-shaped polynier (BM350) with oligo-oxyetliylene side chains of thetype-O (CH_2CH_2O )_7CH_3 was prepared from methyl vinyl ether /maleic anhydridecopolymer- Honiogeneous aniorplious polymer electrolyte cornplexes... comb-shaped polynier (BM350) with oligo-oxyetliylene side chains of thetype-O (CH_2CH_2O )_7CH_3 was prepared from methyl vinyl ether /maleic anhydridecopolymer- Honiogeneous aniorplious polymer electrolyte cornplexes were madefrom the conib polymer and LiCF_3SO_3 by solvent casting from acetone, and theirconductivities were nieasured as a function of temperature and salt concentration.Maxiniuni conductivity close to 5. 08 ×10 ̄(-5) Scm ̄(-1) was obtained at room tempera-tureancl at a [Li]/[EO] ratio of about 0. 12. The conductivity which displayednon-Arrheni us behaviour was analyzed using the Vogel-Tammann-Fulcher equationand interpreted on the basis of the configurational entropy model. The results ofmid-IR sliowed that the coortlination of Li ̄+ to side chains made the C-O-C bandbecome broader and shift sliglitly- X-ray photoelectron spectroscopy analysis indi-cated that the oxygen atonis in the two situations could coordinate to Li ̄+ and thiscoortlination resulted in the reduction of the electron orbit binding energy of F andS. 展开更多
关键词 Polynier electrolyte ionic conductivity LiCF_3SO_3 salt complexes Ion-IC transport
在线阅读 下载PDF
An Efficient Protective Layer with High Ionic Conductivity Enables Long-Life and Dendrite-Free Li Metal Anodes 被引量:1
19
作者 Yuanyuan Yu Chen Yang +3 位作者 Yan Jiang Jiadeng Zhu Junhua Zhang Mengjin Jiang 《CCS Chemistry》 2025年第3期657-667,共11页
The practical application of the Li metal anode has long been hindered by the uncontrolled growth of Li dendrites,heterogeneous and fragile solid electrolyte interface(SEI)layer,and large volume swelling.Herein,a robu... The practical application of the Li metal anode has long been hindered by the uncontrolled growth of Li dendrites,heterogeneous and fragile solid electrolyte interface(SEI)layer,and large volume swelling.Herein,a robust artificial SEI layer,polyaryoxadiazole lithium sulfonate(PODLi),was successfully fabricated to stabilize the interface between the Li metal and electrolyte.The lithiophilic PODLi film afforded fast ionic transport channels to form a dendrite-free,lithium fluoride-rich anode.The Li@Cu-PODLi symmetric cell achieved excellent cycling performance at a high current density of 10 mA cm^(−2) with an areal capacity of 10 mAh cm^(−2) for more than 770 h.A full cell with the LiFPO_(4) cathode exhibited ultralong-term stable operation over 500 cycles at a high current density of 3.45 mA cm^(−2) with a low-capacity decay rate of 0.038%per cycle.This work demonstrates a cost-effective and scalable strategy for high-energy-density Li metal batteries. 展开更多
关键词 artificial SEI layer Li dendrites Li metal batteries fast ionic transport channels dendrite-free
在线阅读 下载PDF
氯通道膜蛋白内部Cl^(-)/H^(+)耦合转运机制研究进展
20
作者 向泽雨 王哲 于涛 《生命科学》 CSCD 2024年第3期285-290,共6页
氯通道是细胞膜上一类离子选择性跨膜蛋白,其功能是调节细胞内部溶液pH、细胞容积、盐类离子转运以及细胞电兴奋性。按照离子输运方式的差异,氯通道膜蛋白可分为氯离子通道和Cl^(-)/H^(+)转运体两类,其中Cl^(-)/H^(+)转运体内部的离子... 氯通道是细胞膜上一类离子选择性跨膜蛋白,其功能是调节细胞内部溶液pH、细胞容积、盐类离子转运以及细胞电兴奋性。按照离子输运方式的差异,氯通道膜蛋白可分为氯离子通道和Cl^(-)/H^(+)转运体两类,其中Cl^(-)/H^(+)转运体内部的离子转运过程具有显著耦合性,且该过程需要借助水分子参与。本文针对Cl^(-)/H^(+)耦合转运微观机制研究进行总结及展望,为氯通道实验研究、临床疾病诊治和新药研发提供理论依据。 展开更多
关键词 氯通道 膜蛋白 离子转运机制 结构转变
原文传递
上一页 1 2 6 下一页 到第
使用帮助 返回顶部