The local reconstruction from truncated projection data is one area of interest in image reconstruction for com- puted tomography (CT), which creates the possibility for dose reduction. In this paper, a filtered-bac...The local reconstruction from truncated projection data is one area of interest in image reconstruction for com- puted tomography (CT), which creates the possibility for dose reduction. In this paper, a filtered-backprojection (FBP) algorithm based on the Radon inversion transform is presented to deal with the three-dimensional (3D) local recon- struction in the circular geometry. The algorithm achieves the data filtering in two steps. The first step is the derivative of projections, which acts locally on the data and can thus be carried out accurately even in the presence of data trun- cation. The second step is the nonlocal Hilbert filtering. The numerical simulations and the real data reconstructions have been conducted to validate the new reconstruction algorithm. Compared with the approximate truncation resistant algorithm for computed tomography (ATRACT), not only it has a comparable ability to restrain truncation artifacts, but also its reconstruction efficiency is improved. It is about twice as fast as that of the ATRACT. Therefore, this work provides a simple and efficient approach for the approximate reconstruction from truncated projections in the circular cone-beam CT.展开更多
Let X=Rn +×R denote the underlying manifold of polyradial functions on the Heisenberg group H n. We construct a generalized translation on X=Rn +×R, and establish the Plancherel formula on L2(X,dμ). Usin...Let X=Rn +×R denote the underlying manifold of polyradial functions on the Heisenberg group H n. We construct a generalized translation on X=Rn +×R, and establish the Plancherel formula on L2(X,dμ). Using the Gelfand transform we give the condition of generalized wavelets on L2(X,dμ). Moreover, we show the reconstruction formulas for wavelet packet trnasforms and an inversion formula of the Radon transform on X.展开更多
The new inversion formula of the Laplace transform is considered. In the formula we use only the positive values ofx SiCoLT(x) = c S(x), L(S(x)) = T(x), c = const., x 〉 O,from the real axis. Si is the sinus...The new inversion formula of the Laplace transform is considered. In the formula we use only the positive values ofx SiCoLT(x) = c S(x), L(S(x)) = T(x), c = const., x 〉 O,from the real axis. Si is the sinus transform, Co is the cosines transform of Fourier and L is the Laplace transform.展开更多
The process and characteristics of loading on high-speed railway bridge pile foundation were firstly obtained by means of field research and analysis,and the corresponding loading function was presented.One-dimensiona...The process and characteristics of loading on high-speed railway bridge pile foundation were firstly obtained by means of field research and analysis,and the corresponding loading function was presented.One-dimensional consolidation equation of elastic multilayered soils was then established with single drainage or double drainages under multilevel loading.Moreover,the formulas for calculating effective stress and settlement were derived from the Laplace numerical inversion transform.The three-dimensional composite analysis method of bridge pile group was improved,where the actual load conditions of pile foundation could be simulated,and the consolidation characteristics of soil layers beneath pile were also taken into account.Eventually,a corresponding program named LTPGS was developed to improve the calculation efficiency.The comparison between long-term settlement obtained from the proposed method and the in-situ measurements of pile foundation was illustrated,and a close agreement is obtained.The error between computed and measured results is less than 1 mm,and it gradually reduces with time.It is shown that the proposed method can effectively simulate the long-term settlement of pile foundation and program LTPGS can provide a reliable estimation.展开更多
基金Project supported by the National High Technology Research and Development Program of China (Grant No. 2012AA011603)
文摘The local reconstruction from truncated projection data is one area of interest in image reconstruction for com- puted tomography (CT), which creates the possibility for dose reduction. In this paper, a filtered-backprojection (FBP) algorithm based on the Radon inversion transform is presented to deal with the three-dimensional (3D) local recon- struction in the circular geometry. The algorithm achieves the data filtering in two steps. The first step is the derivative of projections, which acts locally on the data and can thus be carried out accurately even in the presence of data trun- cation. The second step is the nonlocal Hilbert filtering. The numerical simulations and the real data reconstructions have been conducted to validate the new reconstruction algorithm. Compared with the approximate truncation resistant algorithm for computed tomography (ATRACT), not only it has a comparable ability to restrain truncation artifacts, but also its reconstruction efficiency is improved. It is about twice as fast as that of the ATRACT. Therefore, this work provides a simple and efficient approach for the approximate reconstruction from truncated projections in the circular cone-beam CT.
基金Supported by the Foundation of the National Natural Science of China( No.1 0 0 71 0 39) and the Foundation of Edu-cation Commission of Jiangsu Province
文摘Let X=Rn +×R denote the underlying manifold of polyradial functions on the Heisenberg group H n. We construct a generalized translation on X=Rn +×R, and establish the Plancherel formula on L2(X,dμ). Using the Gelfand transform we give the condition of generalized wavelets on L2(X,dμ). Moreover, we show the reconstruction formulas for wavelet packet trnasforms and an inversion formula of the Radon transform on X.
文摘The new inversion formula of the Laplace transform is considered. In the formula we use only the positive values ofx SiCoLT(x) = c S(x), L(S(x)) = T(x), c = const., x 〉 O,from the real axis. Si is the sinus transform, Co is the cosines transform of Fourier and L is the Laplace transform.
基金Project(2012QNZT050)supported by the Special Fund for Basic Scientific Research of Central Colleges,ChinaProjects(51208518,U1361204,51208519,51108464)supported by the National Natural Science Foundation of China+1 种基金Project supported by the Postdoctoral Foundation of Central South University,ChinaProjects(2013RS4030,2012RS4002)sponsored by Hunan Postdoctoral Scientific Program,China
文摘The process and characteristics of loading on high-speed railway bridge pile foundation were firstly obtained by means of field research and analysis,and the corresponding loading function was presented.One-dimensional consolidation equation of elastic multilayered soils was then established with single drainage or double drainages under multilevel loading.Moreover,the formulas for calculating effective stress and settlement were derived from the Laplace numerical inversion transform.The three-dimensional composite analysis method of bridge pile group was improved,where the actual load conditions of pile foundation could be simulated,and the consolidation characteristics of soil layers beneath pile were also taken into account.Eventually,a corresponding program named LTPGS was developed to improve the calculation efficiency.The comparison between long-term settlement obtained from the proposed method and the in-situ measurements of pile foundation was illustrated,and a close agreement is obtained.The error between computed and measured results is less than 1 mm,and it gradually reduces with time.It is shown that the proposed method can effectively simulate the long-term settlement of pile foundation and program LTPGS can provide a reliable estimation.