期刊文献+
共找到277篇文章
< 1 2 14 >
每页显示 20 50 100
Structure factors dictate the ionic conductivity and chemical stability for cubic garnet-based solid-state electrolyte 被引量:1
1
作者 Jingyu Shi Xiaofeng Wu +7 位作者 Yutong Chen Yi Zhang Xiangyan Hou Ruike Lv Junwei Liu Mengpei Jiang Keke Huang Shouhua Feng 《Chinese Chemical Letters》 2025年第5期198-210,共13页
Solid-state electrolytes(SSEs),as the core component within the next generation of key energy storage technologies-solid-state lithium batteries(SSLBs)-are significantly leading the development of future energy storag... Solid-state electrolytes(SSEs),as the core component within the next generation of key energy storage technologies-solid-state lithium batteries(SSLBs)-are significantly leading the development of future energy storage systems.Among the numerous types of SSEs,inorganic oxide garnet-structured superionic conductors Li7La3Zr2O12(LLZO)crystallized with the cubic Iaˉ3d space group have received considerable attention owing to their highly advantageous intrinsic properties encompassing reasonable lithium-ion conductivity,wide electrochemical voltage window,high shear modulus,and excellent chemical stability with electrodes.However,no SSEs possess all the properties necessary for SSLBs,thus both the ionic conductivity at room temperature and stability in ambient air regarding cubic garnet-based electrolytes are still subject to further improvement.Hence,this review comprehensively covers the nine key structural factors affecting the ion conductivity of garnet-based electrolytes comprising Li concentration,Li vacancy concentration,Li carrier concentration and mobility,Li occupancy at available sites,lattice constant,triangle bottleneck size,oxygen vacancy defects,and Li-O bonding interactions.Furthermore,the general illustration of structures and fundamental features being crucial to chemical stability is examined,including Li concentration,Li-site occupation behavior,and Li-O bonding interactions.Insights into the composition-structure-property relations among cubic garnet-based oxide ionic conductors from the perspective of their crystal structures,revealing the potential compatibility conflicts between ionic transportation and chemical stability resulting from Li-O bonding interactions.We believe that this review will lay the foundation for future reasonable structural design of oxide-based or even other types of superionic conductors,thus assisting in promoting the rapid development of alternative green and sustainable technologies. 展开更多
关键词 Garnet-structured solid-state electrolyte Structure factors ionic conductivity Chemical stability Li-ion battery
原文传递
Novel Sn-Doped NASICON-Type Na_(3.2)Zr_(2)Si_(2.2)P_(0.8)O_(12) Solid Electrolyte With Improved Ionic Conductivity for a Solid-State Sodium Battery
2
作者 Muhammad Akbar Iqra Moeez +6 位作者 Young Hwan Kim Mingony Kim Jiwon Jeong Eunbyoul Lee Ali Hussain Umar Bhatti Jae-Ho Park Kyung Yoon Chung 《Carbon Energy》 2025年第5期45-54,共10页
Solid electrolytes face challenges in solid-state sodium batteries(SSSBs)because of limited ionic conductivity,increased interfacial resistance,and sodium dendrite issues.In this study,we adopted a unique Sn4+doping s... Solid electrolytes face challenges in solid-state sodium batteries(SSSBs)because of limited ionic conductivity,increased interfacial resistance,and sodium dendrite issues.In this study,we adopted a unique Sn4+doping strategy for Na_(3.2)Zr_(2)Si_(2.2)P_(0.8)O_(12)(NZSP)that caused a partial structural transition from the monoclinic(C2/c)phase to the rhombohedral(R-3c)phase in Na_(3.2)Zr_(1.9)Sn_(0.1)Si_(2.2)P_(0.8)O_(12)(NZSnSP1).X-ray diffraction(XRD)patterns and high-resolution transmission electron microscopy analyses were used to confirm this transition,where rhombohedral NZSnSP1 showed an increase in the Na2-O bond length compared with monoclinic NZSnSP1,increasing its triangular bottleneck areas and noticeably enhancing Na+ionic conductivity,a higher Na transference number,and lower electronic conductivity.NZSnSP1 also showed exceptionally high compatibility with Na metal with an increased critical current density,as evidenced by symmetric cell tests.The SSSB,fabricated using Na_(0.9)Zn_(0.22)Fe_(0.3)Mn_(0.48)O_(2)(NZFMO),Na metal,and NZSnSP1 as the cathode,anode,and the solid electrolyte and separator,respectively,maintains 65.86%of retention in the reversible capacity over 300 cycles within a voltage range of 2.0-4.0 V at 25℃ at 0.1 C.The in-situ X-ray diffraction and X-ray absorption analyses of the P and Zr K-edges confirmed that NZSnSP1 remained highly stable before and after electrochemical cycling.This crystal structure modification strategy enables the synthesis of ideal solid electrolytes for practical SSSBs. 展开更多
关键词 ionic conductivity NASICON-type solid electrolyte phase transition Sn doping solid-state battery
在线阅读 下载PDF
Organic Radical-Boosted Ionic Conductivity in Redox Polymer Electrolyte for Advanced Fiber-Shaped Energy Storage Devices
3
作者 Jeong-Gil Kim Jaehyoung Ko +8 位作者 Hyung-Kyu Lim Yerin Jo Hayoung Yu Min Woo Kim Min Ji Kim Hyeon Su Jeong Jinwoo Lee Yongho Joo Nam Dong Kim 《Nano-Micro Letters》 2025年第8期202-218,共17页
Fiber-shaped energy storage devices(FSESDs)with exceptional flexibility for wearable power sources should be applied with solid electrolytes over liquid electrolytes due to short circuits and leakage issue during defo... Fiber-shaped energy storage devices(FSESDs)with exceptional flexibility for wearable power sources should be applied with solid electrolytes over liquid electrolytes due to short circuits and leakage issue during deformation.Among the solid options,polymer electrolytes are particularly preferred due to their robustness and flexibility,although their low ionic conductivity remains a significant challenge.Here,we present a redox polymer electrolyte(HT_RPE)with 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl(HT)as a multi-functional additive.HT acts as a plasticizer that transforms the glassy state into the rubbery state for improved chain mobility and provides distinctive ion conduction pathway by the self-exchange reaction between radical and oxidized species.These synergetic effects lead to high ionic conductivity(73.5 mS cm−1)based on a lower activation energy of 0.13 eV than other redox additives.Moreover,HT_RPE with a pseudocapacitive characteristic by HT enables an outstanding electrochemical performance of the symmetric FSESDs using carbon-based fiber electrodes(energy density of 25.4 W h kg^(−1) at a power density of 25,000 W kg^(−1))without typical active materials,along with excellent stability(capacitance retention of 91.2%after 8,000 bending cycles).This work highlights a versatile HT_RPE that utilizes the unique functionality of HT for both the high ionic conductivity and improved energy storage capability,providing a promising pathway for next-generation flexible energy storage devices. 展开更多
关键词 Redox polymer electrolyte Hydroxy-TEMPO ionic conductivity Self-exchange reaction Fiber-shaped energy storage devices
在线阅读 下载PDF
Improvement of ionic conductivity of solid polymer electrolyte based on Cu-Al bimetallic metal-organic framework fabricated through molecular grafting 被引量:1
4
作者 Liu-bin SONG Tian-yuan LONG +5 位作者 Min-zhi XIAO Min LIU Ting-ting ZHAO Yin-jie KUANG Lin JIANG Zhong-liang XIAO 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第9期2943-2958,共16页
A composite solid electrolyte comprising a Cu-Al bimetallic metal-organic framework(CAB),lithium salt(LiTFSI)and polyethylene oxide(PEO)was fabricated through molecular grafting to enhance the ionic conductivity of th... A composite solid electrolyte comprising a Cu-Al bimetallic metal-organic framework(CAB),lithium salt(LiTFSI)and polyethylene oxide(PEO)was fabricated through molecular grafting to enhance the ionic conductivity of the PEO-based electrolytes.Experimental and molecular dynamics simulation results indicated that the electrolyte with 10 wt.%CAB(PL-CAB-10%)exhibits high ionic conductivity(8.42×10~(-4)S/cm at 60℃),high Li+transference number(0.46),wide electrochemical window(4.91 V),good thermal stability,and outstanding mechanical properties.Furthermore,PL-CAB-10%exhibits excellent cycle stability in both Li-Li symmetric battery and Li/PL-CAB-10%/LiFePO4 asymmetric battery setups.These enhanced performances are primarily attributable to the introduction of the versatile CAB.The abundant metal sites in CAB can react with TFSI~-and PEO through Lewis acid-base interactions,promoting LiTFSI dissociation and improving ionic conductivity.Additionally,regular pores in CAB provide uniformly distributed sites for cation plating during cycling. 展开更多
关键词 polyethylene oxide Cu−Al bimetallic metal-organic framework solid lithium metal battery molecular grafting ionic conductivity
在线阅读 下载PDF
Bacterial Cellulose/Zwitterionic Dual-network Porous Gel Polymer Electrolytes with High Ionic Conductivity
5
作者 侯朝霞 WANG Haoran QU Chenying 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第3期596-605,共10页
Bacterial cellulose(BC)was innovatively combined with zwitterionic copolymer acrylamide and sulfobetaine methacrylic acid ester[P(AM-co-SBMA)]to build a dual-network porous structure gel polymer electrolytes(GPEs)with... Bacterial cellulose(BC)was innovatively combined with zwitterionic copolymer acrylamide and sulfobetaine methacrylic acid ester[P(AM-co-SBMA)]to build a dual-network porous structure gel polymer electrolytes(GPEs)with high ionic conductivity.The dual network structure BC/P(AM-co-SBMA)gels were formed by a simple one-step polymerization method.The results show that ionic conductivity of BC/P(AM-co-SBMA)GPEs at the room temperature are 3.2×10^(-2) S/cm@1 M H_(2)SO_(4),4.5×10^(-2) S/cm@4 M KOH,and 3.6×10^(-2) S/cm@1 M NaCl,respectively.Using active carbon(AC)as the electrodes,BC/P(AM-co-SBMA)GPEs as both separator and electrolyte matrix,and 4 M KOH as the electrolyte,a symmetric solid supercapacitors(SSC)(AC-GPE-KOH)was assembled and testified.The specific capacitance of AC electrode is 173 F/g and remains 95.0%of the initial value after 5000 cycles and 86.2%after 10,000 cycles. 展开更多
关键词 bacterial cellulose ZWITTERION gel polymer electrolytes ionic conductivity dual-network structure
原文传递
Atomistic mechanism of high ionic conductivity in lithium ytterbium-based halide solid electrolytes:A first-principles study
6
作者 Limin Wang Wei Xiao +3 位作者 Lu Sun Rong Yang Jinqiu Yu Ligen Wang 《Journal of Rare Earths》 SCIE EI CAS CSCD 2024年第1期155-162,I0006,共9页
As the next generation of commercial automotive power batteries begins replacing liquid lithium batteries,many look towards all-solid-state batteries to pioneer the future.All-so lid-state batteries have attracted the... As the next generation of commercial automotive power batteries begins replacing liquid lithium batteries,many look towards all-solid-state batteries to pioneer the future.All-so lid-state batteries have attracted the attention of countless researchers around the world because of their high safety and high energy density.In recent times,halide solid-state electrolytes have become a research hotspot within solid-state electrolytes because of their potentially superior properties.In this paper,in the framework of DFT,we investigated the atomic mechanisms of improving the ionic conductivity and stability of Li_(3)YbCl_(6).Our calculations show that both trigonal and orthorhombic Li_(3)YbCl_(6) exhibit wide electrochemical windows and metastable properties(100 meV/atom>Ehull>0 meV/atom).However,the orthorhombic Li_(3)YbCl_(6) can be stabilized at high temperatures by taking the vibrational entropy into account,which is supported by the experimental results.Moreover,it is expected that because of the Yb/Li synergistic interactions that,due to their strong mutual coulomb repulsion,influence the Li^(+)transport behavior,the orthorhombic Li_(3)YbCl_(6) might have superior ionic conductivities with appropriate Li+migration paths determined by the Yb^(3+) distribution.Also,higher ionic conductivities can be obtained by regulating the random distribution of Li^(+) ions.Further Li^(+)-deficiency can also largely increase the ionic conductivity by invoking vacancies.This study helps gain a deeper understanding of the laws that govern ionic conductivities and stabilities and provides a certain theoretical reference for the experimental development and design of halide solid-state electrolytes. 展开更多
关键词 Halide solid-state electrolytes Phase stability ionic conductivity First-principles calculations Rare earths
原文传递
Enhancing ionic conductivity of garnet-type Nb-doped Li_(7)La_(3)Zr_(2)O_(12)by cerium doping
7
作者 Daming Liu Yuan Hou +2 位作者 Chaoke Bulin Ruichao Zhao Bangwen Zhang 《Journal of Rare Earths》 SCIE EI CAS CSCD 2024年第9期1740-1746,I0004,共8页
We investigated the effect of additional doping with Ce on the ionic conductivity of the Nb-doped Li_(7)La_(3)Zr_(2)O_(12)(LLZO)garnet ceramics using a combination of experimental and modeling approaches.Our results i... We investigated the effect of additional doping with Ce on the ionic conductivity of the Nb-doped Li_(7)La_(3)Zr_(2)O_(12)(LLZO)garnet ceramics using a combination of experimental and modeling approaches.Our results indicate that Ce doping can alter lattice parameters of the LLZNO,leading to the enhanced lithium ionic conductivity.The Ce,Nb co-doped LLZO(LLZNCO)structure with composition Li_(6.5)La_(3)Zr_(1.5-x)Nb_(0.5)Ce_(x)O_(12)(x=0.125)exhibits a lower activation energy(E_(a)=0.39 eV)than Li_(6.5)La_(3)Zr_(1.5)Nb_(0.5)O_(12)(LLZNO)(E_(a)=0.41 eV).Furthermore,Ce doping leads to an increase in Li~+conductivity from 6.4×10^(-4)to 7×10^(-4)S/cm at room temperature.In addition,we discuss the diffusivity and conductivity of our samples using ab initio molecular dynamics simulations and propose possible mechanisms to explain the enhanced Li-ion conductivity caused by co-doping with Ce and Nb.Our results demonstrate that the LLZNCO ceramics are promising candidates for potential solid-state electrolytes for Li-ion batteries. 展开更多
关键词 Rare earths Solid state electrolyte ionic conductivity DOPING
原文传递
Oxygen ionic conductivity of a composite electrolyte SDC-LSGM prepared via glycine-nitrate process
8
作者 邬理伟 郑颖平 +3 位作者 王绍荣 王振荣 景尧 孙岳明 《Journal of Southeast University(English Edition)》 EI CAS 2010年第1期87-90,共4页
Ce0.8Sm0.2O1.9-δ-La0.9Sr0.1Ga0.8Mg0.2O3-δ(SDC-LSGM)is prepared by the glycine-nitrate process(GNP).SDC-LSGM composite electrolyte samples with different weight ratios are prepared by the co-combustion method so ... Ce0.8Sm0.2O1.9-δ-La0.9Sr0.1Ga0.8Mg0.2O3-δ(SDC-LSGM)is prepared by the glycine-nitrate process(GNP).SDC-LSGM composite electrolyte samples with different weight ratios are prepared by the co-combustion method so as to obtain homogeneous nano-sized precursor powders. The X-ray diffraction (XRD) and the scan electron microscope (SEM) are used to investigate the phases and microstructures. The measurements and analyses of oxygen ionic conductivity of SDC-LSGM are carried out through the four-terminal direct current (DC) method and the electrochemical impendence spectroscopy, respectively. The optimum weight ratio of SDC-LSGM is 8∶2, of which the ionic conductivity is 0.113 S/cm at 800℃ and the conductivity activation energy is 0.620 eV. The impendence spectra shows that the grain boundary resistance becomes the main barrier for the ionic conductivity of electrolyte at lower temperatures. The appropriate introduction of LSGM to the electrolyte SDC can not only decrease the electronic conductivity but also improve the conditions of the grain and grain boundary, which is advantageous to cause an increase in oxygen ionic conductivity. 展开更多
关键词 Ce0.8Sm0.2O1.9-δ La0.9Sr0.1Ga0.8Mg0.2O3-δ composite electrolyte oxygen ionic conductivity
在线阅读 下载PDF
Empirical decay relationship between ionic conductivity and porosity of garnet type inorganic solid-state electrolytes 被引量:6
9
作者 Zhi-hao GUO Xin-hai LI +5 位作者 Zhi-xing WANG Hua-jun GUO Wen-jie PENG Qi-yang HU Guo-chun YAN Jie-xi WANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2022年第10期3362-3373,共12页
Ionic conductivity is one of the crucial parameters for inorganic solid-state electrolytes.To explore the relationship between porosity and ionic conductivity,a series of Li_(6.4)Ga_(0.2)La_(3)Zr_(2)O_(12)garnet type ... Ionic conductivity is one of the crucial parameters for inorganic solid-state electrolytes.To explore the relationship between porosity and ionic conductivity,a series of Li_(6.4)Ga_(0.2)La_(3)Zr_(2)O_(12)garnet type solid-state electrolytes with different porosities were prepared via solid-state reaction.Based on the quantified data,an empirical decay relationship was summarized and discussed by means of mathematical model and dimensional analysis method.It suggests that open porosity causes ionic conductivity to decrease exponentially.The pre-exponential factor obeys the Arrhenius Law quite well with the activation energy of 0.23 eV,and the decay constant is averaged to be 2.62%.While the closed porosity causes ionic conductivity to decrease linearly.The slope and intercept of this linear pattern also obey the Arrhenius Law and the activation energies are 0.24 and 0.27 eV,respectively.Moreover,the total porosity is linearly dependent on the open porosity,and different sintering conditions will lead to different linear patterns with different slopes and intercepts. 展开更多
关键词 garnet type solid-state electrolyte ionic conductivity POROSITY empirical decay relationship
在线阅读 下载PDF
Increasing ionic conductivity in Li_(0.33)La_(0.56)TiO_(3)thin-films via optimization of processing atmosphere and temperature 被引量:5
10
作者 Shi-Pai Song Cheng Yang +6 位作者 Chun-Zhi Jiang Yong-Min Wu Rui Guo He Sun Jing-Lei Yang Yong Xiang Xiao-Kun Zhang 《Rare Metals》 SCIE EI CAS CSCD 2022年第1期179-188,共10页
As a promising solid electrolyte for thin-film lithium batteries,the amorphous Li_(0.33)La_(0.56)TiO_(3)(LLTO)thin film has gained great interest.However,enhancing ionic conductivity remains challenging in the field.H... As a promising solid electrolyte for thin-film lithium batteries,the amorphous Li_(0.33)La_(0.56)TiO_(3)(LLTO)thin film has gained great interest.However,enhancing ionic conductivity remains challenging in the field.Here,a systematical study was performed to improve the ionic conductivity of sputter-deposited LLTO thin films via the optimization of processing atmosphere and temperature.By combining the optimized oxygen partial pressure(30%),annealing temperature(300℃),and annealing atmosphere(air),an amorphous LLTO thin film with an ionic conductivity of 5.32910^(-5)·S·cm^(-1) at room temperature and activation energy of 0.26 eV was achieved.The results showed that,first,the oxygen partial pressure should be high enough to compensate for the oxygen loss,but low enough to avoid the abusive oxygen scattering effect on lithium precursors that results in a lithium-poor composition.The oxygen partial pressure needs to achieve a balance between lithium loss and oxygen defects to improve the ionic conductivity.Second,a proper annealing temperature reduces the oxygen defects of LLTO thin films while maintaining its amorphous state,which improves the ionic conductivity.Third,the highest ionic conductivity for the LLTO thin films that were annealed in air(a static space without a gas stream)occurs because of the decreased lithium loss and oxygen defects during annealing.These findings show that the lithium-ion concentration and oxygen defects affect the ionic conductivity for amorphous LLTO thin films,which provides insight into the optimization of LLTO thin-film solid electrolytes,and generates new opportunities for their application in thinfilm lithium batteries. 展开更多
关键词 Li_(0.33)La_(0.56)TiO_(3) Thin film ionic conductivity Lithium-ion concentration Oxygen defects
原文传递
Room-temperature ionic conductivity of Ba,Y,Al co-doped Li_(7)La_(3)Zr_(2)O_(12)solid electrolyte after sintering 被引量:5
11
作者 Xiao-Zhen Liu Lei Ding +3 位作者 Yu-Ze Liu Li-Ping Xiong Jie Chen Xiao-Long Luo 《Rare Metals》 SCIE EI CAS CSCD 2021年第8期2301-2306,共6页
The Ba,Y and A1 co-doped Li_(7)La_(3)Zr_(2)O_(12)(LLZO)was prepared by the solid-state reaction method.Effect of sintering on the crystallographic structure,morphology,total conductivity,relative density and contracti... The Ba,Y and A1 co-doped Li_(7)La_(3)Zr_(2)O_(12)(LLZO)was prepared by the solid-state reaction method.Effect of sintering on the crystallographic structure,morphology,total conductivity,relative density and contractibility rate of the prepared solid electrolyte was studied,respectively.The sintered samples were characterized by X-ray diffractometer(XRD),scanning electron microscopy(SEM),electrochemical impedance spectra(EIS)and inductively coupled plasma atomic emission spectrometry(ICP-AES)techniques,respectively.The cubic garnet phase Ba,Y and Al co-doped LLZO is obtained,and the room-temperature total conductivity of the Ba,Y and Al co-doped LLZO solid electrolyte is improved significantly by eliminating the grain boundary resistances and improving the densifications with controlling sintering temperature(T)and time(t),respectively.Sintering at 1160-1190℃for 12 h and at 1190℃for6-15 h,respectively,the Ba,Y and Al co-doped LLZO solid electrolytes are cubic garnet phase.Sintering at1180-1190℃for 12 h and at 1190℃for 12-18 h,respectively,SEM images of the cross section of the Ba,Y and Al co-doped LLZO solid electrolytes exhibit the distinctively flattened morphology without any noticeable grain boundaries.The total conductivity,relative density and contractibility rate of Li_(6.52)La_(2.98)-Ba_(0.02)Zr_(1.9)Y_(0.1)Al_(0.2)O_(12)solid electrolyte are 2.96×10^(-4) S·cm^(-1),94.19%and 18.61%,respectively. 展开更多
关键词 Solid electrolyte ionic conductivity SINTERING Li_(7)La_(3)Zr_(2)O_(12) Garnet
原文传递
Ionic Conductivity in Gelatin-Based Hybrid Solid Electrolytes:The Non-trivial Role of Nanoclay 被引量:3
12
作者 Ali Ghadami Nader Taheri Qazvini Nasser Nikfarjam 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2014年第11期1096-1102,共7页
In this study, the ionic conductivity behavior in hybrid gelatin-based transparent electrolytes including various types of nanoclays with different size, shape and surface properties was characterized. The effects of ... In this study, the ionic conductivity behavior in hybrid gelatin-based transparent electrolytes including various types of nanoclays with different size, shape and surface properties was characterized. The effects of nanoclay type and nanoclay concentration as well as different experimental conditions, e.g., pH, temperature and crosslinking were also investigated. In general, the impedance spectroscopy results suggested a non- trivial role for nanoclay. Regardless of the nanoclay type, the ionic conductivity slightly increased first and then decreased by increasing the nanoclay concentration. Furthermore, among sodium montmorillonite (Na+MMT), lithium montmorillonite (Li+MMT), laponite and hydrotalcite, the hybrid electrolytes prepared by Li+MMT showed higher ionic conductivity. The results also showed that the chemical crosslinking along with sample preparation at optimum pH, where the gelatin chains might be efficiently adsorbed on exfoliated, negatively charged clay nanosheets, plays an important role. In comparison with the ionic conductivity of the neat sample at room temperature (~10-7 S cm-1), a ten-fold increase was observed for the crosslinked sample containing 2 wt% of Li^+MMT prepared at optimum pH 3.5. The conductivity behavior as a function of temperature revealed the obedience with the VogeI-Fulcher-Tammann (VFT) model for all samples, suggesting the important role of segmental motions in the ionic conductivity. Finally, a qualitative explanation was presented for the mechanism of the ionic conduction in gelatin-nanoclay hybrid electrolytes. 展开更多
关键词 GELATIN Solid-state electrolytes ionic conductivity Montmorillonitc LAPONITE Impedance spectroscopy
原文传递
Rotational motion of polyanion versus volume effect associated with ionic conductivity of several solid electrolytes 被引量:3
13
作者 Qian Zhao Li Pan +2 位作者 Yuan-Ji Li Li-Quan Chen Si-Qi Shi 《Rare Metals》 SCIE EI CAS CSCD 2018年第6期497-503,共7页
Volume effect has been extensively investigated in several families of solid electrolytes, i.e., expanding the skeleton lattice by bigger-size substitution favors the ionic conduction. However, this effect is not appl... Volume effect has been extensively investigated in several families of solid electrolytes, i.e., expanding the skeleton lattice by bigger-size substitution favors the ionic conduction. However, this effect is not applicable in α-Li2SO4 and α-Na3PO4 based inorganic ionic plastic crystal electrolytes, a unique family of solid electrolytes. Here, it is proposed that the underlying rotational motion effect of polyanion, which is actually inhibited by the substitution of bigger-size polyanion in single-phase solid solution region and causes the unexpected lowering of the ionic conductivity instead, should need the more consideration. Furthermore, through utilizing the rotational motion effect of polyanion, it is given that a new explanation of the ionic conductivities of Li10MP2S12 (M = Si, Ge, Se) electrolytes deviating from the volume effect. These results inspire new vision of rationalization of the high-performance solid electrolytes by tuning the rotational motion effect of polyanion. 展开更多
关键词 Volume effect Rotational motion ofpolyanion ionic conductivity Inorganic plastic crystalelectrolyte
原文传递
Polymer dispersed ionic liquid electrolytes with high ionic conductivity for ultrastable solid-state lithium batteries 被引量:3
14
作者 Shengyu Qin Yaping Cao +7 位作者 Jianying Zhang Yunxiao Ren Chang Sun Shuoning Zhang Lanying Zhang Wei Hu Meina Yu Huai Yang 《Carbon Energy》 SCIE CSCD 2023年第5期115-126,共12页
Solid polymer electrolytes(SPEs)have emerged as one of the most promising candidates for building solid-state lithium batteries due to their excellent flexibility,scalability,and interfacial compatibility with electro... Solid polymer electrolytes(SPEs)have emerged as one of the most promising candidates for building solid-state lithium batteries due to their excellent flexibility,scalability,and interfacial compatibility with electrodes.However,the low ionic conductivity and poor cyclic stability of SPEs do not meet the requirements for practical applications of lithium batteries.Here,a novel polymer dispersed ionic liquid-based solid polymer electrolyte(PDIL-SPE)is fabricated using the in situ polymerization-induced phase separation(PIPS)method.The as-prepared PDIL-SPE possesses both outstanding ionic conductivity(0.74 mS cm^(-1) at 25℃)and a wide electrochemical window(up to 4.86 V),and the formed unique three-dimensional(3D)co-continuous structure of polymer matrix and ionic liquid in PDIL-SPE can promote the transport of lithium ions.Also,the 3D co-continuous structure of PDIL-SPE effectively accommodates the severe volume expansion for prolonged lithium plating and stripping processes over 1000 h at 0.5 mA cm^(-2) under 25℃.Moreover,the LiFePO_(4)//Li coin cell can work stably over 150 cycles at a 1 C rate under room temperature with a capacity retention of 90.6%from 111.1 to 100.7 mAh g^(-1).The PDIL-SPE composite is a promising material system for enabling the ultrastable operation of solid-state lithium-metal batteries. 展开更多
关键词 high ionic conductivity lithium batteries solid polymer electrolytes solid-state batteries
在线阅读 下载PDF
A collagen-based electrolyte-locked separator enables capacitor to have high safety and ionic conductivity 被引量:2
15
作者 Heng Xu Yaping Wang +1 位作者 Xuepin Liao Bi Shi 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第8期324-332,I0011,共10页
The conventional liquid electrolytes(LEs) have a high level of ionic conductivity;however, they often suffer from the poor processability and safety risks of potential leakage. Although solid-state electrolytes(SSEs) ... The conventional liquid electrolytes(LEs) have a high level of ionic conductivity;however, they often suffer from the poor processability and safety risks of potential leakage. Although solid-state electrolytes(SSEs) can solve these inherent problems of LEs, the ionic conductivity of most SSEs is several magnitudes lower than these of LEs. Herein, we report a novel strategy by building liquid ion-transport channels in a solid framework and prepared an electrolyte-locked separator(ELS) using a collagen fiber membrane(CFm). The liquid electrolyte was primarily infiltrated in the smaller voids of CFm, and its ionic conductivity could attain to 9.0×10-3 S cm-1 when the electrolyte absorption(EA) reached up to 112.0%. After centrifuging treatment, the electrolyte retentions(ER) and ionic conductivities of ELS were 108.93% and 8.37×10-3 S cm-1, respectively, which were much higher than those of commercial cellulose separator(CS), exerting excellent liquid-locking performances. In particular, the electrical double-layer capacitors(EDLC) assembled by ELS or CS were characterized and exhibited similar electrochemical performance,demonstrating the satisfactory ability and applicability of ELS for commercial use. In addition, the ELSbased EDLC exhibited favorable flexibility with relative lower loss of capacitance under different angles of bending. 展开更多
关键词 Collagen fiber ionic conductivity Capillary force Electrolyte retention EDLC
在线阅读 下载PDF
Organic fast ion-conductor with ordered Li-ion conductive nano-pathways and high ionic conductivity for electrochemical energy storage 被引量:1
16
作者 Yibin Yang He Zhou +4 位作者 Jiaying Xie Lixia Bao Tianshi Li Jingxin Lei Jiliang Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第3期647-656,I0017,共11页
Solid electrolyte(SE)is the most crucial factor to fabricate safe and high-performance all-solid-state lithium-ion batteries.However,the most commonly reported SE,including solid polymer electrolyte(SPE)and inorganic ... Solid electrolyte(SE)is the most crucial factor to fabricate safe and high-performance all-solid-state lithium-ion batteries.However,the most commonly reported SE,including solid polymer electrolyte(SPE)and inorganic oxides and sulfides,suffer problems of low ionic conductivity at room temperature for SPE and large interfacial impedance with electrodes for inorganic electrolytes.Here we for the first time demonstrate a novel ionic plastic crystal lithium salt solid electrolyte(OLiSSE)fast ion-conductor dilithium(1,3-diethyl-4,5-dicarboxylate)imidazole bromide with ordered Li-ion conductive nanopathways and an exceptional ionic conductivity of 4.4×10^(−3)Scm^(−1)at 30℃.The prepared OLiSSE exhibits apparent characters of typical ionic plastic crystals in the temperature range of−20 to 70℃,and shows remarkable thermal stability and electrochemical stability below 150℃ and 4.7 V,respectively.No lithium dendrite or short circuit behavior is detected for the Li|OLiSSE|Li cell after the galvanostatic charge-discharge test for 500 h.The fabricated Li|OLiSSE|LiFePO_(4) all-solid-state cell without using any separator and liquid plasticizer directly delivers an initial discharge capacity of 151.4 mAh g^(−1) at the discharge rate of 0.1 C,and shows excellent charge-discharge cycle stability,implying large potential application in the next generation of safe and flexible all-solid-state lithium batteries. 展开更多
关键词 Solid state electrolytes Organic fast ion-conductor Ordered nano-pathway Electrochemical energy storage ionic conductivity
在线阅读 下载PDF
Ionic conductivity of infiltrated Ln (Ln = Gd, Sm, Y)-doped ceria 被引量:1
17
作者 Jiang-Wei Ju Dao-Ming Huan +2 位作者 Yan-Xiang Zhang Chang-Rong Xia Guang-Lei Cui 《Rare Metals》 SCIE EI CAS CSCD 2018年第9期734-742,共9页
This work studies the ionic conductivity of nanosized Gd-, Sm-, and Y-doped ceria prepared by the infiltration/impregnation method. The nanoparticles were deposited onto porous pure ceria substrates via infiltration- ... This work studies the ionic conductivity of nanosized Gd-, Sm-, and Y-doped ceria prepared by the infiltration/impregnation method. The nanoparticles were deposited onto porous pure ceria substrates via infiltration- heating processes, and the conductivity was determined with the electrochemical impedance spectroscopy (EIS) using the conductive model for infiltrated phases. The conductivity of the infiltrated doped ceria changes with the doping amount, and Gd0.25Ce0.75O2-δ, Sm0.2Ce0.8O2-δ, and Y0.15Ce0.85O2-δ show the highest values of 2.56, 3.01, and 2.07 × 10-3 S.cm-1 at 600 ℃, respectively. Overall, Sin-doped samples show the highest conductivity, whileY-doped samples show the lowest conductivity. In con- sideration of the Bruggeman factor, the intrinsic conduc- tivity of the infiltrated doped ceria was calculated. Compared with the bulk doped ceria, the intrinsic con- ductivity is higher while the activation energy is lower, which may suggest different conduction mechanisms. Besides, co-doping effects on the conductivity of the infiltrated sample are less obvious than those of the bulk sample. 展开更多
关键词 Doped ceria INFILTRATION ionic conductivity Solid oxide fuel cell NANOPARTICLE
原文传递
3D spiny AlF_(3)/Mullite heterostructure nanofiber as solid-state polymer electrolyte fillers with enhanced ionic conductivity and improved interfacial compatibility 被引量:1
18
作者 Weicui Liu Lingshuai Meng +7 位作者 Xueqiang Liu Lu Gao Xiaoxiao Wang Junbao Kang Jingge Ju Nanping Deng Bowen Cheng Weimin Kang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第1期503-515,I0013,共14页
Lithium metal batteries assembled with solid-state electrolyte can offer high safety and volumetric energy density compared to liquid electrolyte.The polymer solid-state electrolytes of poly(ethylene oxide)(PEO)are wi... Lithium metal batteries assembled with solid-state electrolyte can offer high safety and volumetric energy density compared to liquid electrolyte.The polymer solid-state electrolytes of poly(ethylene oxide)(PEO)are widely used in lithium metal solid-state batteries due to their unique properties.However,there are still some defects such as low ionic conductivity at room temperature and weak inhibition of lithium dendrite growth.Herein,the spiny inorganic nanofibers heterostructure with mullite whiskers grown on the surface of aluminum fluoride(AlF_(3))nanofibers are introduced into the PEOLi TFSI electrolytes for the first time to prepare composite solid-state electrolytes.The AlF_(3)as a strong Lewis acid can adsorb anions and promote the dissociation of Li salts.Besides,the specially threedimensional(3D)structure enlarges the effective contacting interface with the PEO polymer,which allows the lithium ions to be transported not only along the large aspect ratio of AlF3nanofibers,but also along the mullite phase in the transmembrane direction rapidly.Thereby,the transport channel of lithium ions at the spiny inorganic nanofibers-polymer interface is further improved.Benefiting from these advantages,the obtained composite solid-state electrolyte has a high ionic conductivity of 1.58×10^(-4)S cm^(-1)at 30℃and the lithium ions transfer number of 0.53.In addition,the AlF3has strong binding energy with anions,low electronic conductivity and wide electrochemical stability window,and reduced nucleation overpotential of lithium during cycling,which is positive for lithium dendrite suppression in solid-state electrolytes.Thus,the assembled symmetric Li/Li symmetric batteries exhibit stable cycling performance at different area capacities of 0.15,0.2,0.3 and 0.4 m A h cm^(-2).More importantly,the LiFePO_(4)(LFP)/Li battery still has 113.5 m A h g-1remaining after 400 cycles at 50℃and the Coulomb efficiency is nearly 100%during the long cycle.Overall,the interconnected structure of 3D spiny inorganic heterostructure nanofiber constitutes fast and uninterrupted lithium ions transport channels,maximizing the synergistic effect of interfacial transport of inorganic fillers and reducing PEO crystallinity,thus providing a novel approach to high performance solid-state electrolytes. 展开更多
关键词 3D spiny inorganic nanofibers HETEROSTRUCTURES Composite solid-state electrolytes ionic conductivity
在线阅读 下载PDF
A Valence Electron Structure Criterion of Ionic Conductivity of Sr- and Mg-doped LaGaO_3 Ceramics 被引量:1
19
作者 Min SHI Ning LIU +3 位作者 Yudong XU Can WANG Yupeng YUAN P.Majewski 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2006年第2期215-219,共5页
The valence electron structures of Sr- and Mg-doped LaGaO3 ceramics with different compositions were calculated by Empirical Electron Theory of Solids and Molecules (EET). A criterion for the ionic conductivity was ... The valence electron structures of Sr- and Mg-doped LaGaO3 ceramics with different compositions were calculated by Empirical Electron Theory of Solids and Molecules (EET). A criterion for the ionic conductivity was proposed, i.e. the 1/(nAnB) increases with increasing the ionic conductivity when x or y〈20% (in molar fraction). 展开更多
关键词 Empirical electron theory of solids and molecules (EET) Valence electron structure LaGaO3 ceramics ionic conductivity
在线阅读 下载PDF
Random Binary Brush Architecture Enhances both Ionic Conductivity and Mechanical Strength at Room Temperature 被引量:1
20
作者 Yu-Feng Lyu Zhi-Jie Zhang +3 位作者 Chang Liu Zhi Geng Long-Cheng Gao Quan Chen 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2018年第1期78-84,共7页
The ionic conductivity and the mechanical strength are two key factors for the performance of poly(ethylene oxide)(PEO) based polyelectrolytes. However, crystallized PEO suppresses ion conductivity at low temperat... The ionic conductivity and the mechanical strength are two key factors for the performance of poly(ethylene oxide)(PEO) based polyelectrolytes. However, crystallized PEO suppresses ion conductivity at low temperature and melted PEO has low mechanical strength at high temperature. Here, random binary brush copolymer composed of PEO-and polystyrene(PS)-based side chains is synthesized. PEO crystallinity is suppressed by the introduction of PS brushes. Doping with lithium trifluoromethanesulfonate(Li Tf) induces microphase separation. Due to a random arrangement of the brushes, the microphase segregation is incomplete even at high salt loading, which provides both high ionic conductivity and high mechanical strength at room temperature. These results provide opportunities for the design of polymeric electrolytes to be used at room temperature. 展开更多
关键词 Binary brush copolymer PEO ionic conductivity Phase separation
原文传递
上一页 1 2 14 下一页 到第
使用帮助 返回顶部