期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Effect of adding a smart potassium ion-responsive copolymer into polysulfone support membrane on the performance of thin-film composite nanofiltration membrane 被引量:2
1
作者 Meibo He Zhuang Liu +3 位作者 Tong Li Chen Chen Baicang Liu John C.Crittenden 《Frontiers of Chemical Science and Engineering》 SCIE EI CAS CSCD 2019年第2期400-414,共15页
Thin-film composite (TFC) nanofiltration (NF) membranes were fabricated via the interfacial polymerization of piperazine (PIP) and 1,3,5-benzenetricart)oiiyl trichloride on polysulfone (PSf) support membranes blended ... Thin-film composite (TFC) nanofiltration (NF) membranes were fabricated via the interfacial polymerization of piperazine (PIP) and 1,3,5-benzenetricart)oiiyl trichloride on polysulfone (PSf) support membranes blended with K^+-responsive poly(N-isopropylacryamideco- acryloylamidobenzo-15-crown-5)(P(NIPAM-co- AAB15C5)). Membranes were characterized by attenuated total reflection Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, atomic force microscope, scanning electron microscope, contact angle, and filtration tests. The results showed that:(1) Under K^+-free conditions, the blended P(NIPAM-co-AAB15C5)/PSf supports had porous and hydrophilic surfaces, thereby producing NF membranes with smooth surfaces and low MgSO4 rejections;(2) With K^+ in the PIP solution, the surface roughness and water permeability of the resultant NF membrane were increased due to the K^+-induced transition of low-content P(NIPAM-co-AAB15C5) from hydrophilic to hydrophobic;(3) After a curing treatment at 95℃, the improved NF membrane achieved an even higher pure water permeability of 10.97 L·m^-2·h^-1 - bar1 under 200 psi. Overall, this study provides a novel method to improve the performance of NF membranes and helps understand the influence of supports on TFC membranes. 展开更多
关键词 NANOFILTRATION interfacial polymerization SUPPORT MEMBRANE potassium ion-responsive thin-film composite
原文传递
Muscle-inspired ion-sensitive hydrogels with highly tunable mechanical performance for versatile industrial applications 被引量:3
2
作者 Ping Li Ziang Wang +2 位作者 Xinxing Lin Xiaolin Wang Hui Guo 《Science China Materials》 SCIE EI CAS CSCD 2022年第1期229-236,共8页
Human muscles are notably toughened or softened with specific inorganic ions.Inspired by this phenomenon,herein we report a simple strategy to endow hydrogels with comparable ion-responsive mechanical properties by tr... Human muscles are notably toughened or softened with specific inorganic ions.Inspired by this phenomenon,herein we report a simple strategy to endow hydrogels with comparable ion-responsive mechanical properties by treating the gels with different ionic solutions.Semi-crystalline poly(vinyl alcohol)hydrogels are chosen as examples to illustrate this concept.Similar to muscles,the mechanical property of hydrogels demonstrates strong dependence on both the nature and concentration of inorganic ions.Immersed at the same salt concentration,the hydrogels treated with different ionic solutions manifest a broad-range tunability in rigidity(Young’s modulus from 0.16 to 9.6 MPa),extensibility(elongation ratio from 100% to 570%),and toughness(fracture work from 0.82 to 35 MJm^(-3)).The mechanical property well follows the Hofmeister series,where the“salting-out”salts(kosmotropes)have a more pronounced effect on the reinforcement of the hydrogels.Besides,the hydrogels’mechanical performance exhibits a positive correlation with the salt concentration.Furthermore,it is revealed both the polymer solubility from amorphous domains and polymer crystallinity from crystalline domains are significantly influenced by the ions,which synergistically contribute to the salt-responsive mechanical performance.Benefitting from this feature,the hydrogels have demonstrated promising industrial applications,including tunable tough engineering soft materials,anti-icing coatings,and soft electronic devices. 展开更多
关键词 crystalline hydrogels ion-responsive Hofmeister effect mechanical performance conductive hydrogels
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部