Low-cost Fe-based disordered rock salt(DRX)Li_(2)FeTiO_(4)is capable of providing high capacity(295 mA h g^(-1))by redox activity of cations(Fe^(2+)/Fe^(4+)and Ti^(3+)/Ti^(4+))and anionic oxygen.However,DRX structures...Low-cost Fe-based disordered rock salt(DRX)Li_(2)FeTiO_(4)is capable of providing high capacity(295 mA h g^(-1))by redox activity of cations(Fe^(2+)/Fe^(4+)and Ti^(3+)/Ti^(4+))and anionic oxygen.However,DRX structures lack transport channels for ions and electrons,resulting in sluggish kinetics,poor electrochemical activity,and cyclability.Herein,graphene conductive carbon network permeated Li_(2)FeTiO_(4)(LFT/C/G)nanofibers are successfully prepared by a facile sol-gel assisted electrospinning method.Ultrafine Li_(2)FeTiO_(4)nanoparticles(2 nm)and one-dimensional(1D)structure provide abu ndant active sites and unobstructed diffu sion channels,accelerating ion diffusion.In addition,introducing graphene reduces the band gap and Li^(+)diffusion barrier and improves the dynamic properties of Li_(2)FeTiO_(4),thus achieving a relatively mild interfacial reaction and reversible redox reaction.As expected,the LFT/C/1.0G cathode delivers a remarkable discharge capacity(238.5 mA h g^(-1)),high energy density(508.8 Wh kg^(-1)),and excellent rate capability(51.2 mA hg^(-1)at 1.0 A g^(-1)).Besides,the LFT/C/1.0G anode also displays a high capacity(514.5 mA h g^(-1)at 500 mA g^(-1))and a remarkable rate capability(243.9 mA h g^(-1)at 8 A g^(-1)).Moreover,the full batteries based on the LFT/C/1.0G symmetric electrode demonstrate a reversible capacity of 117.0 mA h g^(-1)after 100 cycles at 50 mA g^(-1).This study presents useful insights into developing cost-effective DRX cathodes with durable and fast lithium storage.展开更多
Focused ion-beam-induced deposition (FIBID) and focused electron-beam-induced deposition (FEBID) are conve- nient and useful in nanodevice fabrication. Since the deposition is from the organometallic platinum prec...Focused ion-beam-induced deposition (FIBID) and focused electron-beam-induced deposition (FEBID) are conve- nient and useful in nanodevice fabrication. Since the deposition is from the organometallic platinum precursor, the con- ductive lines directly written by focused ion-beam (FIB) and focused electron-beam (FEB) are carbon-rich materials. We discuss an alternative approach to enhancing the platinum content and improving the conductivity of the conductive leads produced by FIBID and FEBID, namely an annealing treatment. Annealing in pure oxygen at 500 ℃ for 30 min enhances the platinum content values from ~ 18% to 30% and ~ 50% to 90% of FIBID and FEBID, respectively. Moreover, we find that thin films will be formed in the FIBID and FEBID processes. The annealing treatment is helpful to avoid the current leakage caused by these thin films. A single electron transistor is fabricated by FEBID and the current-voltage curve shows the Coulomb blockade effect.展开更多
Electron beam injectors are pivotal components of large-scale scientific instruments,such as synchrotron radiation sources,free-electron lasers,and electron-positron colliders.The quality of the electron beam produced...Electron beam injectors are pivotal components of large-scale scientific instruments,such as synchrotron radiation sources,free-electron lasers,and electron-positron colliders.The quality of the electron beam produced by the injector critically influences the performance of the entire accelerator-based scientific research apparatus.The injectors of such facilities usually use photocathode and thermionic-cathode electron guns.Although the photocathode injector can produce electron beams of excellent quality,its associated laser system is massive and intricate.The thermionic-cathode electron gun,especially the gridded electron gun injector,has a simple structure capable of generating numerous electron beams.However,its emittance is typically high.In this study,methods to reduce beam emittance are explored through a comprehensive analysis of various grid structures and preliminary design results,examining the evolution of beam phase space at different grid positions.An optimization method for reducing the emittance of a gridded thermionic-cathode electron gun is proposed through theoretical derivation,electromagnetic-field simulation,and beam-dynamics simulation.A 50%reduction in emittance was achieved for a 50 keV,1.7 A electron gun,laying the foundation for the subsequent design of a high-current,low-emittance injector.展开更多
Achieving high-energy density remains a key objective for advanced energy storage systems.However,challenges,such as poor cathode conductivity,anode dendrite formation,polysulfide shuttling,and electrolyte degradation...Achieving high-energy density remains a key objective for advanced energy storage systems.However,challenges,such as poor cathode conductivity,anode dendrite formation,polysulfide shuttling,and electrolyte degradation,continue to limit performance and stability.Molecular and ionic dipole interactions have emerged as an effective strategy to address these issues by regulating ionic transport,modulating solvation structures,optimizing interfacial chemistry,and enhancing charge transfer kinetics.These interactions also stabilize electrode interfaces,suppress side reactions,and mitigate anode corrosion,collectively improving the durability of high-energy batteries.A deeper understanding of these mechanisms is essential to guide the design of next-generation battery materials.Herein,this review summarizes the development,classification,and advantages of dipole interactions in high-energy batteries.The roles of dipoles,including facilitating ion transport,controlling solvation dynamics,stabilizing the electric double layer,optimizing solid electrolyte interphase and cathode–electrolyte interface layers,and inhibiting parasitic reactions—are comprehensively discussed.Finally,perspectives on future research directions are proposed to advance dipole-enabled strategies for high-performance energy storage.This review aims to provide insights into the rational design of dipole-interactive systems and promote the progress of electrochemical energy storage technologies.展开更多
In this study,the dosimetric characteristics(thickness applicability,preheating time,temperature and humidity dependence,in-batch uniformity,readout reproducibility,dose linearity,self-decay,and electron energy respon...In this study,the dosimetric characteristics(thickness applicability,preheating time,temperature and humidity dependence,in-batch uniformity,readout reproducibility,dose linearity,self-decay,and electron energy response)of engineered polycarbonate films irradiated with an electron beam(0–600 kGy)were investigated using photoluminescence spectroscopy.The results show a linear relationship between photoluminescence intensity and radiation dose when the thickness of the polycarbonate film is 0.3 mm.A higher fluorescence intensity can be obtained by preheating at 60℃ for 180 min before photoluminescence spectrum analysis.As the temperature during spectral testing and the ambient humidity(during and after irradiation)increased,the photoluminescence intensity of the polycarbonate films decreased.The photoluminescence intensity deviation of the polycarbonate films produced within the same batch at 100 kGy is 2.73%.After ten times of repeated excitations and readouts,the coefficients of variation in photoluminescence intensity are less than 8.6%,and the linear correlation coefficient between photoluminescence intensity and irradiation dose is 0.965 in the dose capture range of 20–600 kGy.Within 60 days of irradiation,the photoluminescence intensity of the polycarbonate film decreased to 60%of the initial value.The response of the 0.3 mm polycarbonate films to electron beams with energies exceeding 3.5 MeV does not differ significantly.This comprehensive analysis indicates the potential of polycarbonate films as a high-radiation dose detection material.展开更多
Continuous monitoring of biosignals is essential for advancing early disease detection,personalized treatment,and health management.Flexible electronics,capable of accurately monitoring biosignals in daily life,have g...Continuous monitoring of biosignals is essential for advancing early disease detection,personalized treatment,and health management.Flexible electronics,capable of accurately monitoring biosignals in daily life,have garnered considerable attention due to their softness,conformability,and biocompatibility.However,several challenges remain,including imperfect skin-device interfaces,limited breathability,and insufficient mechanoelectrical stability.On-skin epidermal electronics,distinguished by their excellent conformability,breathability,and mechanoelectrical robustness,offer a promising solution for high-fidelity,long-term health monitoring.These devices can seamlessly integrate with the human body,leading to transformative advancements in future personalized healthcare.This review provides a systematic examination of recent advancements in on-skin epidermal electronics,with particular emphasis on critical aspects including material science,structural design,desired properties,and practical applications.We explore various materials,considering their properties and the corresponding structural designs developed to construct high-performance epidermal electronics.We then discuss different approaches for achieving the desired device properties necessary for long-term health monitoring,including adhesiveness,breathability,and mechanoelectrical stability.Additionally,we summarize the diverse applications of these devices in monitoring biophysical and physiological signals.Finally,we address the challenges facing these devices and outline future prospects,offering insights into the ongoing development of on-skin epidermal electronics for long-term health monitoring.展开更多
Wide-temperature applications of sodium-ion batteries(SIBs)are severely limited by the sluggish ion insertion/diffusion kinetics of conversion-type anodes.Quantum-sized transition metal dichalcogenides possess unique ...Wide-temperature applications of sodium-ion batteries(SIBs)are severely limited by the sluggish ion insertion/diffusion kinetics of conversion-type anodes.Quantum-sized transition metal dichalcogenides possess unique advantages of charge delocalization and enrich uncoordinated electrons and short-range transfer kinetics,which are crucial to achieve rapid low-temperature charge transfer and high-temperature interface stability.Herein,a quantum-scale FeS_(2) loaded on three-dimensional Ti_(3)C_(2) MXene skeletons(FeS_(2) QD/MXene)fabricated as SIBs anode,demonstrating impressive performance under wide-temperature conditions(−35 to 65).The theoretical calculations combined with experimental characterization interprets that the unsaturated coordination edges of FeS_(2) QD can induce delocalized electronic regions,which reduces electrostatic potential and significantly facilitates efficient Na+diffusion across a broad temperature range.Moreover,the Ti_(3)C_(2) skeleton reinforces structural integrity via Fe-O-Ti bonding,while enabling excellent dispersion of FeS_(2) QD.As expected,FeS_(2) QD/MXene anode harvests capacities of 255.2 and 424.9 mAh g^(−1) at 0.1 A g^(−1) under−35 and 65,and the energy density of FeS_(2) QD/MXene//NVP full cell can reach to 162.4 Wh kg^(−1) at−35,highlighting its practical potential for wide-temperatures conditions.This work extends the uncoordinated regions induced by quantum-size effects for exceptional Na^(+)ion storage and diffusion performance at wide-temperatures environment.展开更多
Vacancy defects,as fundamental disruptions in metallic lattices,play an important role in shaping the mechanical and electronic properties of aluminum crystals.However,the influence of vacancy position under coupled t...Vacancy defects,as fundamental disruptions in metallic lattices,play an important role in shaping the mechanical and electronic properties of aluminum crystals.However,the influence of vacancy position under coupled thermomechanical fields remains insufficiently understood.In this study,transmission and scanning electron microscopy were employed to observe dislocation structures and grain boundary heterogeneities in processed aluminum alloys,suggesting stress concentrations and microstructural inhomogeneities associated with vacancy accumulation.To complement these observations,first-principles calculations and molecular dynamics simulations were conducted for seven single-vacancy configurations in face-centered cubic aluminum.The stress response,total energy,density of states(DOS),and differential charge density were examined under varying compressive strain(ε=0–0.1)and temperature(0–600 K).The results indicate that face-centered vacancies tend to reduce mechanical strength and perturb electronic states near the Fermi level,whereas corner and edge vacancies appear to have weaker effects.Elevated temperatures may partially restore electronic uniformity through thermal excitation.Overall,these findings suggest that vacancy position exerts a critical but position-dependent influence on coupled structure-property relationships,offering theoretical insights and preliminary experimental support for defect-engineered aluminum alloy design.展开更多
Artificial intelligence(AI)is increasingly recognized as a transformative force in the field of solid organ transplantation.From enhancing donor-recipient matching to predicting clinical risks and tailoring immunosupp...Artificial intelligence(AI)is increasingly recognized as a transformative force in the field of solid organ transplantation.From enhancing donor-recipient matching to predicting clinical risks and tailoring immunosuppressive therapy,AI has the potential to improve both operational efficiency and patient outcomes.Despite these advancements,the perspectives of transplant professionals-those at the forefront of critical decision-making-remain insufficiently explored.To address this gap,this study utilizes a multi-round electronic Delphi approach to gather and analyses insights from global experts involved in organ transplantation.Participants are invited to complete structured surveys capturing demographic data,professional roles,institutional practices,and prior exposure to AI technologies.The survey also explores perceptions of AI’s potential benefits.Quantitative responses are analyzed using descriptive statistics,while open-ended qualitative responses undergo thematic analysis.Preliminary findings indicate a generally positive outlook on AI’s role in enhancing transplantation processes,particularly in areas such as donor matching and post-operative care.These mixed views reflect both optimism and caution among professionals tasked with integrating new technologies into high-stakes clinical workflows.By capturing a wide range of expert opinions,the findings will inform future policy development,regulatory considerations,and institutional readiness frameworks for the integration of AI into organ transplantation.展开更多
Classical computation of electronic properties in large-scale materials remains challenging.Quantum computation has the potential to offer advantages in memory footprint and computational scaling.However,general and v...Classical computation of electronic properties in large-scale materials remains challenging.Quantum computation has the potential to offer advantages in memory footprint and computational scaling.However,general and viable quantum algorithms for simulating large-scale materials are still limited.We propose and implement random-state quantum algorithms to calculate electronic-structure properties of real materials.Using a random state circuit on a small number of qubits,we employ real-time evolution with first-order Trotter decomposition and Hadamard test to obtain electronic density of states,and we develop a modified quantum phase estimation algorithm to calculate real-space local density of states via direct quantum measurements.Furthermore,we validate these algorithms by numerically computing the density of states and spatial distributions of electronic states in graphene,twisted bilayer graphene quasicrystals,and fractal lattices,covering system sizes from hundreds to thousands of atoms.Our results manifest that the random-state quantum algorithms provide a general and qubit-efficient route to scalable simulations of electronic properties in large-scale periodic and aperiodic materials.展开更多
Bioelectronic interventions,specifically trigeminal nerve st imulat ion(TNS),have attracted considerable attention in conditions where cortical spreading depolarizations(CSDs)accompanied by compromised cerebral perfus...Bioelectronic interventions,specifically trigeminal nerve st imulat ion(TNS),have attracted considerable attention in conditions where cortical spreading depolarizations(CSDs)accompanied by compromised cerebral perfusion may exacerbate neurological damage.While pharmacological interventions have demonstrated initial potential in addressing CSDs,a standardized treatment approach has not yet been established.The objective of this perspective is to explore emerging bioelectronic methodologies for addressing CSDs,particularly emphasizing TNS,and to underscore TNS’s capacity to enhance neurovascular coupling and cerebral perfusion.展开更多
Up-and-coming high-temperature materials,refractory high entropy alloys,are suffering from lower oxidation resistance,restricting their applications in the aerospace field.In this study,two novel treatments of Al-depo...Up-and-coming high-temperature materials,refractory high entropy alloys,are suffering from lower oxidation resistance,restricting their applications in the aerospace field.In this study,two novel treatments of Al-deposited and remelted were developed to refine the microstructure and enhance the oxidation resistance of refractory high entropy alloy using electron beam freeform fabrication(EBF3).Finer and short-range ordering structures were observed in the remelted sample,whereas the Al-deposited sample showcased the formation of silicide and intermetallic phases.High-temperature cyclic and isothermal oxidation tests at 1000℃ were carried out.The total weight gain after 60 h of cyclic oxidation decreased by 17.49%and 30.46%for the remelted and deposited samples,respectively,compared to the as-cast state.Oxidation kinetics reveal an evident lower mass gain and oxidation rate in the treated samples.A multilayer oxide consisting of TiO_(2)+Al_(2)O_(3)+SiO_(2)+AlNbO_(4) was studied for its excellent oxidation resistance.The oxidation behavior of rutile,corundum and other oxides was analyzed using first principles calculations and chemical defect analysis.Overall,this research,which introduces novel treatments,offers promising insights for enhancing the inherent oxidation resistance of refractory high entropy alloys.展开更多
The traditional von Neumann architecture faces inherent limitations due to the separation of memory and computa-tion,leading to high energy consumption,significant latency,and reduced operational efficiency.Neuromorph...The traditional von Neumann architecture faces inherent limitations due to the separation of memory and computa-tion,leading to high energy consumption,significant latency,and reduced operational efficiency.Neuromorphic computing,inspired by the architecture of the human brain,offers a promising alternative by integrating memory and computational func-tions,enabling parallel,high-speed,and energy-efficient information processing.Among various neuromorphic technologies,ion-modulated optoelectronic devices have garnered attention due to their excellent ionic tunability and the availability of multi-dimensional control strategies.This review provides a comprehensive overview of recent progress in ion-modulation optoelec-tronic neuromorphic devices.It elucidates the key mechanisms underlying ionic modulation of light fields,including ion migra-tion dynamics and capture and release of charge through ions.Furthermore,the synthesis of active materials and the proper-ties of these devices are analyzed in detail.The review also highlights the application of ion-modulation optoelectronic devices in artificial vision systems,neuromorphic computing,and other bionic fields.Finally,the existing challenges and future direc-tions for the development of optoelectronic neuromorphic devices are discussed,providing critical insights for advancing this promising field.展开更多
The development of electronic products and increased electronic waste have triggered a series of ecological problems on Earth.Meanwhile,amidst energy crises and the pursuit of carbon neutrality,the recycling of discar...The development of electronic products and increased electronic waste have triggered a series of ecological problems on Earth.Meanwhile,amidst energy crises and the pursuit of carbon neutrality,the recycling of discarded biomass has attracted the attention of many researchers.In recent years,the transformation of discarded biomass into value-added electronic products has emerged as a promising endeavor in the field of green and flexible electronics.In this review,the attempts and advancements in biomass conversion into flexible electronic materials and devices are systematically summarized.We focus on reviewing the research progress in biomass conversion into substrates,electrodes,and materials tailored for optical and thermal management.Furthermore,we explore component combinations suitable for applications in environmental monitoring and health management.Finally,we discuss the challenges in techniques and cost-effectiveness currently faced by biomass conversion into flexible electronic devices and propose improvement strategies.Drawing insights from both fundamental research and industrial applications,we offer prospects for future developments in this burgeoning field.展开更多
Structural regulation of Pd-based electrocatalytic hydrodechlorination(EHDC)catalyst for constructing high-efficient cathode materials with low noble metal content and high atom utilization is crucial but still challe...Structural regulation of Pd-based electrocatalytic hydrodechlorination(EHDC)catalyst for constructing high-efficient cathode materials with low noble metal content and high atom utilization is crucial but still challenging.Herein,a support electron inductive effect of Pd-Mn/Ni foam catalyst was proposed via in-situ Mn doping to optimize the electronic structure of the Ni foam(NF),which can inductive regulation of Pd for improving the EHDC performance.The mass activity and current efficiency of Pd-Mn/NF catalyst are 2.91 and 1.34 times superior to that of Pd/NF with 2,4-dichlorophenol as model compound,respectively.The Mn-doped interlayer optimized the electronic structure of Pd by bringing the d-state closer to the Fermi level than Pd on the NF surface,which optimizied the binding of EHDC intermediates.Additionally,the Mn-doped interlayer acted as a promoter for generating H∗and accelerating the EHDC reaction.This work presents a simple and effective regulation strategy for constructing high-efficient cathode catalyst for the EHDC of chlorinated organic compounds.展开更多
Point defect engineering endows catalysts with novel physical and chemical properties,elevating their electrocatalytic efficiency.The introduction of defects emerges as a promising strategy,effectively modifying the e...Point defect engineering endows catalysts with novel physical and chemical properties,elevating their electrocatalytic efficiency.The introduction of defects emerges as a promising strategy,effectively modifying the electronic structure of active sites.This optimization influences the adsorption energy of intermediates,thereby mitigating reaction energy barriers,altering paths,enhancing selectivity,and ultimately improving the catalytic efficiency of electrocatalysts.To elucidate the impact of defects on the electrocatalytic process,we comprehensively outline the roles of various point defects,their synthetic methodologies,and characterization techniques.Importantly,we consolidate insights into the relationship between point defects and catalytic activity for hydrogen/oxygen evolution and CO_(2)/O_(2)/N_(2) reduction reactions by integrating mechanisms from diverse reactions.This underscores the pivotal role of point defects in enhancing catalytic performance.At last,the principal challenges and prospects associated with point defects in current electrocatalysts are proposed,emphasizing their role in advancing the efficiency of electrochemical energy storage and conversion materials.展开更多
The triple bond in N_(2)has an extremely high bond energy and is thus difficult to break.N_(2)is commonly converted into NH3 artificially via the Haber-Bosch process,and NH_(3)can be utilized to produce other nitrogen...The triple bond in N_(2)has an extremely high bond energy and is thus difficult to break.N_(2)is commonly converted into NH3 artificially via the Haber-Bosch process,and NH_(3)can be utilized to produce other nitrogen-containing chemicals.Here,we developed an electron catalyzed method to directly fix N_(2)into azos,by pushing and pulling the electron into and from the aromatic halide with the cyclic voltammetry method.The round-trip journey of electron can successfully weaken the triple bond in N_(2)through the electron pushing-induced aryl radical via a“brick trowel”transition state,and then produce the diazonium ions by pulling the electron out from the diazo radical intermediate.Different azos can be synthesized with this developed electron catalyzed approach.This approach provides a novel concept and practical route for the fixation of N_(2)at atmospheric pressure into chemical products valuable for industrial and commercial applications.展开更多
Layered double hydroxide(LDH)based heterogonous peroxymonosulfate(PMS)activation degradation of pollutants has attracted extensive attention.The challenge is to selectively regulate the traditional free radical domina...Layered double hydroxide(LDH)based heterogonous peroxymonosulfate(PMS)activation degradation of pollutants has attracted extensive attention.The challenge is to selectively regulate the traditional free radical dominant degradation pathway into a nonradical degradation pathway.Herein,an interface ar-chitecture of Ti_(3) C_(2) T_(x)-MXene(MXene)loading on the Fe-Al LDH scaffold was developed,which showed excellent stability and robust resistance against harsh conditions.Significantly,the rate constant for tetra-cycline hydrochloride(TC)degradation in the MXene-LDH/PMS process was 0.421 min^(-1),which was ten times faster than the rate constant for pure Fe-Al LDH(0.042 min^(-1)).Specifically,more reactive Fe with the closer d-band center to the Fermi level results in higher electron transfer efficiency.The occupa-tions of Fe-3d orbitals in Mxene/Fe-Al LDH are pushed above the Fermi level to generate,which results in higher PMS adsorption and inhibition of the release of oxygen-containing active species intermedi-ates,leading to the enhanced^(1)O_(2) generation.Additionally,the built-in electric field in the heterojunc-tion was driven by the charge redistribution between MXene and Fe-Al LDH,resulting in a mediated-electron transfer mechanism,differentiating it from the Fe-Al LDH/PMS system.It was fascinating that MXene/Fe-Al LDH achieved satisfactory treatment efficiency in continuous column reactor and real landfill leachate.展开更多
Despite their attractive features of high energy density,low cost,and safety,polysulfide/iodide flow batteries(SIFBs)are hampered by the sluggish kinetics of the iodide redox couple,which restricts overall performance...Despite their attractive features of high energy density,low cost,and safety,polysulfide/iodide flow batteries(SIFBs)are hampered by the sluggish kinetics of the iodide redox couple,which restricts overall performance.Multicomponent sulfides are demonstrated as promising catalysts for accelerating I^(-)/I_(3)^(-) redox reactions.Concurrently,the enhanced configurational entropy arising from multinary compositions drives synergistic effects among constituent elements,establishing a viable pathway to optimize catalytic performance.Building on these foundations,this work introduces a targeted orbital hybridization-optimized electron density strategy to enhance the catalytic activity.Implementing this concept,we developed an in-situ solvothermal synthesis process for an entropy-enhanced AgCuZnSnS_(4) loaded graphite felt(ACZTS/GF)electrode.The engineered electrode demonstrates exceptional electrocatalytic performance with improved bulk conductivity and interfacial charge transfer kinetics within a SIFB.The cell achieves a high energy efficiency of 88.5%at 20 mA·cm^(−2) with 10%state-of-charge.Furthermore,the battery delivers a maximum power density of 119.8 mW·cm^(−2) and exhibits excellent long-term cycling stability.These significant results stem from orbital hybridization-driven electronic state optimization and entropy effect-induced synergistic catalysis.展开更多
基金supported by the National Natural Science Foundation of China(22278347)the Excellent Doctoral Student Research Innovation Project of Xinjiang University of China(XJU2022BS048)the Postgraduate Innovation Project of Xinjiang Uygur Autonomous Region of China(XJ2023G027).
文摘Low-cost Fe-based disordered rock salt(DRX)Li_(2)FeTiO_(4)is capable of providing high capacity(295 mA h g^(-1))by redox activity of cations(Fe^(2+)/Fe^(4+)and Ti^(3+)/Ti^(4+))and anionic oxygen.However,DRX structures lack transport channels for ions and electrons,resulting in sluggish kinetics,poor electrochemical activity,and cyclability.Herein,graphene conductive carbon network permeated Li_(2)FeTiO_(4)(LFT/C/G)nanofibers are successfully prepared by a facile sol-gel assisted electrospinning method.Ultrafine Li_(2)FeTiO_(4)nanoparticles(2 nm)and one-dimensional(1D)structure provide abu ndant active sites and unobstructed diffu sion channels,accelerating ion diffusion.In addition,introducing graphene reduces the band gap and Li^(+)diffusion barrier and improves the dynamic properties of Li_(2)FeTiO_(4),thus achieving a relatively mild interfacial reaction and reversible redox reaction.As expected,the LFT/C/1.0G cathode delivers a remarkable discharge capacity(238.5 mA h g^(-1)),high energy density(508.8 Wh kg^(-1)),and excellent rate capability(51.2 mA hg^(-1)at 1.0 A g^(-1)).Besides,the LFT/C/1.0G anode also displays a high capacity(514.5 mA h g^(-1)at 500 mA g^(-1))and a remarkable rate capability(243.9 mA h g^(-1)at 8 A g^(-1)).Moreover,the full batteries based on the LFT/C/1.0G symmetric electrode demonstrate a reversible capacity of 117.0 mA h g^(-1)after 100 cycles at 50 mA g^(-1).This study presents useful insights into developing cost-effective DRX cathodes with durable and fast lithium storage.
基金Project supported by the Research Project of National University of Defense Technology,China(Grant No.JC13-02-14)the National Natural Science Foundation of China(Grant No.11104349)
文摘Focused ion-beam-induced deposition (FIBID) and focused electron-beam-induced deposition (FEBID) are conve- nient and useful in nanodevice fabrication. Since the deposition is from the organometallic platinum precursor, the con- ductive lines directly written by focused ion-beam (FIB) and focused electron-beam (FEB) are carbon-rich materials. We discuss an alternative approach to enhancing the platinum content and improving the conductivity of the conductive leads produced by FIBID and FEBID, namely an annealing treatment. Annealing in pure oxygen at 500 ℃ for 30 min enhances the platinum content values from ~ 18% to 30% and ~ 50% to 90% of FIBID and FEBID, respectively. Moreover, we find that thin films will be formed in the FIBID and FEBID processes. The annealing treatment is helpful to avoid the current leakage caused by these thin films. A single electron transistor is fabricated by FEBID and the current-voltage curve shows the Coulomb blockade effect.
基金supported by the Hundred-person Program of Chinese Academy of Sciences and the National Natural Science Foundation of China(No.11905074).
文摘Electron beam injectors are pivotal components of large-scale scientific instruments,such as synchrotron radiation sources,free-electron lasers,and electron-positron colliders.The quality of the electron beam produced by the injector critically influences the performance of the entire accelerator-based scientific research apparatus.The injectors of such facilities usually use photocathode and thermionic-cathode electron guns.Although the photocathode injector can produce electron beams of excellent quality,its associated laser system is massive and intricate.The thermionic-cathode electron gun,especially the gridded electron gun injector,has a simple structure capable of generating numerous electron beams.However,its emittance is typically high.In this study,methods to reduce beam emittance are explored through a comprehensive analysis of various grid structures and preliminary design results,examining the evolution of beam phase space at different grid positions.An optimization method for reducing the emittance of a gridded thermionic-cathode electron gun is proposed through theoretical derivation,electromagnetic-field simulation,and beam-dynamics simulation.A 50%reduction in emittance was achieved for a 50 keV,1.7 A electron gun,laying the foundation for the subsequent design of a high-current,low-emittance injector.
基金supported by the introduction of Talent Research Fund in Nanjing Institute of Technology(YKJ202204)the National Natural Science Foundation of China(52401282 and 52300206)the Natural Science Foundation of Jiangsu Province(BK20230701 and BK20230705).
文摘Achieving high-energy density remains a key objective for advanced energy storage systems.However,challenges,such as poor cathode conductivity,anode dendrite formation,polysulfide shuttling,and electrolyte degradation,continue to limit performance and stability.Molecular and ionic dipole interactions have emerged as an effective strategy to address these issues by regulating ionic transport,modulating solvation structures,optimizing interfacial chemistry,and enhancing charge transfer kinetics.These interactions also stabilize electrode interfaces,suppress side reactions,and mitigate anode corrosion,collectively improving the durability of high-energy batteries.A deeper understanding of these mechanisms is essential to guide the design of next-generation battery materials.Herein,this review summarizes the development,classification,and advantages of dipole interactions in high-energy batteries.The roles of dipoles,including facilitating ion transport,controlling solvation dynamics,stabilizing the electric double layer,optimizing solid electrolyte interphase and cathode–electrolyte interface layers,and inhibiting parasitic reactions—are comprehensively discussed.Finally,perspectives on future research directions are proposed to advance dipole-enabled strategies for high-performance energy storage.This review aims to provide insights into the rational design of dipole-interactive systems and promote the progress of electrochemical energy storage technologies.
基金supported by the National Natural Science Foundation of China(No.12305385)Key Projects of Scientific Research of the Hunan Provincial Department of Education(22A0310)the Research Startup Project of University of South China(220XQD025).
文摘In this study,the dosimetric characteristics(thickness applicability,preheating time,temperature and humidity dependence,in-batch uniformity,readout reproducibility,dose linearity,self-decay,and electron energy response)of engineered polycarbonate films irradiated with an electron beam(0–600 kGy)were investigated using photoluminescence spectroscopy.The results show a linear relationship between photoluminescence intensity and radiation dose when the thickness of the polycarbonate film is 0.3 mm.A higher fluorescence intensity can be obtained by preheating at 60℃ for 180 min before photoluminescence spectrum analysis.As the temperature during spectral testing and the ambient humidity(during and after irradiation)increased,the photoluminescence intensity of the polycarbonate films decreased.The photoluminescence intensity deviation of the polycarbonate films produced within the same batch at 100 kGy is 2.73%.After ten times of repeated excitations and readouts,the coefficients of variation in photoluminescence intensity are less than 8.6%,and the linear correlation coefficient between photoluminescence intensity and irradiation dose is 0.965 in the dose capture range of 20–600 kGy.Within 60 days of irradiation,the photoluminescence intensity of the polycarbonate film decreased to 60%of the initial value.The response of the 0.3 mm polycarbonate films to electron beams with energies exceeding 3.5 MeV does not differ significantly.This comprehensive analysis indicates the potential of polycarbonate films as a high-radiation dose detection material.
基金supported by National Natural Science Foundation of China(Grant Nos.52025055,52375576,52350349)Key Research and Development Program of Shaanxi(Program No.2022GXLH-01-12)+2 种基金Joint Fund of Ministry of Education for Equipment Pre-research(No.8091B03012304)Aeronautical Science Foundation of China(No.2022004607001)the Fundamental Research Funds for the Central Universities(No.xtr072024031).
文摘Continuous monitoring of biosignals is essential for advancing early disease detection,personalized treatment,and health management.Flexible electronics,capable of accurately monitoring biosignals in daily life,have garnered considerable attention due to their softness,conformability,and biocompatibility.However,several challenges remain,including imperfect skin-device interfaces,limited breathability,and insufficient mechanoelectrical stability.On-skin epidermal electronics,distinguished by their excellent conformability,breathability,and mechanoelectrical robustness,offer a promising solution for high-fidelity,long-term health monitoring.These devices can seamlessly integrate with the human body,leading to transformative advancements in future personalized healthcare.This review provides a systematic examination of recent advancements in on-skin epidermal electronics,with particular emphasis on critical aspects including material science,structural design,desired properties,and practical applications.We explore various materials,considering their properties and the corresponding structural designs developed to construct high-performance epidermal electronics.We then discuss different approaches for achieving the desired device properties necessary for long-term health monitoring,including adhesiveness,breathability,and mechanoelectrical stability.Additionally,we summarize the diverse applications of these devices in monitoring biophysical and physiological signals.Finally,we address the challenges facing these devices and outline future prospects,offering insights into the ongoing development of on-skin epidermal electronics for long-term health monitoring.
基金supported by the National Nature Science Foundation of China(Nos.52202335 and 52171227)Natural Science Foundation of Jiangsu Province(No.BK20221137)National Key R&D Program of China(2024YFE0108500).
文摘Wide-temperature applications of sodium-ion batteries(SIBs)are severely limited by the sluggish ion insertion/diffusion kinetics of conversion-type anodes.Quantum-sized transition metal dichalcogenides possess unique advantages of charge delocalization and enrich uncoordinated electrons and short-range transfer kinetics,which are crucial to achieve rapid low-temperature charge transfer and high-temperature interface stability.Herein,a quantum-scale FeS_(2) loaded on three-dimensional Ti_(3)C_(2) MXene skeletons(FeS_(2) QD/MXene)fabricated as SIBs anode,demonstrating impressive performance under wide-temperature conditions(−35 to 65).The theoretical calculations combined with experimental characterization interprets that the unsaturated coordination edges of FeS_(2) QD can induce delocalized electronic regions,which reduces electrostatic potential and significantly facilitates efficient Na+diffusion across a broad temperature range.Moreover,the Ti_(3)C_(2) skeleton reinforces structural integrity via Fe-O-Ti bonding,while enabling excellent dispersion of FeS_(2) QD.As expected,FeS_(2) QD/MXene anode harvests capacities of 255.2 and 424.9 mAh g^(−1) at 0.1 A g^(−1) under−35 and 65,and the energy density of FeS_(2) QD/MXene//NVP full cell can reach to 162.4 Wh kg^(−1) at−35,highlighting its practical potential for wide-temperatures conditions.This work extends the uncoordinated regions induced by quantum-size effects for exceptional Na^(+)ion storage and diffusion performance at wide-temperatures environment.
基金supported by the Research Project on Strengthening the Construction of an Important Ecological Security Barrier in Northern China by Higher Education Institutions in the Inner Mongolia Autonomous Region(STAQZX202313)the Inner Mongolia Autonomous Region Education Science‘14th Five-Year Plan’2024 Annual Research Project(NGJGH2024635).
文摘Vacancy defects,as fundamental disruptions in metallic lattices,play an important role in shaping the mechanical and electronic properties of aluminum crystals.However,the influence of vacancy position under coupled thermomechanical fields remains insufficiently understood.In this study,transmission and scanning electron microscopy were employed to observe dislocation structures and grain boundary heterogeneities in processed aluminum alloys,suggesting stress concentrations and microstructural inhomogeneities associated with vacancy accumulation.To complement these observations,first-principles calculations and molecular dynamics simulations were conducted for seven single-vacancy configurations in face-centered cubic aluminum.The stress response,total energy,density of states(DOS),and differential charge density were examined under varying compressive strain(ε=0–0.1)and temperature(0–600 K).The results indicate that face-centered vacancies tend to reduce mechanical strength and perturb electronic states near the Fermi level,whereas corner and edge vacancies appear to have weaker effects.Elevated temperatures may partially restore electronic uniformity through thermal excitation.Overall,these findings suggest that vacancy position exerts a critical but position-dependent influence on coupled structure-property relationships,offering theoretical insights and preliminary experimental support for defect-engineered aluminum alloy design.
文摘Artificial intelligence(AI)is increasingly recognized as a transformative force in the field of solid organ transplantation.From enhancing donor-recipient matching to predicting clinical risks and tailoring immunosuppressive therapy,AI has the potential to improve both operational efficiency and patient outcomes.Despite these advancements,the perspectives of transplant professionals-those at the forefront of critical decision-making-remain insufficiently explored.To address this gap,this study utilizes a multi-round electronic Delphi approach to gather and analyses insights from global experts involved in organ transplantation.Participants are invited to complete structured surveys capturing demographic data,professional roles,institutional practices,and prior exposure to AI technologies.The survey also explores perceptions of AI’s potential benefits.Quantitative responses are analyzed using descriptive statistics,while open-ended qualitative responses undergo thematic analysis.Preliminary findings indicate a generally positive outlook on AI’s role in enhancing transplantation processes,particularly in areas such as donor matching and post-operative care.These mixed views reflect both optimism and caution among professionals tasked with integrating new technologies into high-stakes clinical workflows.By capturing a wide range of expert opinions,the findings will inform future policy development,regulatory considerations,and institutional readiness frameworks for the integration of AI into organ transplantation.
基金supported by the Major Project for the Integration of ScienceEducation and Industry (Grant No.2025ZDZX02)。
文摘Classical computation of electronic properties in large-scale materials remains challenging.Quantum computation has the potential to offer advantages in memory footprint and computational scaling.However,general and viable quantum algorithms for simulating large-scale materials are still limited.We propose and implement random-state quantum algorithms to calculate electronic-structure properties of real materials.Using a random state circuit on a small number of qubits,we employ real-time evolution with first-order Trotter decomposition and Hadamard test to obtain electronic density of states,and we develop a modified quantum phase estimation algorithm to calculate real-space local density of states via direct quantum measurements.Furthermore,we validate these algorithms by numerically computing the density of states and spatial distributions of electronic states in graphene,twisted bilayer graphene quasicrystals,and fractal lattices,covering system sizes from hundreds to thousands of atoms.Our results manifest that the random-state quantum algorithms provide a general and qubit-efficient route to scalable simulations of electronic properties in large-scale periodic and aperiodic materials.
基金supported by National Institute of Neurological Disorders and Stroke of the National Institutes of Health under award number R21NS114763US Army Medical Research and Materiel Command (USAMRMC) under award#W81XWH-18-1-0773merit-based career enhancement award at the Feinstein Institutes for Medical Research (to CL)
文摘Bioelectronic interventions,specifically trigeminal nerve st imulat ion(TNS),have attracted considerable attention in conditions where cortical spreading depolarizations(CSDs)accompanied by compromised cerebral perfusion may exacerbate neurological damage.While pharmacological interventions have demonstrated initial potential in addressing CSDs,a standardized treatment approach has not yet been established.The objective of this perspective is to explore emerging bioelectronic methodologies for addressing CSDs,particularly emphasizing TNS,and to underscore TNS’s capacity to enhance neurovascular coupling and cerebral perfusion.
基金supported by the National Key Research and Development Program of China(Grant No.2022YFF0609000)National Natural Science Foundation of China(Grant Nos.52171034 and 52101037)Postdoctoral Fellowship Program of CPSFara(No.GZB20230944).
文摘Up-and-coming high-temperature materials,refractory high entropy alloys,are suffering from lower oxidation resistance,restricting their applications in the aerospace field.In this study,two novel treatments of Al-deposited and remelted were developed to refine the microstructure and enhance the oxidation resistance of refractory high entropy alloy using electron beam freeform fabrication(EBF3).Finer and short-range ordering structures were observed in the remelted sample,whereas the Al-deposited sample showcased the formation of silicide and intermetallic phases.High-temperature cyclic and isothermal oxidation tests at 1000℃ were carried out.The total weight gain after 60 h of cyclic oxidation decreased by 17.49%and 30.46%for the remelted and deposited samples,respectively,compared to the as-cast state.Oxidation kinetics reveal an evident lower mass gain and oxidation rate in the treated samples.A multilayer oxide consisting of TiO_(2)+Al_(2)O_(3)+SiO_(2)+AlNbO_(4) was studied for its excellent oxidation resistance.The oxidation behavior of rutile,corundum and other oxides was analyzed using first principles calculations and chemical defect analysis.Overall,this research,which introduces novel treatments,offers promising insights for enhancing the inherent oxidation resistance of refractory high entropy alloys.
基金supported by National Natural Science Foundation of China(62174164,U23A20568,and U22A2075)National Key Research and Development Project(2021YFA1202600)+2 种基金Talent Plan of Shanghai Branch,Chinese Academy of Sciences(CASSHB-QNPD-2023-022)Ningbo Technology Project(2022A-007-C)Ningbo Key Research and Development Project(2023Z021).
文摘The traditional von Neumann architecture faces inherent limitations due to the separation of memory and computa-tion,leading to high energy consumption,significant latency,and reduced operational efficiency.Neuromorphic computing,inspired by the architecture of the human brain,offers a promising alternative by integrating memory and computational func-tions,enabling parallel,high-speed,and energy-efficient information processing.Among various neuromorphic technologies,ion-modulated optoelectronic devices have garnered attention due to their excellent ionic tunability and the availability of multi-dimensional control strategies.This review provides a comprehensive overview of recent progress in ion-modulation optoelec-tronic neuromorphic devices.It elucidates the key mechanisms underlying ionic modulation of light fields,including ion migra-tion dynamics and capture and release of charge through ions.Furthermore,the synthesis of active materials and the proper-ties of these devices are analyzed in detail.The review also highlights the application of ion-modulation optoelectronic devices in artificial vision systems,neuromorphic computing,and other bionic fields.Finally,the existing challenges and future direc-tions for the development of optoelectronic neuromorphic devices are discussed,providing critical insights for advancing this promising field.
基金supported by the National Key R&D Program of China(2018YFA0901700)National Natural Science Foundation of China(22278241)+1 种基金a grant from the Institute Guo Qiang,Tsinghua University(2021GQG1016)Department of Chemical Engineering-iBHE Joint Cooperation Fund。
文摘The development of electronic products and increased electronic waste have triggered a series of ecological problems on Earth.Meanwhile,amidst energy crises and the pursuit of carbon neutrality,the recycling of discarded biomass has attracted the attention of many researchers.In recent years,the transformation of discarded biomass into value-added electronic products has emerged as a promising endeavor in the field of green and flexible electronics.In this review,the attempts and advancements in biomass conversion into flexible electronic materials and devices are systematically summarized.We focus on reviewing the research progress in biomass conversion into substrates,electrodes,and materials tailored for optical and thermal management.Furthermore,we explore component combinations suitable for applications in environmental monitoring and health management.Finally,we discuss the challenges in techniques and cost-effectiveness currently faced by biomass conversion into flexible electronic devices and propose improvement strategies.Drawing insights from both fundamental research and industrial applications,we offer prospects for future developments in this burgeoning field.
基金supported by the National Natural Science Foundation of China(Nos.22178388 and 22108306)Taishan Scholars Program of Shandong Province(No.tsqn201909065)Chongqing Science and Technology Bureau(No.cstc2019jscx-gksb X0032).
文摘Structural regulation of Pd-based electrocatalytic hydrodechlorination(EHDC)catalyst for constructing high-efficient cathode materials with low noble metal content and high atom utilization is crucial but still challenging.Herein,a support electron inductive effect of Pd-Mn/Ni foam catalyst was proposed via in-situ Mn doping to optimize the electronic structure of the Ni foam(NF),which can inductive regulation of Pd for improving the EHDC performance.The mass activity and current efficiency of Pd-Mn/NF catalyst are 2.91 and 1.34 times superior to that of Pd/NF with 2,4-dichlorophenol as model compound,respectively.The Mn-doped interlayer optimized the electronic structure of Pd by bringing the d-state closer to the Fermi level than Pd on the NF surface,which optimizied the binding of EHDC intermediates.Additionally,the Mn-doped interlayer acted as a promoter for generating H∗and accelerating the EHDC reaction.This work presents a simple and effective regulation strategy for constructing high-efficient cathode catalyst for the EHDC of chlorinated organic compounds.
基金supported by the National Natural Science Foundation of China(U21A20281)the Special Fund for Young Teachers from Zhengzhou University(JC23557030,JC23257011)+1 种基金the Key Research Projects of Higher Education Institutions of Henan Province(24A530009)the Project of Zhongyuan Critical Metals Laboratory(GJJSGFYQ202336).
文摘Point defect engineering endows catalysts with novel physical and chemical properties,elevating their electrocatalytic efficiency.The introduction of defects emerges as a promising strategy,effectively modifying the electronic structure of active sites.This optimization influences the adsorption energy of intermediates,thereby mitigating reaction energy barriers,altering paths,enhancing selectivity,and ultimately improving the catalytic efficiency of electrocatalysts.To elucidate the impact of defects on the electrocatalytic process,we comprehensively outline the roles of various point defects,their synthetic methodologies,and characterization techniques.Importantly,we consolidate insights into the relationship between point defects and catalytic activity for hydrogen/oxygen evolution and CO_(2)/O_(2)/N_(2) reduction reactions by integrating mechanisms from diverse reactions.This underscores the pivotal role of point defects in enhancing catalytic performance.At last,the principal challenges and prospects associated with point defects in current electrocatalysts are proposed,emphasizing their role in advancing the efficiency of electrochemical energy storage and conversion materials.
文摘The triple bond in N_(2)has an extremely high bond energy and is thus difficult to break.N_(2)is commonly converted into NH3 artificially via the Haber-Bosch process,and NH_(3)can be utilized to produce other nitrogen-containing chemicals.Here,we developed an electron catalyzed method to directly fix N_(2)into azos,by pushing and pulling the electron into and from the aromatic halide with the cyclic voltammetry method.The round-trip journey of electron can successfully weaken the triple bond in N_(2)through the electron pushing-induced aryl radical via a“brick trowel”transition state,and then produce the diazonium ions by pulling the electron out from the diazo radical intermediate.Different azos can be synthesized with this developed electron catalyzed approach.This approach provides a novel concept and practical route for the fixation of N_(2)at atmospheric pressure into chemical products valuable for industrial and commercial applications.
基金financially supported by the Second Tibetan Plateau Scientific Expedition and Research Program(STEP)(No.2019QZKK1003)the Science and Technology Innovation Pro-gram of Hunan Province(No.2022RC1122)。
文摘Layered double hydroxide(LDH)based heterogonous peroxymonosulfate(PMS)activation degradation of pollutants has attracted extensive attention.The challenge is to selectively regulate the traditional free radical dominant degradation pathway into a nonradical degradation pathway.Herein,an interface ar-chitecture of Ti_(3) C_(2) T_(x)-MXene(MXene)loading on the Fe-Al LDH scaffold was developed,which showed excellent stability and robust resistance against harsh conditions.Significantly,the rate constant for tetra-cycline hydrochloride(TC)degradation in the MXene-LDH/PMS process was 0.421 min^(-1),which was ten times faster than the rate constant for pure Fe-Al LDH(0.042 min^(-1)).Specifically,more reactive Fe with the closer d-band center to the Fermi level results in higher electron transfer efficiency.The occupa-tions of Fe-3d orbitals in Mxene/Fe-Al LDH are pushed above the Fermi level to generate,which results in higher PMS adsorption and inhibition of the release of oxygen-containing active species intermedi-ates,leading to the enhanced^(1)O_(2) generation.Additionally,the built-in electric field in the heterojunc-tion was driven by the charge redistribution between MXene and Fe-Al LDH,resulting in a mediated-electron transfer mechanism,differentiating it from the Fe-Al LDH/PMS system.It was fascinating that MXene/Fe-Al LDH achieved satisfactory treatment efficiency in continuous column reactor and real landfill leachate.
基金supported by the National Natural Science Foundation of China(Nos.22171180,22461142137,and 22478242)the Shanghai Municipal Science and Technology Major Project,China.
文摘Despite their attractive features of high energy density,low cost,and safety,polysulfide/iodide flow batteries(SIFBs)are hampered by the sluggish kinetics of the iodide redox couple,which restricts overall performance.Multicomponent sulfides are demonstrated as promising catalysts for accelerating I^(-)/I_(3)^(-) redox reactions.Concurrently,the enhanced configurational entropy arising from multinary compositions drives synergistic effects among constituent elements,establishing a viable pathway to optimize catalytic performance.Building on these foundations,this work introduces a targeted orbital hybridization-optimized electron density strategy to enhance the catalytic activity.Implementing this concept,we developed an in-situ solvothermal synthesis process for an entropy-enhanced AgCuZnSnS_(4) loaded graphite felt(ACZTS/GF)electrode.The engineered electrode demonstrates exceptional electrocatalytic performance with improved bulk conductivity and interfacial charge transfer kinetics within a SIFB.The cell achieves a high energy efficiency of 88.5%at 20 mA·cm^(−2) with 10%state-of-charge.Furthermore,the battery delivers a maximum power density of 119.8 mW·cm^(−2) and exhibits excellent long-term cycling stability.These significant results stem from orbital hybridization-driven electronic state optimization and entropy effect-induced synergistic catalysis.