期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Modulating ion current rectification generating high energy output in a single glass conical nanopore channel by concentration gradient
1
作者 Li-Xiang Zhang Yu-Bin Zheng +2 位作者 Sheng-Lin Cai Xiao-Hong Cao Yao-Qun Li 《Chinese Chemical Letters》 SCIE CAS CSCD 2015年第1期43-46,共4页
Inspired by biological systems that have the inherent skill to generate considerable bioelectricity from the salt content in fluids with highly selective ion channels and pumps on cell membranes, herein, a fully abiot... Inspired by biological systems that have the inherent skill to generate considerable bioelectricity from the salt content in fluids with highly selective ion channels and pumps on cell membranes, herein, a fully abiotic, single glass conical nanopores energy-harvesting is demonstrated. Ion current rectification (ICR) in negatively charged glass conical nanopores is shown to be controlled by the electrolyte concentration gradient depending on the direction of ion diffusion. The degree of ICR is enhanced with the increasing forward concentration difference. An unusual rectification inversion is observed when the concentration gradient is reversely applied. The maximum power output with the individual nanopore approaches 10^4pW. This facile and cost-efficient energy-harvesting system has the potential to power tiny biomedical devices or construct future clean-energy recovery plants. 展开更多
关键词 Glass conical nanopore channe ion current rectification Concentration gradient Energy generation
原文传递
Rectification of Ion Current Determined by the Nanopore Geometry:Experiments and Modelling
2
作者 周大明 邓云生 +5 位作者 应翠凤 张月川 冯艳晓 黄绮梦 梁丽媛 王德强 《Chinese Physics Letters》 SCIE CAS CSCD 2016年第10期158-162,共5页
We provide a way to precisely control the geometry of a SiNx nanopore by adjusting the applied electric pulse. The pore is generated by applying the current pulse across a SiNx membrane, which is immersed in potassium... We provide a way to precisely control the geometry of a SiNx nanopore by adjusting the applied electric pulse. The pore is generated by applying the current pulse across a SiNx membrane, which is immersed in potassium chloride solution. We can generate single conical and cylindrical pores with different electric pulses. A theoretical model based on the Poisson and Nernst-Planck equations is employed to simulate the ion transport properties in the channel. In turn, we can analyze pore geometries by fitting the experimental current-voltage (I-V) curves. for the conical pores with a pore size of 0.5-2nm in diameter, the slope angles are around -2.5% to -10%. Moreover, the pore orifice can be enlarged slightly by additional repeating pulses. The conic pore lumen becomes close to a cylindrical channel, resulting in a symmetry I-V transport under positive and negative biases. A qualitative understanding of these effects will help us to prepare useful solid-nanopores as demanded. 展开更多
关键词 of on in IS IT by rectification of ion current Determined by the Nanopore Geometry:Experiments and Modelling
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部