A 1-dodecanethiol-based phase-transfer protocol is developed for the extraction of noble metal ions from aqueous solution to a hydrocarbon phase, which calls for first mixing the aqueous metal ion solution with an eth...A 1-dodecanethiol-based phase-transfer protocol is developed for the extraction of noble metal ions from aqueous solution to a hydrocarbon phase, which calls for first mixing the aqueous metal ion solution with an ethanolic solution of 1-dodecanethiol, and then extracting the coordination compounds formed between noble metal ions and 1-dodecanethiol into a non-polar organic solvent. A number of characterization techniques, including inductively coupled plasma atomic emission spectroscopy, Fourier transform infrared spectroscopy, and thermogravimetric analysis demonstrate that this protocol could be applied to extract a wide variety of noble metal ions from water to dichlorometh- ane with an efficiency of 〉96%, and has high selectivity for the separation of the noble metal ions from other transition metals. It is therefore an attractive alternative for the extraction of noble metals from water, soil, or waste printed circuit boards.展开更多
基金supported by the 100 Talents Program of the Chinese Academy of Sciences, National Natural Science Foundation of China (Nos. 21173226, 21376247)State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences (Nos. MPCS-2011-D-08, MPCS-2010-C-02)
文摘A 1-dodecanethiol-based phase-transfer protocol is developed for the extraction of noble metal ions from aqueous solution to a hydrocarbon phase, which calls for first mixing the aqueous metal ion solution with an ethanolic solution of 1-dodecanethiol, and then extracting the coordination compounds formed between noble metal ions and 1-dodecanethiol into a non-polar organic solvent. A number of characterization techniques, including inductively coupled plasma atomic emission spectroscopy, Fourier transform infrared spectroscopy, and thermogravimetric analysis demonstrate that this protocol could be applied to extract a wide variety of noble metal ions from water to dichlorometh- ane with an efficiency of 〉96%, and has high selectivity for the separation of the noble metal ions from other transition metals. It is therefore an attractive alternative for the extraction of noble metals from water, soil, or waste printed circuit boards.