Recently,researchers have concentrated on studying ionic polymer metal composite(IPMC)artificial muscle,which has numerous advantages including a relatively large strain under low input voltage,flexibility,high respon...Recently,researchers have concentrated on studying ionic polymer metal composite(IPMC)artificial muscle,which has numerous advantages including a relatively large strain under low input voltage,flexibility,high response,low noise,light weight,and high driving energy density.This paper reports recent developments in IPMC artificial muscle,including improvement methods,modeling,and applications.Different types of IPMCs are described,along with various methods for overcoming some shortcomings,including improvement of Nafion matrix membranes,surface preparation of Nafion membranes,the choice of high-performing electrodes,and new electro-active polymers for enhancing the properties of IPMCs.IPMC models are also reviewed,providing theoretical guidance for studying the performance and applications of IPMCs.Successful applications such as bio-inspired robots,opto-mechatronic systems,and medical engineering are discussed.展开更多
A rational integration of multiple reactive centers into a combined unit to facilitate their cooperative effects is a smart approach for accelerating the catalytic activity.Here,to achieve this goal,linear imidazolium...A rational integration of multiple reactive centers into a combined unit to facilitate their cooperative effects is a smart approach for accelerating the catalytic activity.Here,to achieve this goal,linear imidazolium-based ionic polymers were confined into the nanopores of mesoporous silica nanospheres anchored with homogeneously distributed zinc salts.Owing to the flexible character and the reinforced cooperative effects of the ionic liquid(nucleophile)and zinc species(Lewis acid)in the confined mesoporous structure,the resultant composite exhibited dramatically improved catalytic performance in the cycloaddition of CO2 with epoxides to form cyclic carbonates.This was in contrast to that observed for the individual catalytic components.Moreover,such a solid catalyst could be easily recovered and reused four times without a significant loss of activity.展开更多
In order to further improve the driving performance of ionic polymer metal composites(IPMCs),Nafion/graphene quantum dots(GQDs)hybrid membranes incorporating GQDs with various contents of 0,0.1 wt.%,0.5 wt.%,1.0 wt.%,...In order to further improve the driving performance of ionic polymer metal composites(IPMCs),Nafion/graphene quantum dots(GQDs)hybrid membranes incorporating GQDs with various contents of 0,0.1 wt.%,0.5 wt.%,1.0 wt.%,2.0 wt.%and 4.0 wt.%were fabricated by solution casting,and then IPMCs were manufactured by electroless plating.The water contents and elastic moduli of the hybrid membranes were tested.The morphology characteristics of the hybrid membranes and the IPMCs were observed,and the current,AC impedance,blocking force and displacement of the IPMCs were measured.The results show that the elastic modulus of the hybrid membranes decreases,the water content increases,and the actuation performance of the IPMCs improves significantly after the addition of GQDs.IPMC with 1.0 wt.%GQDs exhibits the best driving property.Compared with the IPMC without GQDs,the working current,ion conductivity,blocking force,and tip displacement increase by 94.67%,311.11%,53.66%,and 66.07%,respectively.These results lay a solid foundation for the preparation of IPMCs with high performance,and further broaden their applications in biomedical devices and bionic robots.展开更多
Bioinspired materials with excellent properties have attracted intense interests of scientists,and the methodology for rationally design of these materials is crucially important.This review briefly introduces our rec...Bioinspired materials with excellent properties have attracted intense interests of scientists,and the methodology for rationally design of these materials is crucially important.This review briefly introduces our recent achievements on inorganic ionic polymerization for bioinspired material preparation.The inorganic ionic polymerization realized the assembly of inorganic ions in a way similar to the polymerization in polymer chemistry,overcoming the limitation by classical nucleation pathway.It enabled the moldable construction of inorganic minerals and even the reconstruction of enamel tissue,which commonly only achieved by biomineralization.In the presence of organic molecules,the inorganic ionic polymerization could participate in the organic polymerization,resulting in hybrids with molecular-scaled organic-inorganic homogeneity.And furthermore,under the regulation of bio-inspired molecules,the condensed state of the assembled inorganic ions could show unusual behaviors:such as adding the flexibility to commonly fractal inorganic minerals,and flowability to solid mineral particles.It enabled the production of flexible mineral materials as plastic substitute,and the extrusion forming of moldable minerals under room temperature.The inorganic ionic polymerization demonstrated a promising way to synthesize inorganics in a more rational way,which may shed light on more advanced bio-inspired and biomimetic material.展开更多
Janus polymerization is featured as a combination of cationic and anionic growing ends in one living polymer chain. In the copolymerization of THF and CL catalyzed by lutetium triflates and initiated by propylene oxid...Janus polymerization is featured as a combination of cationic and anionic growing ends in one living polymer chain. In the copolymerization of THF and CL catalyzed by lutetium triflates and initiated by propylene oxide, three stages are identified by kinetic study including(1) fast cationic polymerization with slow anionic one,(2) fast anionic polymerization with dormant cationic one, and(3)reactivation of cationic polymerization with coupling of anionic and cationic chain ends. In this work, density functional theory(DFT)calculation is employed to investigate the reaction details of ionic polymerization and dormancy. A “tripedal crow” configuration is proposed to illustrate the unique high-coordinated ligand exchange configuration in anionic polymerization in different stages. The trigger of dormancy is determined as chain structures rather than concentration of triflate anion according to both calculation and experimental results.展开更多
Antibiotic contamination in water systems poses significant environmental concerns;finding efficient photocatalysts that utilize visible light is still a challenge in the field of antibiotic degradation.The selenoviol...Antibiotic contamination in water systems poses significant environmental concerns;finding efficient photocatalysts that utilize visible light is still a challenge in the field of antibiotic degradation.The selenoviologen-based D-A porous ionic polymer(SeV-PIP)was synthesized by selenoviologen(SeV^(2+))acceptor units with triazine donor units using the Sonogashira reaction.The SeV-PIP exhibits remarkable visible light absorption;effective charge separation and excellent radical cation stability;enabling both photogenerated electrons and holes to participate in dual-channel degradation and demonstrating great recyclability.The efficient degradation of tetracycline antibiotics under visible-light conditions achieves a degradation rate of up to 96%and a recovery rate of 97%;even in the presence of common wastewater contaminants;leading to the eventual mineralization of the contaminant molecules.A flowing sun-light-degradation tandem plant-growth device was designed and assembled;which verified that the degraded wastewater has plant-growth promoting abilities through bean seedling growth experiments and realized further application.This research contributes to sustainable wastewater treatment strategies;emphasizing the importance of advanced photocatalysis for environmental remediation.展开更多
Carbon molecular sieve membranes(CMSMs)are a class of porous membranes inherited with excellent thermal stability,high tolerance and superior mechanical strength.Owing to their nanoporous structures,CMSMs usually hold...Carbon molecular sieve membranes(CMSMs)are a class of porous membranes inherited with excellent thermal stability,high tolerance and superior mechanical strength.Owing to their nanoporous structures,CMSMs usually hold significant potential for gas separation applications.Specifically,hyper-crosslinked ionic polymer(HIP)membranes possess a highly crosslinked nitrogen-rich framework,high thermal stability together with exceptional mechanical strength,making them excellent precursors for the CMSMs fabrication.Upon pyrolysis of HIP membranes,the resulting CMSMs featured with nitrogen functional sites exhibit strong interactions with CO_(2),which significantly reduces the CO_(2)permeability while other gas molecules continue to flow through the nanoporous membrane.The resultant CMSMs exhibited excellent H_(2)/CO_(2)selectivity with values of 10.75 and 7.09,together with ultra-high H_(2)permeability of 3052 and 9181 barrer,respectively,surpassing the Robeson upper bound.The preparation route towards CMSMs with high nitrogen content from HIP can significantly enrich the rational design and synthesis strategies of high-performance gas separation CMSM materials.展开更多
Solid polymer electrolytes(SPEs)have attracted much attention for their safety,ease of packaging,costeffectiveness,excellent flexibility and stability.Poly-dioxolane(PDOL)is one of the most promising matrix materials ...Solid polymer electrolytes(SPEs)have attracted much attention for their safety,ease of packaging,costeffectiveness,excellent flexibility and stability.Poly-dioxolane(PDOL)is one of the most promising matrix materials of SPEs due to its remarkable compatibility with lithium metal anodes(LMAs)and suitability for in-situ polymerization.However,poor thermal stability,insufficient ionic conductivity and narrow electrochemical stability window(ESW)hinder its further application in lithium metal batteries(LMBs).To ameliorate these problems,we have successfully synthesized a polymerized-ionic-liquid(PIL)monomer named DIMTFSI by modifying DOL with imidazolium cation coupled with TFSI^(-)anion,which simultaneously inherits the lipophilicity of DOL,high ionic conductivity of imidazole,and excellent stability of PILs.Then the tridentate crosslinker trimethylolpropane tris[3-(2-methyl-1-aziridine)propionate](TTMAP)was introduced to regulate the excessive Li^(+)-O coordination and prepare a flame-retardant SPE(DT-SPE)with prominent thermal stability,wide ESW,high ionic conductivity and abundant Lit transference numbers(t_(Li+)).As a result,the LiFePO_(4)|DT-SPE|Li cell exhibits a high initial discharge specific capacity of 149.60 mAh g^(-1)at 0.2C and 30℃with a capacity retention rate of 98.68%after 500 cycles.This work provides new insights into the structural design of PIL-based electrolytes for long-cycling LMBs with high safety and stability.展开更多
Biomineralization process regulates the growth of inorganic minerals by complex molecules,proteins,and cells,endowing bio-materials with marvels structures and excellent properties.The intricate structures and composi...Biomineralization process regulates the growth of inorganic minerals by complex molecules,proteins,and cells,endowing bio-materials with marvels structures and excellent properties.The intricate structures and compositions found in biominerals have inspired scientists to design and synthesize numerous artificial biomimetic materials.The methodology for controlling the formation of inorganics plays a pivotal role in achieving biomimetic structures and compositions.However,the current approach predominantly relies on the classical nucleation theory,which hinders the precise preparation of inorganic materials by replicating the biomineralization strategy.Recently,the development of“inorganic ionic polymerization”strategy has enabled us to regulate the arrangement of inorganic ions from solution to solid phase,which establishes an artificial way to produce inorganic materials analogous to the biomineralization process.Based on inorganic ionic polymerization,a series of achievements have been realized for the biomimetic preparation,including moldable construction of inorganic materials,hard tissue regeneration,and high-performance biomimetic materials.Moreover,the utilization of inorganic ionic polymerization has also facilitated the production of numerous advanced materials,including novel structures that exceed the current knowledge of materials science.The inorganic ionic polymerization system provides new artificial strategies and methodologies for the controllable synthesis of inorganics,which mimics the biomineralization process,paving the way for the future development of more high-performance materials.展开更多
Sulfide-based inorganic solid electrolytes are promising materials for high-performance safe solid-state batteries.The high ion conductivity,mechanical characteristics,and good processability of sulfide-based inorgani...Sulfide-based inorganic solid electrolytes are promising materials for high-performance safe solid-state batteries.The high ion conductivity,mechanical characteristics,and good processability of sulfide-based inorganic solid electrolytes are desirable properties for realizing high-performance safe solid-state batteries by replacing conventional liquid electrolytes.However,the low chemical and electrochemical stability of sulfide-based inorganic solid electrolytes hinder the commercialization of sulfide-based safe solid-state batteries.Particularly,the instability of sulfide-based inorganic solid electrolytes is intensified in the cathode,comprising various materials.In this study,carbonate-based ionic conductive polymers are introduced to the cathode to protect cathode materials and suppress the reactivity of sulfide electrolytes.Several instruments,including electrochemical spectroscopy,X-ray photoelectron spectroscopy,and scanning electron microscopy,confirm the chemical and electrochemical stability of the polymer electrolytes in contact with sulfide-based inorganic solid electrolytes.Sulfide-based solid-state cells show stable electrochemical performance over 100 cycles when the ionic conductive polymers were applied to the cathode.展开更多
A single-Rh-site catalyst(Rh-TPISP)that was ionically-embedded on a P(V)quaternary phosphonium porous polymer was evaluated for heterogeneous ethanol carbonylation.The[Rh(CO)I_(3)]^(2-)unit was proposed to be the acti...A single-Rh-site catalyst(Rh-TPISP)that was ionically-embedded on a P(V)quaternary phosphonium porous polymer was evaluated for heterogeneous ethanol carbonylation.The[Rh(CO)I_(3)]^(2-)unit was proposed to be the active center of Rh-TPISP for the carbonylation reaction based on detailed Rh L3-edge X-ray absorption near edge structure(XANES),X-ray photoelectron spectroscopy(XPS),and Rh extended X-ray absorption fine structure(EXAFS)analyses.As the highlight of this study,Rh-TPISP displayed distinctly higher activity for heterogeneous ethanol carbonylation than the reported catalytic systems in which[Rh(CO)_(2)I_(2)]^(-)is the traditional active center.A TOF of 350 h^(-1)was obtained for the reaction over[Rh(CO)I_(3)]^(2-),with>95%propionyl selectivity at 3.5 MPa and 468 K.No deactivation was detected during a near 1000 h running test.The more electron-rich Rh center was thought to be crucial for explaining the superior activity and selectivity of Rh-TPISP,and the formation of two ionic bonds between[Rh(CO)I_(3)]^(2-)and the cationic P(V)framework([P]^(+))of the polymer was suggested to play a key role in firmly immobilizing the active species to prevent Rh leaching.展开更多
In this work,we printed a Nafion precursor membrane by fused deposition modeling(FDM)rapid prototyping technology and further fabricated IPMCs by electroless plating.The ion-exchange capacity of the Nafion membrane wa...In this work,we printed a Nafion precursor membrane by fused deposition modeling(FDM)rapid prototyping technology and further fabricated IPMCs by electroless plating.The ion-exchange capacity of the Nafion membrane was tested,and the morphology of IPMCs was observed.The electro-mechanical properties of IPMCs under AC voltage inputs were studied,and grasping experiments were performed.The results show that the Nafion membrane after hydrolysis has a good ion-exchange ability and water-holding capacity.SEM observed that the thickness of the IPMC’s electrode layer was about 400 nm,and the platinum layer was tightly combined with the substrate membrane.When using a square wave input of 3.5 V and 0.1 Hz,the maximum current of IPMCs reached 0.30 A,and the displacement and blocking force were 7.57 mm and 10.5 mN,respectively.The new fabrication process ensures the good driving performance of the printed IPMC.And two pieces of IPMCs can capture the irregular objects successfully,indicating the feasibility of printing IPMCs by FDM technology.This paper provides a new and simple method for the fabrication of three-dimensional IPMCs,which can be further applied in flexible grippers and soft robotics.展开更多
Polymerizable ionic liquid copolymer P(MMA-co-BVIm-Br) was synthesized by radical polymerization technique, and characterized by Fourier transform infrared spectrometry (FTIR), 1H Nuclear magnetic resonance (1H-...Polymerizable ionic liquid copolymer P(MMA-co-BVIm-Br) was synthesized by radical polymerization technique, and characterized by Fourier transform infrared spectrometry (FTIR), 1H Nuclear magnetic resonance (1H-NMR) and gel permeation chromatography (GPC). The resulting copolymer was used to prepare poly(vinylidene fluoride) (PVDF) blend membranes via a phase inversion method. The effects of the copolymer on the polymorphism, surface wettability and zeta potential (0 of the blend membranes were investigated by ATR-FTIR, contact angle instrument and zeta potential analyzer. Scanning electron microscopy (SEM and SEM-EDS) was also applied to investigate the morphology and the surface element changes of the fabricated membranes. The results indicated that P(MMA-co-BVIm-Br) copolymer existed on the surface of the membrane which made the blend membrane have a positive surface during the experimental pH range. The copolymer was also in favor of the formation of βcrystal phase in PVDF membranes. The contact angle experiment indicated that P(MMA-co-BVIm-Br) copolymer could switch the wettability of the blend membranes from hydrophilic to hydrophobic by exchanging Br- anion with PF6-. Compared with pure PVDF membranes, the water flux and water recovery flux of the blend membranes were enhanced obviously. The results from the flux recovery ratio (FR) and total fouling ratio (Rt) all suggested that the blend membranes had good anti-fouling properties.展开更多
We synthesized one quaternary ammonium polymeric ionic liquids(PILs)P[VBTHEA]Cl and three imidazolium PILs of P[VEIm]Br, P[VEIm]BF, P[VEIm]PFby free-radical polymerization in solution. These PILs were characterized ...We synthesized one quaternary ammonium polymeric ionic liquids(PILs)P[VBTHEA]Cl and three imidazolium PILs of P[VEIm]Br, P[VEIm]BF, P[VEIm]PFby free-radical polymerization in solution. These PILs were characterized by FT-IR,H-NMR,C-NMR, TGA, XRD and SEM. Their COadsorption capacities were measured under different pressures and temperatures by constant-volume technique. It was observed that quaternary ammonium PILs of P[VBTHEA]Cl have higher adsorption capacity for COthan those imidazolium PILs, following P[VBTHEA]Cl > P[VEIm]PF> P[VEIm]BF> P[VEIm]Br, which may be ascribed to higher positive charge density on ammonium cation than that on imidazolium cation and thus stronger interaction with CO, consistent with the results from dual-mode adsorption model that ammonium PILs have much higher CObulk absorption than imidazolium PILs. COadsorption capacity of P[VBTHEA]Cl is 9.02 mg/g under 295 K and 1 bar, which is comparable to that of some other PILs, and is much higher than that of the corresponding ILs monomer. These PILs have good adsorption selectivity for COover Nand regeneration efficiency.展开更多
This work reports a SO2 derivative-detecting and colorful hyperbranched polymeric ionic liquid (HBPIL) vesicle through aqueous self-assembly. By a simple anion-exchange, we achieved the combination of functional sma...This work reports a SO2 derivative-detecting and colorful hyperbranched polymeric ionic liquid (HBPIL) vesicle through aqueous self-assembly. By a simple anion-exchange, we achieved the combination of functional small-molecule probe of acid fuchsin with HBPILs. The obtained HBPIL vesicle displayed ultraviolet absorption at 544 nm, and was used as a novel SO2 derivative sensor with high sensitivity and visualization. Due to the functional ion pairs enriching on the surface, the SO32 detection limit of the HBPILs vesicles was as low as 0.138 gmol/L, which was about 1.5 orders of magnitude lower than that of acid fuchsin.展开更多
Ionic liquids functionalized β-cyclodextrin polymer, a mono-6-deoxy-6-(1,2-dimethylimida- zolium)-β-cyclodextrin iodide polymer (ILs-β-CDCP), was synthesized as a solid-phase adsorbent coupled with high-perform...Ionic liquids functionalized β-cyclodextrin polymer, a mono-6-deoxy-6-(1,2-dimethylimida- zolium)-β-cyclodextrin iodide polymer (ILs-β-CDCP), was synthesized as a solid-phase adsorbent coupled with high-performance liquid chromatography for separating or analyzing magnolol in drug samples. The results showed that magnolol was adsorbed rapidly on ILs-D-CDCP and eluted with methanol. Under the optimum conditions, preconcentration factor of the proposed method was 12. The linear range, limit of detection (LOD), correlation coefficient (R) and relative standard deviation (RSD) were found to be 0.02-8.00 μg/mL, 1.9 ng/mL, 0.9992 and 2.76% (n=3, c=2.00 pg/mL), respectively. The interaction between 1Ls-])-CDCP and magnolol was studied through the inclusion constant, FTIR and TGA analysis. This proposed method has been successfully applied to the determination of magnolol in real samples.展开更多
The concentration difference in the near-surface region of lithium metal is the main cause of lithium dendrite growth.Resolving this issue will be key to achieving high-performance lithium metal batteries(LMBs).Herein...The concentration difference in the near-surface region of lithium metal is the main cause of lithium dendrite growth.Resolving this issue will be key to achieving high-performance lithium metal batteries(LMBs).Herein,we construct a lithium nitrate(LiNO_(3))-implanted electroactiveβphase polyvinylidene fluoride-co-hexafluoropropylene(PVDF-HFP)crystalline polymorph layer(PHL).The electronegatively charged polymer chains attain lithium ions on the surface to form lithium-ion charged channels.These channels act as reservoirs to sustainably release Li ions to recompense the ionic flux of electrolytes,decreasing the growth of lithium dendrites.The stretched molecular channels can also accelerate the transport of Li ions.The combined effects enable a high Coulombic efficiency of 97.0%for 250 cycles in lithium(Li)||copper(Cu)cell and a stable symmetric plating/stripping behavior over 2000 h at 3 mA cm^(-2)with ultrahigh Li utilization of 50%.Furthermore,the full cell coupled with PHL-Cu@Li anode and Li Fe PO_(4) cathode exhibits long-term cycle stability with high-capacity retention of 95.9%after 900 cycles.Impressively,the full cell paired with LiNi_(0.87)Co_(0.1)Mn_(0.03)O_(2)maintains a discharge capacity of 170.0 mAh g^(-1)with a capacity retention of 84.3%after 100 cycles even under harsh condition of ultralow N/P ratio of 0.83.This facile strategy will widen the potential application of LiNO_(3)in ester-based electrolyte for practical high-voltage LMBs.展开更多
基金financial supportfrom the National Natural Science Foundation of China(Grant Nos.51605220,U1637101)the Jiangsu Province NaturalScience Foundation(GrantNo.BK20160793)。
文摘Recently,researchers have concentrated on studying ionic polymer metal composite(IPMC)artificial muscle,which has numerous advantages including a relatively large strain under low input voltage,flexibility,high response,low noise,light weight,and high driving energy density.This paper reports recent developments in IPMC artificial muscle,including improvement methods,modeling,and applications.Different types of IPMCs are described,along with various methods for overcoming some shortcomings,including improvement of Nafion matrix membranes,surface preparation of Nafion membranes,the choice of high-performing electrodes,and new electro-active polymers for enhancing the properties of IPMCs.IPMC models are also reviewed,providing theoretical guidance for studying the performance and applications of IPMCs.Successful applications such as bio-inspired robots,opto-mechatronic systems,and medical engineering are discussed.
基金supported by the National Natural Science Foundation of China(201573136,21603128,U1510105)the Natural Science Foundation for Young Scientists of Shanxi Province(2016021034)the Scientific Research Start-up Funds of Shanxi University(RSC723)~~
文摘A rational integration of multiple reactive centers into a combined unit to facilitate their cooperative effects is a smart approach for accelerating the catalytic activity.Here,to achieve this goal,linear imidazolium-based ionic polymers were confined into the nanopores of mesoporous silica nanospheres anchored with homogeneously distributed zinc salts.Owing to the flexible character and the reinforced cooperative effects of the ionic liquid(nucleophile)and zinc species(Lewis acid)in the confined mesoporous structure,the resultant composite exhibited dramatically improved catalytic performance in the cycloaddition of CO2 with epoxides to form cyclic carbonates.This was in contrast to that observed for the individual catalytic components.Moreover,such a solid catalyst could be easily recovered and reused four times without a significant loss of activity.
基金Projects(51605220,U1637101)supported by the National Natural Science Foundation of ChinaProject(BK20160793)supported by the Jiangsu Provincial Natural Science Foundation,ChinaProject(NS2020029)supported by the Fundamental Research Funds for the Central Universities,China。
文摘In order to further improve the driving performance of ionic polymer metal composites(IPMCs),Nafion/graphene quantum dots(GQDs)hybrid membranes incorporating GQDs with various contents of 0,0.1 wt.%,0.5 wt.%,1.0 wt.%,2.0 wt.%and 4.0 wt.%were fabricated by solution casting,and then IPMCs were manufactured by electroless plating.The water contents and elastic moduli of the hybrid membranes were tested.The morphology characteristics of the hybrid membranes and the IPMCs were observed,and the current,AC impedance,blocking force and displacement of the IPMCs were measured.The results show that the elastic modulus of the hybrid membranes decreases,the water content increases,and the actuation performance of the IPMCs improves significantly after the addition of GQDs.IPMC with 1.0 wt.%GQDs exhibits the best driving property.Compared with the IPMC without GQDs,the working current,ion conductivity,blocking force,and tip displacement increase by 94.67%,311.11%,53.66%,and 66.07%,respectively.These results lay a solid foundation for the preparation of IPMCs with high performance,and further broaden their applications in biomedical devices and bionic robots.
基金support from National Natural Science Foundation of China(22022511)the Fundamental Research Funds for the Central Universities(226-2022-00022,2021FZZX001-04).
文摘Bioinspired materials with excellent properties have attracted intense interests of scientists,and the methodology for rationally design of these materials is crucially important.This review briefly introduces our recent achievements on inorganic ionic polymerization for bioinspired material preparation.The inorganic ionic polymerization realized the assembly of inorganic ions in a way similar to the polymerization in polymer chemistry,overcoming the limitation by classical nucleation pathway.It enabled the moldable construction of inorganic minerals and even the reconstruction of enamel tissue,which commonly only achieved by biomineralization.In the presence of organic molecules,the inorganic ionic polymerization could participate in the organic polymerization,resulting in hybrids with molecular-scaled organic-inorganic homogeneity.And furthermore,under the regulation of bio-inspired molecules,the condensed state of the assembled inorganic ions could show unusual behaviors:such as adding the flexibility to commonly fractal inorganic minerals,and flowability to solid mineral particles.It enabled the production of flexible mineral materials as plastic substitute,and the extrusion forming of moldable minerals under room temperature.The inorganic ionic polymerization demonstrated a promising way to synthesize inorganics in a more rational way,which may shed light on more advanced bio-inspired and biomimetic material.
基金financially supported by the National Natural Science Foundation of China (No. 21871232)the Zhejiang Provincial Natural Science Foundation of China (No. LR15B040001)
文摘Janus polymerization is featured as a combination of cationic and anionic growing ends in one living polymer chain. In the copolymerization of THF and CL catalyzed by lutetium triflates and initiated by propylene oxide, three stages are identified by kinetic study including(1) fast cationic polymerization with slow anionic one,(2) fast anionic polymerization with dormant cationic one, and(3)reactivation of cationic polymerization with coupling of anionic and cationic chain ends. In this work, density functional theory(DFT)calculation is employed to investigate the reaction details of ionic polymerization and dormancy. A “tripedal crow” configuration is proposed to illustrate the unique high-coordinated ligand exchange configuration in anionic polymerization in different stages. The trigger of dormancy is determined as chain structures rather than concentration of triflate anion according to both calculation and experimental results.
基金supported by the National Natural Science Foundation of China(22205172,22175138,and 22201228)the National Key Research and Development Program of China(2021YFB3200700)+7 种基金the Young Talent Fund of Association for Science and Technology in Shaanxi(20220604)the China National Postdoctoral Program for Innovative Talents(BX2021231)the Fundamental Research Funds for the Central Universities(xhj032021008-03)the China Postdoctoral Science Foundation(2022M712497 and 2022M712530)Shaanxi Province Technical Innovation Guidance Special Funds(2024ZC-YYDY-96)Shaanxi Province Technological Innovation Guidance Special(2022QFY08-01)the Taihu Lake lnnovation Fund for the School of Future Technology of Xi'an Jiaotong Universitythe funding support from the Natural Science Foundation of Shaanxi(2022JQ-129).
文摘Antibiotic contamination in water systems poses significant environmental concerns;finding efficient photocatalysts that utilize visible light is still a challenge in the field of antibiotic degradation.The selenoviologen-based D-A porous ionic polymer(SeV-PIP)was synthesized by selenoviologen(SeV^(2+))acceptor units with triazine donor units using the Sonogashira reaction.The SeV-PIP exhibits remarkable visible light absorption;effective charge separation and excellent radical cation stability;enabling both photogenerated electrons and holes to participate in dual-channel degradation and demonstrating great recyclability.The efficient degradation of tetracycline antibiotics under visible-light conditions achieves a degradation rate of up to 96%and a recovery rate of 97%;even in the presence of common wastewater contaminants;leading to the eventual mineralization of the contaminant molecules.A flowing sun-light-degradation tandem plant-growth device was designed and assembled;which verified that the degraded wastewater has plant-growth promoting abilities through bean seedling growth experiments and realized further application.This research contributes to sustainable wastewater treatment strategies;emphasizing the importance of advanced photocatalysis for environmental remediation.
基金supported by the Fundamental Research Funds for the Central Universities(2232022A-03 and 2232024Y-01)the National Natural Science Foundation of China(22102021,22375037,52073046,52373172,and 52103106)+2 种基金the National Key Research and Development Program of China(2022YFB3807100,2022YFB3807102,and 2022YFB3807103)the Program of Shanghai Academic Research Leader(21XD1420200)the Natural Science Foundation of Shanghai(23ZR1401100 and 21ZR1402700).
文摘Carbon molecular sieve membranes(CMSMs)are a class of porous membranes inherited with excellent thermal stability,high tolerance and superior mechanical strength.Owing to their nanoporous structures,CMSMs usually hold significant potential for gas separation applications.Specifically,hyper-crosslinked ionic polymer(HIP)membranes possess a highly crosslinked nitrogen-rich framework,high thermal stability together with exceptional mechanical strength,making them excellent precursors for the CMSMs fabrication.Upon pyrolysis of HIP membranes,the resulting CMSMs featured with nitrogen functional sites exhibit strong interactions with CO_(2),which significantly reduces the CO_(2)permeability while other gas molecules continue to flow through the nanoporous membrane.The resultant CMSMs exhibited excellent H_(2)/CO_(2)selectivity with values of 10.75 and 7.09,together with ultra-high H_(2)permeability of 3052 and 9181 barrer,respectively,surpassing the Robeson upper bound.The preparation route towards CMSMs with high nitrogen content from HIP can significantly enrich the rational design and synthesis strategies of high-performance gas separation CMSM materials.
基金financially supported by the National Key R&D Program of China(Grant No.2022YFE0207300)National Natural Science Foundation of China(Grant Nos.22179142 and 22075314)+1 种基金Jiangsu Funding Program for Excellent Postdoctoral Talent(Grant No.2024ZB051 and 2023ZB836)the technical support for Nano-X from Suzhou Institute of Nano-Tech and Nano-Bionics,Chinese Academy of Sciences(SINANO).
文摘Solid polymer electrolytes(SPEs)have attracted much attention for their safety,ease of packaging,costeffectiveness,excellent flexibility and stability.Poly-dioxolane(PDOL)is one of the most promising matrix materials of SPEs due to its remarkable compatibility with lithium metal anodes(LMAs)and suitability for in-situ polymerization.However,poor thermal stability,insufficient ionic conductivity and narrow electrochemical stability window(ESW)hinder its further application in lithium metal batteries(LMBs).To ameliorate these problems,we have successfully synthesized a polymerized-ionic-liquid(PIL)monomer named DIMTFSI by modifying DOL with imidazolium cation coupled with TFSI^(-)anion,which simultaneously inherits the lipophilicity of DOL,high ionic conductivity of imidazole,and excellent stability of PILs.Then the tridentate crosslinker trimethylolpropane tris[3-(2-methyl-1-aziridine)propionate](TTMAP)was introduced to regulate the excessive Li^(+)-O coordination and prepare a flame-retardant SPE(DT-SPE)with prominent thermal stability,wide ESW,high ionic conductivity and abundant Lit transference numbers(t_(Li+)).As a result,the LiFePO_(4)|DT-SPE|Li cell exhibits a high initial discharge specific capacity of 149.60 mAh g^(-1)at 0.2C and 30℃with a capacity retention rate of 98.68%after 500 cycles.This work provides new insights into the structural design of PIL-based electrolytes for long-cycling LMBs with high safety and stability.
基金supports from the National Natural Science Foundation of China(Nos.22022511 and 22275161)the National Key Research and Development Program of China(No.2020YFA0710400)the Fundamental Research Funds for the Central Universities(Nos.2021FZZX001-04 and 2022ZJJH02-01).
文摘Biomineralization process regulates the growth of inorganic minerals by complex molecules,proteins,and cells,endowing bio-materials with marvels structures and excellent properties.The intricate structures and compositions found in biominerals have inspired scientists to design and synthesize numerous artificial biomimetic materials.The methodology for controlling the formation of inorganics plays a pivotal role in achieving biomimetic structures and compositions.However,the current approach predominantly relies on the classical nucleation theory,which hinders the precise preparation of inorganic materials by replicating the biomineralization strategy.Recently,the development of“inorganic ionic polymerization”strategy has enabled us to regulate the arrangement of inorganic ions from solution to solid phase,which establishes an artificial way to produce inorganic materials analogous to the biomineralization process.Based on inorganic ionic polymerization,a series of achievements have been realized for the biomimetic preparation,including moldable construction of inorganic materials,hard tissue regeneration,and high-performance biomimetic materials.Moreover,the utilization of inorganic ionic polymerization has also facilitated the production of numerous advanced materials,including novel structures that exceed the current knowledge of materials science.The inorganic ionic polymerization system provides new artificial strategies and methodologies for the controllable synthesis of inorganics,which mimics the biomineralization process,paving the way for the future development of more high-performance materials.
基金supported by the Enhancement of Performance and Production Technology of Lithium-based Next-generation Rechargeable Battery(project number 20012371)from the Ministry of Trade,Industry and Energy(MOTIE)of Koreasupported by project number KS2322-20(A Study on the Convergence Materials for Off-Grid Energy Conversion/Storage Integrated Devices)of the Korea Research Institute of Chemical Technology(KRICT).
文摘Sulfide-based inorganic solid electrolytes are promising materials for high-performance safe solid-state batteries.The high ion conductivity,mechanical characteristics,and good processability of sulfide-based inorganic solid electrolytes are desirable properties for realizing high-performance safe solid-state batteries by replacing conventional liquid electrolytes.However,the low chemical and electrochemical stability of sulfide-based inorganic solid electrolytes hinder the commercialization of sulfide-based safe solid-state batteries.Particularly,the instability of sulfide-based inorganic solid electrolytes is intensified in the cathode,comprising various materials.In this study,carbonate-based ionic conductive polymers are introduced to the cathode to protect cathode materials and suppress the reactivity of sulfide electrolytes.Several instruments,including electrochemical spectroscopy,X-ray photoelectron spectroscopy,and scanning electron microscopy,confirm the chemical and electrochemical stability of the polymer electrolytes in contact with sulfide-based inorganic solid electrolytes.Sulfide-based solid-state cells show stable electrochemical performance over 100 cycles when the ionic conductive polymers were applied to the cathode.
文摘A single-Rh-site catalyst(Rh-TPISP)that was ionically-embedded on a P(V)quaternary phosphonium porous polymer was evaluated for heterogeneous ethanol carbonylation.The[Rh(CO)I_(3)]^(2-)unit was proposed to be the active center of Rh-TPISP for the carbonylation reaction based on detailed Rh L3-edge X-ray absorption near edge structure(XANES),X-ray photoelectron spectroscopy(XPS),and Rh extended X-ray absorption fine structure(EXAFS)analyses.As the highlight of this study,Rh-TPISP displayed distinctly higher activity for heterogeneous ethanol carbonylation than the reported catalytic systems in which[Rh(CO)_(2)I_(2)]^(-)is the traditional active center.A TOF of 350 h^(-1)was obtained for the reaction over[Rh(CO)I_(3)]^(2-),with>95%propionyl selectivity at 3.5 MPa and 468 K.No deactivation was detected during a near 1000 h running test.The more electron-rich Rh center was thought to be crucial for explaining the superior activity and selectivity of Rh-TPISP,and the formation of two ionic bonds between[Rh(CO)I_(3)]^(2-)and the cationic P(V)framework([P]^(+))of the polymer was suggested to play a key role in firmly immobilizing the active species to prevent Rh leaching.
基金This research was supported by the Joint Funds of the National Natural Science Foundation of China(U1637101)and NSFC(51605220)the Natural Science Foundation of Jiangsu Province(BK20160793)Open Funding from the Shanghai Key Laboratory of Spacecraft Mechanism,Open Project funding form Hubei Key Laboratory of Hydroelectric Machinery Design&Maintenance(2017KJX11).
文摘In this work,we printed a Nafion precursor membrane by fused deposition modeling(FDM)rapid prototyping technology and further fabricated IPMCs by electroless plating.The ion-exchange capacity of the Nafion membrane was tested,and the morphology of IPMCs was observed.The electro-mechanical properties of IPMCs under AC voltage inputs were studied,and grasping experiments were performed.The results show that the Nafion membrane after hydrolysis has a good ion-exchange ability and water-holding capacity.SEM observed that the thickness of the IPMC’s electrode layer was about 400 nm,and the platinum layer was tightly combined with the substrate membrane.When using a square wave input of 3.5 V and 0.1 Hz,the maximum current of IPMCs reached 0.30 A,and the displacement and blocking force were 7.57 mm and 10.5 mN,respectively.The new fabrication process ensures the good driving performance of the printed IPMC.And two pieces of IPMCs can capture the irregular objects successfully,indicating the feasibility of printing IPMCs by FDM technology.This paper provides a new and simple method for the fabrication of three-dimensional IPMCs,which can be further applied in flexible grippers and soft robotics.
基金financially supported by the National Natural Science Foundation of China(Nos.51103130 and 21004051)Qianjiang Talents Project of Technology Office in Zhejiang Province(No.2013R10070)
文摘Polymerizable ionic liquid copolymer P(MMA-co-BVIm-Br) was synthesized by radical polymerization technique, and characterized by Fourier transform infrared spectrometry (FTIR), 1H Nuclear magnetic resonance (1H-NMR) and gel permeation chromatography (GPC). The resulting copolymer was used to prepare poly(vinylidene fluoride) (PVDF) blend membranes via a phase inversion method. The effects of the copolymer on the polymorphism, surface wettability and zeta potential (0 of the blend membranes were investigated by ATR-FTIR, contact angle instrument and zeta potential analyzer. Scanning electron microscopy (SEM and SEM-EDS) was also applied to investigate the morphology and the surface element changes of the fabricated membranes. The results indicated that P(MMA-co-BVIm-Br) copolymer existed on the surface of the membrane which made the blend membrane have a positive surface during the experimental pH range. The copolymer was also in favor of the formation of βcrystal phase in PVDF membranes. The contact angle experiment indicated that P(MMA-co-BVIm-Br) copolymer could switch the wettability of the blend membranes from hydrophilic to hydrophobic by exchanging Br- anion with PF6-. Compared with pure PVDF membranes, the water flux and water recovery flux of the blend membranes were enhanced obviously. The results from the flux recovery ratio (FR) and total fouling ratio (Rt) all suggested that the blend membranes had good anti-fouling properties.
基金financially supported by State Key Laboratory of Organic-Inorganic Composites(oic-201601012)the International Scientific Partnership Program ISPP at King Saud University for funding this research work through ISPP#0080
文摘We synthesized one quaternary ammonium polymeric ionic liquids(PILs)P[VBTHEA]Cl and three imidazolium PILs of P[VEIm]Br, P[VEIm]BF, P[VEIm]PFby free-radical polymerization in solution. These PILs were characterized by FT-IR,H-NMR,C-NMR, TGA, XRD and SEM. Their COadsorption capacities were measured under different pressures and temperatures by constant-volume technique. It was observed that quaternary ammonium PILs of P[VBTHEA]Cl have higher adsorption capacity for COthan those imidazolium PILs, following P[VBTHEA]Cl > P[VEIm]PF> P[VEIm]BF> P[VEIm]Br, which may be ascribed to higher positive charge density on ammonium cation than that on imidazolium cation and thus stronger interaction with CO, consistent with the results from dual-mode adsorption model that ammonium PILs have much higher CObulk absorption than imidazolium PILs. COadsorption capacity of P[VBTHEA]Cl is 9.02 mg/g under 295 K and 1 bar, which is comparable to that of some other PILs, and is much higher than that of the corresponding ILs monomer. These PILs have good adsorption selectivity for COover Nand regeneration efficiency.
基金supported by the National Basic Research Program(No.2013CB834506)the National Science Fund for Distinguished Young Scholars(No.21225420)+1 种基金the National Natural Science Foundation of China(Nos.91127047,21474062 and 21404070)Program of Shanghai Subject Chief Scientist(No.15XD1502400)
文摘This work reports a SO2 derivative-detecting and colorful hyperbranched polymeric ionic liquid (HBPIL) vesicle through aqueous self-assembly. By a simple anion-exchange, we achieved the combination of functional small-molecule probe of acid fuchsin with HBPILs. The obtained HBPIL vesicle displayed ultraviolet absorption at 544 nm, and was used as a novel SO2 derivative sensor with high sensitivity and visualization. Due to the functional ion pairs enriching on the surface, the SO32 detection limit of the HBPILs vesicles was as low as 0.138 gmol/L, which was about 1.5 orders of magnitude lower than that of acid fuchsin.
基金the financial support from the National Natural Science Foundation of China(Nos.21155001 and 21375117)a project funded by the Priority Academic ProgramDevelopment of Jiangsu Higher Education Institutionsthe Foundation of the Excellence Science and Technology Invention Team in Yangzhou University
文摘Ionic liquids functionalized β-cyclodextrin polymer, a mono-6-deoxy-6-(1,2-dimethylimida- zolium)-β-cyclodextrin iodide polymer (ILs-β-CDCP), was synthesized as a solid-phase adsorbent coupled with high-performance liquid chromatography for separating or analyzing magnolol in drug samples. The results showed that magnolol was adsorbed rapidly on ILs-D-CDCP and eluted with methanol. Under the optimum conditions, preconcentration factor of the proposed method was 12. The linear range, limit of detection (LOD), correlation coefficient (R) and relative standard deviation (RSD) were found to be 0.02-8.00 μg/mL, 1.9 ng/mL, 0.9992 and 2.76% (n=3, c=2.00 pg/mL), respectively. The interaction between 1Ls-])-CDCP and magnolol was studied through the inclusion constant, FTIR and TGA analysis. This proposed method has been successfully applied to the determination of magnolol in real samples.
基金the financial support from the National Natural Science Foundation of China(Nos.22205191 and 52002346)the Science and Technology Innovation Program of Hunan Province(No.2021RC3109)+1 种基金the Natural Science Foundation of Hunan Province,China(No.2022JJ40446)Guangxi Key Laboratory of Low Carbon Energy Material(No.2020GXKLLCEM01)。
文摘The concentration difference in the near-surface region of lithium metal is the main cause of lithium dendrite growth.Resolving this issue will be key to achieving high-performance lithium metal batteries(LMBs).Herein,we construct a lithium nitrate(LiNO_(3))-implanted electroactiveβphase polyvinylidene fluoride-co-hexafluoropropylene(PVDF-HFP)crystalline polymorph layer(PHL).The electronegatively charged polymer chains attain lithium ions on the surface to form lithium-ion charged channels.These channels act as reservoirs to sustainably release Li ions to recompense the ionic flux of electrolytes,decreasing the growth of lithium dendrites.The stretched molecular channels can also accelerate the transport of Li ions.The combined effects enable a high Coulombic efficiency of 97.0%for 250 cycles in lithium(Li)||copper(Cu)cell and a stable symmetric plating/stripping behavior over 2000 h at 3 mA cm^(-2)with ultrahigh Li utilization of 50%.Furthermore,the full cell coupled with PHL-Cu@Li anode and Li Fe PO_(4) cathode exhibits long-term cycle stability with high-capacity retention of 95.9%after 900 cycles.Impressively,the full cell paired with LiNi_(0.87)Co_(0.1)Mn_(0.03)O_(2)maintains a discharge capacity of 170.0 mAh g^(-1)with a capacity retention of 84.3%after 100 cycles even under harsh condition of ultralow N/P ratio of 0.83.This facile strategy will widen the potential application of LiNO_(3)in ester-based electrolyte for practical high-voltage LMBs.