Inspired by biological systems that have the inherent skill to generate considerable bioelectricity from the salt content in fluids with highly selective ion channels and pumps on cell membranes, herein, a fully abiot...Inspired by biological systems that have the inherent skill to generate considerable bioelectricity from the salt content in fluids with highly selective ion channels and pumps on cell membranes, herein, a fully abiotic, single glass conical nanopores energy-harvesting is demonstrated. Ion current rectification (ICR) in negatively charged glass conical nanopores is shown to be controlled by the electrolyte concentration gradient depending on the direction of ion diffusion. The degree of ICR is enhanced with the increasing forward concentration difference. An unusual rectification inversion is observed when the concentration gradient is reversely applied. The maximum power output with the individual nanopore approaches 10^4pW. This facile and cost-efficient energy-harvesting system has the potential to power tiny biomedical devices or construct future clean-energy recovery plants.展开更多
We provide a way to precisely control the geometry of a SiNx nanopore by adjusting the applied electric pulse. The pore is generated by applying the current pulse across a SiNx membrane, which is immersed in potassium...We provide a way to precisely control the geometry of a SiNx nanopore by adjusting the applied electric pulse. The pore is generated by applying the current pulse across a SiNx membrane, which is immersed in potassium chloride solution. We can generate single conical and cylindrical pores with different electric pulses. A theoretical model based on the Poisson and Nernst-Planck equations is employed to simulate the ion transport properties in the channel. In turn, we can analyze pore geometries by fitting the experimental current-voltage (I-V) curves. for the conical pores with a pore size of 0.5-2nm in diameter, the slope angles are around -2.5% to -10%. Moreover, the pore orifice can be enlarged slightly by additional repeating pulses. The conic pore lumen becomes close to a cylindrical channel, resulting in a symmetry I-V transport under positive and negative biases. A qualitative understanding of these effects will help us to prepare useful solid-nanopores as demanded.展开更多
基金financial support from the National Natural Science Foundation of China(Nos.21375111,21127005,20975084)the Ph.D.Programs Foundation of the Ministry of Education of China(No.20110121110011)
文摘Inspired by biological systems that have the inherent skill to generate considerable bioelectricity from the salt content in fluids with highly selective ion channels and pumps on cell membranes, herein, a fully abiotic, single glass conical nanopores energy-harvesting is demonstrated. Ion current rectification (ICR) in negatively charged glass conical nanopores is shown to be controlled by the electrolyte concentration gradient depending on the direction of ion diffusion. The degree of ICR is enhanced with the increasing forward concentration difference. An unusual rectification inversion is observed when the concentration gradient is reversely applied. The maximum power output with the individual nanopore approaches 10^4pW. This facile and cost-efficient energy-harvesting system has the potential to power tiny biomedical devices or construct future clean-energy recovery plants.
基金Supported by the National Natural Science Foundation of China under Grant Nos 61471336,51503207 and 61504146the Joint-Scholar of West Light Foundation of Chinese Academy of Sciences
文摘We provide a way to precisely control the geometry of a SiNx nanopore by adjusting the applied electric pulse. The pore is generated by applying the current pulse across a SiNx membrane, which is immersed in potassium chloride solution. We can generate single conical and cylindrical pores with different electric pulses. A theoretical model based on the Poisson and Nernst-Planck equations is employed to simulate the ion transport properties in the channel. In turn, we can analyze pore geometries by fitting the experimental current-voltage (I-V) curves. for the conical pores with a pore size of 0.5-2nm in diameter, the slope angles are around -2.5% to -10%. Moreover, the pore orifice can be enlarged slightly by additional repeating pulses. The conic pore lumen becomes close to a cylindrical channel, resulting in a symmetry I-V transport under positive and negative biases. A qualitative understanding of these effects will help us to prepare useful solid-nanopores as demanded.