期刊文献+
共找到15,864篇文章
< 1 2 250 >
每页显示 20 50 100
Axial emission characteristics of an ionic liquid electrospray thruster with a circular emitter 被引量:1
1
作者 Cheng YANG Jiawei LUO +1 位作者 Xiangbei WU Yan SHEN 《Chinese Journal of Aeronautics》 2025年第1期297-305,共9页
Ionic Liquid Electrospray Thrusters(ILETs)are well suited for micro-nano satellite applications due to their small size,low power consumption,and high specific impulse.However,the limited thrust of a single-emitter IL... Ionic Liquid Electrospray Thrusters(ILETs)are well suited for micro-nano satellite applications due to their small size,low power consumption,and high specific impulse.However,the limited thrust of a single-emitter ILET restricts its use in space missions.To optimize the performance of ILETs and make them suitable for a wider range of space missions,we designed a Circular-emitter ILET(CILET)to convert a one-dimensional(point)emission into a twodimensional(line)emission.The CILET can self-organize multiple Taylor cones simultaneously.The cones were photographed and the axial emission currents were measured under different voltage and pressure difference conditions with a CILET experimental system.The emission can be divided into two stable states and one unstable state based on the flow and current characteristics.The current in Stable state Ⅰ increases non-linearly with the voltage,while that in Stable state Ⅱ is nearly linear with respect to the voltage.The number of cones increases with the voltage in stable states,while the cones become short and crowded under high-voltage conditions.The variation law of the number of cones can be explained with the self-organization theory.The variation in the current exhibits a good correlation with the number of cones.This study demonstrates the feasibility of circular emitters and experimentally indicates that the emission current is improved by approximately two orders of magnitude compared to that of a single capillary. 展开更多
关键词 ELECTROSPRAY ionic liquid thruster Self-organize EMITTER Taylor cone
原文传递
Water-Restrained Hydrogel Electrolytes with Repulsion-Driven Cationic Express Pathways for Durable Zinc-Ion Batteries 被引量:1
2
作者 Dewu Lin Yushuang Lin +10 位作者 Ruihong Pan Jiapei Li Anquan Zhu Tian Zhang Kai Liu Dongyu Feng Kunlun Liu Yin Zhou Chengkai Yang Guo Hong Wenjun Zhang 《Nano-Micro Letters》 2025年第8期320-332,共13页
The development of flexible zinc-ion batteries(ZIBs)faces a threeway trade-off among the ionic conductivity,Zn^(2+)mobility,and the electrochemical stability of hydrogel electrolytes.To address this challenge,we desig... The development of flexible zinc-ion batteries(ZIBs)faces a threeway trade-off among the ionic conductivity,Zn^(2+)mobility,and the electrochemical stability of hydrogel electrolytes.To address this challenge,we designed a cationic hydrogel named PAPTMA to holistically improve the reversibility of ZIBs.The long cationic branch chains in the polymeric matrix construct express pathways for rapid Zn^(2+)transport through an ionic repulsion mechanism,achieving simultaneously high Zn^(2+)transference number(0.79)and high ionic conductivity(28.7 mS cm−1).Additionally,the reactivity of water in the PAPTMA hydrogels is significantly inhibited,thus possessing a strong resistance to parasitic reactions.Mechanical characterization further reveals the superior tensile and adhesion strength of PAPTMA.Leveraging these properties,symmetric batteries employing PAPTMA hydrogel deliver exceeding 6000 h of reversible cycling at 1 mA cm^(−2) and maintain stable operation for 1000 h with a discharge of depth of 71%.When applied in 4×4 cm2 pouch cells with MnO_(2) as the cathode material,the device demonstrates remarkable operational stability and mechanical robustness through 150 cycles.This work presents an eclectic strategy for designing advanced hydrogels that combine high ionic conductivity,enhanced Zn^(2+)mobility,and strong resistance to parasitic reactions,paving the way for long-lasting flexible ZIBs. 展开更多
关键词 Zinc-ion battery Hydrogel electrolyte Cation conduction ionic repulsion Water state
在线阅读 下载PDF
Structure factors dictate the ionic conductivity and chemical stability for cubic garnet-based solid-state electrolyte 被引量:1
3
作者 Jingyu Shi Xiaofeng Wu +7 位作者 Yutong Chen Yi Zhang Xiangyan Hou Ruike Lv Junwei Liu Mengpei Jiang Keke Huang Shouhua Feng 《Chinese Chemical Letters》 2025年第5期198-210,共13页
Solid-state electrolytes(SSEs),as the core component within the next generation of key energy storage technologies-solid-state lithium batteries(SSLBs)-are significantly leading the development of future energy storag... Solid-state electrolytes(SSEs),as the core component within the next generation of key energy storage technologies-solid-state lithium batteries(SSLBs)-are significantly leading the development of future energy storage systems.Among the numerous types of SSEs,inorganic oxide garnet-structured superionic conductors Li7La3Zr2O12(LLZO)crystallized with the cubic Iaˉ3d space group have received considerable attention owing to their highly advantageous intrinsic properties encompassing reasonable lithium-ion conductivity,wide electrochemical voltage window,high shear modulus,and excellent chemical stability with electrodes.However,no SSEs possess all the properties necessary for SSLBs,thus both the ionic conductivity at room temperature and stability in ambient air regarding cubic garnet-based electrolytes are still subject to further improvement.Hence,this review comprehensively covers the nine key structural factors affecting the ion conductivity of garnet-based electrolytes comprising Li concentration,Li vacancy concentration,Li carrier concentration and mobility,Li occupancy at available sites,lattice constant,triangle bottleneck size,oxygen vacancy defects,and Li-O bonding interactions.Furthermore,the general illustration of structures and fundamental features being crucial to chemical stability is examined,including Li concentration,Li-site occupation behavior,and Li-O bonding interactions.Insights into the composition-structure-property relations among cubic garnet-based oxide ionic conductors from the perspective of their crystal structures,revealing the potential compatibility conflicts between ionic transportation and chemical stability resulting from Li-O bonding interactions.We believe that this review will lay the foundation for future reasonable structural design of oxide-based or even other types of superionic conductors,thus assisting in promoting the rapid development of alternative green and sustainable technologies. 展开更多
关键词 Garnet-structured solid-state electrolyte Structure factors ionic conductivity Chemical stability Li-ion battery
原文传递
Influence of Process Parameters on Forming Quality of Single-Channel Multilayer by Joule Heat Fuse Additive Manufacturing
4
作者 Li Suli Fan Longfei +3 位作者 Chen Jichao Gao Zhuang Xiong Jie Yang Laixia 《稀有金属材料与工程》 北大核心 2025年第5期1165-1176,共12页
To overcome the shortage of complex equipment,large volume,and high energy consumption in space capsule manufacturing,a novel sliding pressure Joule heat fuse additive manufacturing technique with reduced volume and l... To overcome the shortage of complex equipment,large volume,and high energy consumption in space capsule manufacturing,a novel sliding pressure Joule heat fuse additive manufacturing technique with reduced volume and low energy consumption was proposed.But the unreasonable process parameters may lead to the inferior consistency of the forming quality of single-channel multilayer in Joule heat additive manufacturing process,and it is difficult to reach the condition for forming thinwalled parts.Orthogonal experiments were designed to fabricate single-channel multilayer samples with varying numbers of layers,and their forming quality was evaluated.The influence of printing current,forming speed,and contact pressure on the forming quality of the single-channel multilayer was analyzed.The optimal process parameters were obtained and the quality characterization of the experiment results was conducted.Results show that the printing current has the most significant influence on the forming quality of the single-channel multilayer.Under the optimal process parameters,the forming section is well fused and the surface is continuously smooth.The surface roughness of a single-channel 3-layer sample is 0.16μm,and the average Vickers hardness of cross section fusion zone is 317 HV,which lays a foundation for the subsequent use of Joule heat additive manufacturing technique to form thinwall parts. 展开更多
关键词 Joule heat additive manufacturing single-channel multilayer process parameter forming quality
原文传递
Constructing ether-rich and carboxylate hydrogen bonding sites in protic ionic liquids for efficient and simultaneous membrane separation of H_(2)S and CO_(2) from CH_(4) 被引量:1
5
作者 Ping Zhang Xingyun Ma +3 位作者 Zhuoheng Tu Xiaomin Zhang Xingbang Hu Youting Wu 《Green Energy & Environment》 2025年第3期560-572,共13页
Removing H_(2)S and CO_(2)is of great significance for natural gas purification.With excellent gas affinity and tunable structure,ionic liquids(ILs) have been regarded as nontrivial candidates for fabricating polymer-... Removing H_(2)S and CO_(2)is of great significance for natural gas purification.With excellent gas affinity and tunable structure,ionic liquids(ILs) have been regarded as nontrivial candidates for fabricating polymer-based membranes.Herein,we firstly reported the incorporation of protic ILs (PILs) having ether-rich and carboxylate sites (ECPILs) into poly(ether-block-amide)(Pebax) matrix for efficient separation H_(2)S and CO_(2)from CH_(4).Notably,the optimal permeability of H_(2)S reaches up to 4310 Barrer (40C,0.50 bar) in Pebax/ECPIL membranes,along with H_(2)S/CH_(4)and (H_(2)StCO_(2))/CH_(4)selectivity of 97.7 and 112.3,respectively.These values are increased by 1125%,160.8%and 145.9%compared to those in neat Pebax membrane.Additionally,the solubility and diffusion coefficients of the gases were measured,demonstrating that ECPIL can simultaneously strengthen the dissolution and diffusion of H_(2)S and CO_(2),thus elevating the permeability and permselectivity.By using quantum chemical calculations and FT-IR spectroscopy,the highly reversible multi-site hydrogen bonding interaction between ECPILs and H_(2)S was revealed,which is responsible for the fast permeation of H_(2)S and good selectivity.Furthermore,H_(2)S/CO_(2)/CH_(4)(3/3/94 mol/mol) ternary mixed gas can be efficiently and stably separated by Pebax/ECPIL membrane for at least 100 h.Overall,this work not only illustrates that PILs with ether-rich and carboxylate hydrogen bonding sites are outstanding materials for simultaneous removal of H_(2)S and CO_(2),but may also provide a novel insight into the design of membrane materials for natural gas upgrading. 展开更多
关键词 H_(2)S Protic ionic liquid Multi-site hydrogen bonding interaction Membrane separation Natural gas purification
在线阅读 下载PDF
Tailoring the morphology and charge transfer pathways of ultrathin Cd_(0.8)Zn_(0.2)S nanosheets via ionic liquid-modified Ti_(3)C_(2)MXenes towards remarkable photocatalytic hydrogen evolution 被引量:2
6
作者 Qianqian Hu Haiyan Yin +5 位作者 Yifan Liu Abdusalam Ablez Zhuangzhuang Wang Yue Zhan Chengfeng Du Xiaoying Huang 《Journal of Materials Science & Technology》 2025年第1期47-59,共13页
Small-sized Cd_(x) Zn_(1-x) S solid solution nanomaterial is an important candidate for efficient photocatalytic hydrogen evolution(PHE),but it still suffers from easy agglomeration,severe photo corrosion,and fast pho... Small-sized Cd_(x) Zn_(1-x) S solid solution nanomaterial is an important candidate for efficient photocatalytic hydrogen evolution(PHE),but it still suffers from easy agglomeration,severe photo corrosion,and fast photogenerated electron-hole recombination.To tackle these issues,herein,we propose a new strategy to modify Cd_(x) Zn_(1-x) S nanoreactors by the simultaneous utilization of ionic-liquid-assisted morphology engineering and MXene-incorporating method.That is,we designed and synthesized a novel hierarchi-cal Cd_(0.8) Zn_(0.2) S/Ti_(3) C_(2) Schottky junction composite through the in-situ deposition of ultrathin Cd_(0.8) Zn_(0.2) S nanosheets on unique IL-modified Ti_(3) C_(2) MXenes by a one-pot solvothermal method for efficiently PHE.The unique construction strategy tailors the thickness of ultrathin Cd_(0.8) Zn_(0.2) S nanosheets and prevents them from stacking and agglomeration,and especially,optimizes their charge transfer pathways during the photocatalytic process.Compared with pristine Cd_(0.8) Zn_(0.2) S nanosheets,Cd_(0.8) Zn_(0.2) S/Ti_(3) C_(2) has abun-dant photogenerated electrons available on the Ti_(3) C_(2) surface for proton reduction reaction,owing to the absence of deep-trapped electrons,suppression of electron-hole recombination in Cd_(0.8) Zn_(0.2) S and high-efficiency charge separation at the Cd_(0.8) Zn_(0.2) S/Ti_(3) C_(2) Schottky junction interface.Moreover,the hy-drophilicity,electrical conductivity,visible-light absorption capacity,and surficial hydrogen desorption of Cd_(0.8) Zn_(0.2) S/Ti_(3) C_(2) heterostructure are significantly improved.As a result,the heterostructure exhibits out-standing photocatalytic stability and super high apparent quantum efficiency,being rendered as one of the best noble-metal-free Cd-Zn-S-based photocatalysts.This work illustrates the mechanisms of mor-phology control and heterojunction construction in controlling the catalytic behavior of photocatalysts and highlights the great potential of the IL-assisted route in the synthesis of high-performance MXene-based heterostructures for photocatalytic hydrogen evolution. 展开更多
关键词 ionic liquid Ultrathin Cd_(0.8)Zn_(0.2)S nanosheets MXene Schottky junction Photoexcited charge separation Photocatalytic H_(2)evolution
原文传递
Vacuum Consistent Electrochemistry in Ionic Liquid Combined with Oxide Epitaxy
7
作者 Yuji Matsumoto 《电化学(中英文)》 北大核心 2025年第6期19-37,共19页
We introduce our state-of-the art of“vacuum consistent electrochemistry”to an investigation of the interfaces between oxides and ionic liquid(IL).Pulsed laser deposition(PLD)has been one of the powerful and sophisti... We introduce our state-of-the art of“vacuum consistent electrochemistry”to an investigation of the interfaces between oxides and ionic liquid(IL).Pulsed laser deposition(PLD)has been one of the powerful and sophisticated techniques to realize nanoscale preparation of high-quality epitaxial oxide thin films.On the other hand,electrochemistry is a simple,very sensitive,and non-destructive analysis technique for solid-liquid interfaces.To ensure the reproducibility in experiment of the interfaces of such epitaxial oxide films,as well as bulk oxide single-crystals,with IL,we employ a home-built PLD-electrochemical(EC)system with IL as an electrolyte.The system allows one to perform all-in-vacuum experiments during the preparation of well-defined oxide electrode surfaces to their electrochemical analyses.The topics include electrochemical evaluations of the oxide’s own properties,such as carrier density and relative permittivity,and the interfacial properties of oxides in contact with IL,such as flat band potential and electric double layer(EDL)capacitance,ending with future perspectives in all-solid-state electrochemistry. 展开更多
关键词 Vacuum electrochemistry Oxide epitaxy Electric double layer ionic liquids Pulsed laser deposition
在线阅读 下载PDF
Efficient fixation of CO_(2) to cyclic carbonates and oxazolidinones with multi-hydroxyl bis-(quaternary ammonium) ionic liquids as catalysts under mild conditions
8
作者 BAI Yumeng YANG Haijian 《中南民族大学学报(自然科学版)》 CAS 2025年第1期1-8,共8页
A series of multi-hydroxyl bis-(quaternary ammonium)ionic liquids(Ils1‒7)was prepared as bifunctional catalysts for the chemical fixation of CO_(2).All these ionic liquid compounds were efficient for the catalytic syn... A series of multi-hydroxyl bis-(quaternary ammonium)ionic liquids(Ils1‒7)was prepared as bifunctional catalysts for the chemical fixation of CO_(2).All these ionic liquid compounds were efficient for the catalytic synthesis of cyclic carbonates and oxazolidinones via the cycloaddition reactions between CO_(2) and epoxides or aziridines with excellent yield and high selectivity in the absence of co-catalyst,metal and solvent.Due to the synergistic effects of hydroxyl groups and halogen anion,the cycloaddition reactions proceeded smoothly either at atmospheric pressure or room temperature.The selectivity for substituted oxazolidinones at 5-and 4-positions can be tuned via changing the reaction conditions.Finally,possible mechanisms including the activation of both CO_(2) and epoxide or aziridines were proposed based on the literatures and experimental results. 展开更多
关键词 chemical conversion of CO_(2) multi-hydroxyl bis-(quaternary ammonium) ionic liquids
在线阅读 下载PDF
Ionic Liquid Enhanced Proton Transfer for Neutral Oxygen Evolution Reaction
9
作者 Ming-Xing Chen Nian Liu +2 位作者 Zi-He Du Jing Qi Rui Cao 《电化学(中英文)》 北大核心 2025年第7期27-36,共10页
The development of highly active catalyst in pH-neutral media for oxygen evolution reaction(OER)is critical in the field of renewable energy storage and conversion.Nevertheless,the slow kinetics of proton-coupled elec... The development of highly active catalyst in pH-neutral media for oxygen evolution reaction(OER)is critical in the field of renewable energy storage and conversion.Nevertheless,the slow kinetics of proton-coupled electron transfer(PCET)hinders the overall OER efficiency.Herein,we report an ionic liquid(IL)modified CoSn(OH)_(6)nanocubes(denoted as CoS-n(OH)_(6)-IL),which could be prepared through a facile strategy.The modified IL would not change the structural character-istics of CoSn(OH)_(6),but could effectively regulate the local proton activity near the active sites.The CoSn(OH)_(6)-IL exhibited higher intrinsic OER performances than the pristine CoSn(OH)_(6)in neutral media.For example,the current density of CoS-n(OH)_(6)-IL at 1.8 V versus reversible hydrogen electrode(RHE)was about 4 times higher than that of CoSn(OH)_(6).According to the pH-dependent kinetic investigations,operando electrochemical impedance spectroscopic,chemical probe tests,and deuterium kinetic isotope effects,the interfacial layer of IL could be utilized as a proton transfer mediator to promote the proton transfer,which enhances the surface coverage of OER intermediates and reduces the activation barrier.Consequent-ly,the sluggish OER kinetics would be efficiently accelerated.This study provides a facile and effective strategy to facilitate the PCET processes and is beneficial to guide the rational design of OER electrocatalysts. 展开更多
关键词 ELECTROCATALYSIS Oxygen evolution reaction ionic liquid Proton transfer CoSn(OH)_(6)nanocube
在线阅读 下载PDF
Prediction of ionic liquid toxicity by interpretable machine learning
10
作者 Haijun Feng Li Jiajia Zhou Jian 《Chinese Journal of Chemical Engineering》 2025年第8期201-210,共10页
The potential toxicity of ionic liquids(ILs)affects their applications;how to control the toxicity is one of the key issues in their applications.To understand its toxicity structure relationship and promote its green... The potential toxicity of ionic liquids(ILs)affects their applications;how to control the toxicity is one of the key issues in their applications.To understand its toxicity structure relationship and promote its greener application,six different machine learning algorithms,including Bagging,Adaptive Boosting(AdaBoost),Gradient Boosting(GBoost),Stacking,Voting and Categorical Boosting(CatBoost),are established to model the toxicity of ILs on four distinct datasets including Leukemia rat cell line IPC-81(IPC-81),Acetylcholinesterase(AChE),Escherichia coli(E.coli)and Vibrio fischeri.Molecular descriptors obtained from the simplified molecular input line entry system(SMILES)are used to characterize ILs.All models are assessed by the mean square error(MSE),root mean square error(RMSE),mean absolute error(MAE)and correlation coefficient(R^(2)).Additionally,an interpretation model based on SHapley Additive exPlanations(SHAP)is built to determine the positive and negative effects of each molecular feature on toxicity.With additional parameters and complexity,the Catboost model outperforms the other models,making it a more reliable model for ILs'toxicity prediction.The results of the model's interpretation indicate that the most significant positive features,SMR_VSA5,PEOE_VSA8,Kappa2,PEOE_VSA6,SMR_VSA5,PEOE_VSA6 and EState_VSA1,can increase the toxicity of ILs as their levels rise,while the most significant negative features,VSA_EState7,EState_VSA8,PEOE_VSA9 and FpDensityMorgan1,can decrease the toxicity as their levels rise.Also,an IL's toxicity will grow as its average molecular weight and number of pyridine rings increase,whereas its toxicity will decrease as its hydrogen bond acceptors increase.This finding offers a theoretical foundation for rapid screening and synthesis of environmentally-benign ILs. 展开更多
关键词 ionic liquids TOXICITY Machine learning Model PREDICTION INTERPRETATION
在线阅读 下载PDF
Multi-Stimuli Responsive Ionic Liquid Crystals:The Fluorenoviologens
11
作者 Giuseppina Anna Corrente Agostina Lina Capodilupo +3 位作者 Gianluca Accorsi Francesca Scarpelli Alessandra Crispini Amerigo Beneduci 《SmartMat》 2025年第3期142-154,共13页
Materials capable of tunable optical absorption and fluorescence properties in response to multiple external stimuli,while providing a readable signal,have garnered significant scientific interest.Such materials hold ... Materials capable of tunable optical absorption and fluorescence properties in response to multiple external stimuli,while providing a readable signal,have garnered significant scientific interest.Such materials hold promise for applications in wearable electronics,anticounterfeiting technologies,self-powered light sources and displays,human-machine interfaces,and intelligent sensing systems.A highly effective approach to achieving multi-stimuli optical responsiveness is to integrate various functionalities into a single structure,such as reversible electrochemistry,ion and electronic charge transport,photoluminescence,and supramolecular organization(e.g.,mesomorphism).Here,we introduce a new class of thermotropic smectic ionic liquid crystals,composed of the bistriflimide salts ofπ-conjugated fluorenoviologen dications.The dications feature a central fluorene core functionalized in position 2,7 with two pyridine moieties,whose nitrogen atoms are alkylated with promesogenic alkyl chains of varying lengths.In their bulk liquid crystalline phases,these materials exhibit ON/OFF electrofluorochromism(under UV photoexcitation),with voltage-triggered fluorescence quenching and a shift from yellow to dark electrochromism.Additionally,they display thermofluorochromism,showing a striking fluorescence color change from green to blue on going from the crystalline solid phase at room temperature to the liquid crystalline phases at high temperatures. 展开更多
关键词 ELECTROCHROMISM electrofluorochromism ionic liquid crystals smart materials STIMULI-RESPONSIVE thermofluorochromism
原文传递
NIR-light-induced plasmonic liquid metal/ionic liquid/MXene polyurethane films with excellent antifouling and self-healing capabilities
12
作者 Peng Wang Haohang Yuan +5 位作者 Baoluo He Ruisheng Guo Shujuan Liu Qian Ye Feng Zhou Weimin Liu 《Journal of Materials Science & Technology》 2025年第18期1-10,共10页
The potential of organic coatings in antifouling applications has been well-documented.Beyond their exceptional antifouling effects,these coatings should also possess good mechanical strength and self-healing capabili... The potential of organic coatings in antifouling applications has been well-documented.Beyond their exceptional antifouling effects,these coatings should also possess good mechanical strength and self-healing capabilities.Herein,a novel vinyl-based ionic liquid[VEMIM^(+)][Cl^(−)](IL)was in situ polymerized and then assembled onto the surface of liquid metal(GLM)nanodroplets to prepare GLM-IL.Subsequently,Ti_(3)C_(2)Tx(MXene)was modified with GLM-IL nanodroplets to obtain GLM-IL/MXene composite,which acts as an efficient photon captor and photothermal converters and can be further composited with PU film(GLM-IL/MXene/PU).Notably,the composite film significantly increases by∼117℃after exposure to 200 mW/cm2 light irradiation.This increase is attributed to the high photothermal conversion efficiency of MXene and the excellent plasma effect of GLM-IL.Compared with pure PU,the GLM-IL/MXene/PU film shows a 50%improvement in tensile strength and above 85.8%healing efficiency with a local temperature increase.Additionally,the as-prepared GLM-IL/MXene/PU film reveals satisfactory antifouling properties,achieving a 99.7%reduction in bacterial presence and an 80.3%reduction in microalgae.This work introduces a novel coating with antifouling and self-healing properties,offering a wide range of applications in the fields of marine antifouling and biomedicine. 展开更多
关键词 ionic liquid MXene Gallium-based liquid metal ANTIFOULING SELF-HEALING
原文传递
Homogeneous catalysis and heterogeneous separation:Ionic liquids as recyclable photocatalysts for hydroacylation of olefins
13
作者 Hao-Cong Li Ming Zhang +4 位作者 Qiyan Lv Kai Sun Xiao-Lan Chen Lingbo Qu Bing Yu 《Chinese Chemical Letters》 2025年第2期389-393,共5页
The photoinduced ligand-to-metal charge transfer(LMCT)process has been extensively investigated,however,the recovery of photocatalysts has remained a persistent challenge in the field.In light of this issue,a novel ap... The photoinduced ligand-to-metal charge transfer(LMCT)process has been extensively investigated,however,the recovery of photocatalysts has remained a persistent challenge in the field.In light of this issue,a novel approach involving the development of iron-based ionic liquids as photocatalysts has been pursued for the first time,with the goal of simultaneously facilitating the LMCT process and addressing the issue of photocatalyst recovery.Remarkably,the iron-based ionic liquid 1-butyl-3-methylimidazolium tetrachloroferrate(C_(4)mim-Fe Cl_(4))demonstrates exceptional recyclability and stability for the photocatalytic hydroacylation of olefins.This study will pave the way for new approaches to photocatalytic organic synthesis using ionic liquids as recyclable photocatalysts. 展开更多
关键词 LMCT ionic liquids Homogeneous catalysis Heterogeneous separation Recyclable photocatalysts
原文传递
An ionic liquid assisted hydrogel functionalized silica stationary phase for mixed-mode liquid chromatography
14
作者 Tong Zhang Xiaojing Liang +3 位作者 Licheng Wang Shuai Wang Xiaoxiao Liu Yong Guo 《Chinese Chemical Letters》 2025年第1期491-495,共5页
An ionic liquid assisted hydrogel modified silica was synthesized using a one-pot polymerization and physical coating technique and subsequently applied to mixed-mode liquid chromatography.Analytical techniques,includ... An ionic liquid assisted hydrogel modified silica was synthesized using a one-pot polymerization and physical coating technique and subsequently applied to mixed-mode liquid chromatography.Analytical techniques,including Fourier transform infrared spectroscopy(FT-IR),X-ray photoelectron spectroscopy(XPS),and elemental analysis,etc.,confirmed the successful prepared of this innovative stationary phase.The unique combination of amide,long alkyl chain,and imidazole ring in the hydrogel coating enables the stationary phase to function effectively in hydrophilic/reversed-phase/ion exchange liquid chromatography.Notably,the stationary phase exhibited superior separation performance owing to the synergistic effect of the ionic liquid and hydrogel.This was particularly evident when analyzing various analytes such as organic acids,nucleosides/bases,polycyclic aromatic hydrocarbons(PAHs)and anions.Furthermore,under our operating conditions,an excellent column efficiency of 53,642.9 plates/m was achieved for theobromine.In summary,we have proposed a straightforward strategy to enhance the separation performance of hydrogel coatings in liquid chromatography,thereby broadening the potential applications of hydrogels in the field of separation. 展开更多
关键词 ionic liquid HYDROGEL Functionalized silica Synergistic effect Stationary phase
原文传递
Investigating the doping performance of an ionic dopant for organic semiconductors and thermoelectric applications
15
作者 Jing Guo Yaru Feng +10 位作者 Jinjun Zhang Jing Zhang Ping−An Chen Huan Wei Xincan Qiu Yu Liu Jiangnan Xia Huajie Chen Yugang Bai Lang Jiang Yuanyuan Hu 《Journal of Semiconductors》 2025年第8期84-92,共9页
Doping plays a pivotal role in enhancing the performance of organic semiconductors(OSCs)for advanced optoelectronic and thermoelectric applications.In this study,we systematically investigated the doping performance a... Doping plays a pivotal role in enhancing the performance of organic semiconductors(OSCs)for advanced optoelectronic and thermoelectric applications.In this study,we systematically investigated the doping performance and applicability of the ionic dopant 4-isopropyl-4′-methyldiphenyliodonium tetrakis(penta-fluorophenyl-borate)(DPI-TPFB)as a p-dopant for OSCs.Using the p-type OSC PBBT-2T as a model system,we demonstrated that DPI-TPFB shows significant doping effect,as confirmed by ESR spectra,ultraviolet-visible-near-infrared(UV-vis-NIR)absorption,and work function analysis,and enhances the electronic conductivity of PBBT-2T films by over four orders of magnitude.Furthermore,DPI-TPFB exhibited broad doping applicability,effectively doping various p-type OSCs and even imparting p-type characteristics to the n-type OSC N2200,transforming its intrinsic n-type behavior into p-type.The application of DPI-TPFB-doped PBBT-2T films in organic thermoelectric devices(OTEs)was also explored,achieving a power factor of approximately 10μW·m^(-1)·K^(-2).These findings highlight the potential of DPI-TPFB as a versatile and efficient dopant for integration into organic optoelectronic and thermoelectric devices. 展开更多
关键词 ionic dopant DOPING DPI-TPFB organic semiconductor organic thermoelectric devices
在线阅读 下载PDF
An ionic liquid-reinforced gelatin hydrogel with strong adhesion,antibacterial and anti-inflammatory properties for treating oral ulcers
16
作者 Mengyu Chen Qinglin Zhou +5 位作者 Tianyun Qin Ningyao Sun Yuxi Chen Yuwei Gong Xingyi Li Jinsong Liu 《Chinese Chemical Letters》 2025年第7期430-437,共8页
Oral ulcers may greatly diminish patient life quality and potentially result in malignant transformations.Using gels or films as pseudomembrane barriers is an effective method for promoting ulcer healing.However,these... Oral ulcers may greatly diminish patient life quality and potentially result in malignant transformations.Using gels or films as pseudomembrane barriers is an effective method for promoting ulcer healing.However,these pseudomembranes face challenges such as saliva flushing,dynamic changes,and the presence of abundant microorganisms in the complex oral environment.Herein,we developed an injectable,photoinduction,in situ-enhanceable oral ulcer repair hydrogel(named as GIL2)by incorporating dynamic phenylboronic acid ester bonds and imidazole ions into a methacrylated gelatin matrix.GIL2 exhibited rapid gelation(3 s),low swelling properties(1.07 g/g),robust tensile strength(56.83 kPa)and high adhesive strength(63.38 kPa),allowing it to adhere effectively to the ulcer surface.Moreover,the GIL2 demonstrated intrinsic antibacterial and antioxidant qualities.Within a diabetic rat model for oral ulcers,GIL2 effectively eased oxidative stress and decreased the inflammation present in ulcerated wounds,thereby greatly hastening the healing process of these ulcers.Together,GIL2 hydrogel demonstrates remarkable adaptability within the oral milieu,revitalizing clinical strategy advancements for treating bacterialinfected oral ulcers. 展开更多
关键词 ionic liquids Methacrylated gelatin Adhesive hydrogel INJECTABILITY Oral ulcers
原文传递
Performance Enhancement of Aquivion-based Ionic Polymer Metal Composites for Cylindrical Actuators
17
作者 Xiaojie Tong Min Yu +3 位作者 Guoxiao Yin Yuwei Wu Chengbo Tian Gengying Wang 《Journal of Bionic Engineering》 2025年第1期1-11,共11页
As a kind of ionic artificial muscle material,Ionic Polymer-Metal Composites(IPMCs)have the advantages of a low drive current,light weight,and significant flexibility.IPMCs are widely used in the fields of biomedicine... As a kind of ionic artificial muscle material,Ionic Polymer-Metal Composites(IPMCs)have the advantages of a low drive current,light weight,and significant flexibility.IPMCs are widely used in the fields of biomedicine,soft robots,etc.However,the displacement and blocking force of the traditional sheet-type Nafion-IPMC need to be improved,and it has the limitation of unidirectional actuation.In this paper,a new type of short side chain Aquivion material is used as the polymer in the IPMC.The cylindrical IPMC is prepared by extrusion technology to improve its actuation performance and realize multi-degree-of-freedom motion.In comparison to the traditional Nafion-IPMC,the ion exchange capacity,specific capacitance,and conductivity of Aquivion-IPMC are improved by 28%,27%,and 32%,respectively,and the displacement and blocking force are improved by 57%and 25%,respectively.The cylindrical actuators can be deflected in eight directions.This indicates that Aquivion,as a polymer membrane for IPMC,holds significant application potential.By designing a cylindrical IPMC electrode distribution,the multi-degree-of-freedom deflection of IPMC can be realized. 展开更多
关键词 ionic polymer-metal composite Equivalent weight Aquivion NAFION Actuation performance
在线阅读 下载PDF
Catalytic performance and acidic analysis of chloroaluminate ionic liquid with various impurities in the synthesis of multioctylnaphthalene base oil
18
作者 Pengcheng Hu Jinke Yang +1 位作者 Aonan Lai Shufeng Zhou 《Chinese Journal of Chemical Engineering》 2025年第1期218-224,共7页
The effects of the structure and concentration of impurities on the alkylation of naphthalene with 1-octene catalyzed by chloroaluminate ionic liquid(IL)were investigated.The presence of impurities containing oxygen a... The effects of the structure and concentration of impurities on the alkylation of naphthalene with 1-octene catalyzed by chloroaluminate ionic liquid(IL)were investigated.The presence of impurities containing oxygen and nitrogen led to a decrease in the catalytic performance of chloroaluminate IL.As the water concentration increased to 65 mg·g^(-1),the total selectivity of multi-octylnaphthalene gradually decreased to 42.33%,and the average friction coefficient of the multi-octylnaphthalene base oil gradually increased to 0.201.When the concentration of impurities increased to a critical value,the chloroaluminate IL began to deactivate,leading to a decrease in naphthalene conversion.The critical concentrations for ethanolamine,water,methanol,ether,and diisopentyl sulfide were 33 mg·g^(-1),65 mg·g^(-1),67mg·g^(-1),87 mg·g^(-1),and 123 mg·g^(-1),respectively.Impurities with higher basicity resulted in an earlier onset of chloroaluminate IL deactivation.The changes of Lewis and Brønsted acids in chloroaluminate IL under the influence of impurities were investigated using in situ IR and 27Al NMR spectroscopy.2,6-dimethylpyridine as an indicator could detect the changes of Brønsted acid in chloroaluminate IL better,but the changes of Lewis acid were not obvious because of the overlap between the characteristic peaks.2,6-dichloropyridine as an indicator could exclusively detect the changes of Lewis acid in chloroaluminate IL.With the increase inwater concentration,the Lewis acid in chloroaluminate IL was continuously consumed and converted into Brønsted acid,and the Lewis acid gradually decreased,while the Brønsted acid showed a change of increasing first and then decreasing. 展开更多
关键词 ionic liquid Impurity Naphthalene alkylation Catalytic performance Acidic analysis
在线阅读 下载PDF
Boosting electrochemical reduction of CO_(2)to CO using molecule-regulated Ag nanoparticle in ionic liquids
19
作者 Fangfang Li Kuilin Peng +3 位作者 Chongyang Jiang Shaojuan Zeng Xiangping Zhang Xiaoyan Ji 《Green Energy & Environment》 2025年第4期813-820,共8页
Electrochemical reduction of CO_(2)is a promising approach to convert CO_(2)to high-valued chemicals and fuels.However,developing efficient electrocatalysts featuring desirable activity and selectivity is still a big ... Electrochemical reduction of CO_(2)is a promising approach to convert CO_(2)to high-valued chemicals and fuels.However,developing efficient electrocatalysts featuring desirable activity and selectivity is still a big challenge.In this work,a strategy of introducing functionalized molecules with desirable CO_(2)affinity to regulate Ag catalyst for promoting electrochemical reduction of CO_(2)was proposed.Specifically,3-mercapto-1,2,4-triazole was introduced onto the Ag nanoparticle(Ag-m-Triz)for the first time to achieve selectively converting CO_(2)to carbon monoxide(CO).This Ag-m-Triz exhibits excellent performance for CO_(2)reduction with a high CO Faradaic efficiency(FECO)of 99.2%and CO partial current density of 85.0 mA cm^(-2)at-2.3 V vs.Ag/Ag^(+) in H-cell when combined with the ionic liquid-based electrolyte,30 wt%1-butyl-3-methylimidazolium hexafluorophosphate([Bmim][PF6])-65 wt%acetonitrile(AcN)-5 wt%H2O,which is 2.5-fold higher than the current density in Ag-powder under the same condition.Mechanism studies confirm that the significantly improved performance of Ag-m-Triz originates from(i)the stronger adsorption ability of CO_(2)molecule and(ii)the weaker binding energy to form the COOH*intermediate on the surface of Ag-m-Triz compared with the Ag-powder catalyst,which boosts the conversion of CO_(2)to CO.This research provides a facile way to regulate electrocatalysts for efficient CO_(2)reduction by introducing functionalized molecules. 展开更多
关键词 CO_(2)reduction CO ELECTROCHEMICAL Molecule-regulated Silver ionic liquid
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部