Research on quantitative models of suspended sediment concentration (SSC) using remote sensing technology is very important to understand the scouting and siltation variation in harbors and water channels. Based onl...Research on quantitative models of suspended sediment concentration (SSC) using remote sensing technology is very important to understand the scouting and siltation variation in harbors and water channels. Based onlaboratory study of the relationship between different suspended sediment concentrations and reflectance spectra measured synchronously, quantitative inversion models of SSC based on single factor, band ratio and sediment parameter were developed, which provides an effective method to retrieve the SSC from satellite images. Results show that the bl (430-500nm) and b3 (670-735nm) are the optimal wavelengths for the estimation of lower SSC and the b4 (780-835nm) is the optimal wavelength to estimate the higher SSC. Furthermore the band ratio B2/B3 can be used to simulate the variation of lower SSC better and the B4/B1 to estimate the higher SSC accurately. Also the inversion models developed by sediment parameters of higher and lower SSCs can get a relatively higher accuracy than the single factor and band ratio models.展开更多
In multi-component oil and gas exploration using ocean bottom nodes,converted wave data is rich in lithological and fracture information.One of the urgent problems to be solved is how to construct an accurate shear wa...In multi-component oil and gas exploration using ocean bottom nodes,converted wave data is rich in lithological and fracture information.One of the urgent problems to be solved is how to construct an accurate shear wave velocity model of the shallow sea bottom by leveraging the seismic wave information at the fluid-solid interface in the ocean,and improve the lateral resolution of marine converted wave data.Given that the dispersion characteristics of surface waves are sensitive to the S-wave velocity of subsurface media,and that Scholte surface waves,which propagate at the interface between liquid and solid media,exist in the data of marine oil and gas exploration,this paper proposes a Scholte wave inversion and modeling method based on oil and gas exploration using ocean bottom nodes.By using the method for calculating the Scholte wave dispersion spectrum based on the Bessel kernel function,the accuracy of dispersion spectrum analysis is improved,and more accurate dispersion curves are picked up.Through the adaptive weighted least squares Scholte wave dispersion inversion algorithm,the Scholte wave dispersion equation for liquid-solid media is solved,and the shear wave velocity model of the shallow sea bottom is calculated.Theoretical tests and applications of realdata have proven that this method can significantly improve the lateral resolution of converted wave data,provide high-quality data for subsequent inversion of marine multi-component oil and gas exploration data and reservoir reflection information,and contribute to the development of marine oil and gas exploration technology.展开更多
Groundwater inverse modeling is a vital technique for estimating unmeasurable model parameters and enhancing numerical simulation accuracy.This paper comprehensively reviews the current advances and future prospects o...Groundwater inverse modeling is a vital technique for estimating unmeasurable model parameters and enhancing numerical simulation accuracy.This paper comprehensively reviews the current advances and future prospects of metaheuristic algorithm-based groundwater model parameter inversion.Initially,the simulation-optimization parameter estimation framework is introduced,which involves the integration of simulation models with metaheuristic algorithms.The subsequent sections explore the fundamental principles of four widely employed metaheuristic algorithms-genetic algorithm(GA),particle swarm optimization(PSO),simulated annealing(SA),and differential evolution(DE)-highlighting their recent applications in water resources research and related areas.Then,a solute transport model is designed to illustrate how to apply and evaluate these four optimization algorithms in addressing challenges related to model parameter inversion.Finally,three noteworthy directions are presented to address the common challenges among current studies,including balancing the diverse exploration and centralized exploitation within metaheuristic algorithms,local approxi-mate error of the surrogate model,and the curse of dimensionality in spatial variational heterogeneous pa-rameters.In summary,this review paper provides theoretical insights and practical guidance for further advancements in groundwater inverse modeling studies.展开更多
Understanding dynamic visualization of mining-induced stress is of great significance to disaster prevention and control in coal mining activities.In this study,three theoretical models,including linear,polynomial,and...Understanding dynamic visualization of mining-induced stress is of great significance to disaster prevention and control in coal mining activities.In this study,three theoretical models,including linear,polynomial,and exponential models,are proposed to inverse the mining-induced stress through the acquisition and analysis of hydraulic support stress and micro-seismicity in the coal mining face.The distribution of mining-induced stress in the coal seam are graphed by fitting two key stress parameters including hydraulic support stress and peak stress,and two key zones including goaf zone and in situ stress zone.These key stress parameters and zones are defined based on the critical nodes of the model curve.According to the geological background of Mataihao coal mine in Erdos,Inner Mongolia Autonomous Region,China,the contours of mining-induced stress are graphed through the stress calculation of these three inversion theoretical models.The multi-monitoring data of micro-seismicity,drilling chips,advanced borehole stress and bolts axial force are used to verify the key stress parameters and zones of the theoretical models.It shows that the monitoring data are in good agreement with the distribution of inversed results.It should be emphasized that,if the fault structure exists around the mining face,the mining-induced stress decreases obviously when the mining face is passing through the faults,and the location of the peak stress will be closer to the mining face.The results in this study could provide methods for early prevention of extreme mining-induced stress and disaster control in the mining activities.展开更多
Accurate modeling and parameter estimation of sea clutter are fundamental for effective sea surface target detection.With the improvement of radar resolution,sea clutter exhibits a pronounced heavy-tailed characterist...Accurate modeling and parameter estimation of sea clutter are fundamental for effective sea surface target detection.With the improvement of radar resolution,sea clutter exhibits a pronounced heavy-tailed characteristic,rendering traditional distribution models and parameter estimation methods less effective.To address this,this paper proposes a dual compound-Gaussian model with inverse Gaussian texture(CG-IG)distribution model and combines it with an improved Adam algorithm to introduce a method for parameter correction.This method effectively fits sea clutter with heavy-tailed characteristics.Experiments with real measured sea clutter data show that the dual CGIG distribution model,after parameter correction,accurately describes the heavy-tailed phenomenon in sea clutter amplitude distribution,and the overall mean square error of the distribution is reduced.展开更多
In order to improve reservoir fluid recognition, the sensitivity of array resistivity response to the difference of the invasion properties in both oil-bearing layers and water layers is analyzed. Then the primary inv...In order to improve reservoir fluid recognition, the sensitivity of array resistivity response to the difference of the invasion properties in both oil-bearing layers and water layers is analyzed. Then the primary inversion is carried out based on the array resistivity log. The mud invasion process is numerically simulated based on the oil-water flow equation and water convection diffusion equation. The results show that the radial resistivity of a fresh mud-invaded oil-bearing layer presents complex distribution characteristics, such as nonlinear increase, increasing to decreasing and low resistivity annulus, and the resistive invasion profile of a water layer is monotonic. Under specific conditions, array resistivity log can reflect these changes and the array induction log is more sensitive. Nevertheless, due to the effect of factors like large invasion depth, reservoir physical and oil-bearing properties, the measured apparent resistivity may differ greatly from the actual mud filtrate invasion profile in an oil-bearing layer. We proposed a five-parameter formation model to simulate the complex resistivity distribution of fresh mud-invaded formation. Then, based on the principle of non-linear least squares, the measured array resistivity log is used for inversion with the Marquardt method. It is demonstrated that the inverted resistivity is typically non-monotonic in oil-bearing layers and is monotonic in water layers. Processing of some field data shows that this is helpful in achieving efficient reservoir fluid recognition.展开更多
Seismic traveltime tomographic inversion has played an important role in detecting the internal structure of the solid earth. We use a set of blocks to approximate geologically complex media that cannot be well descri...Seismic traveltime tomographic inversion has played an important role in detecting the internal structure of the solid earth. We use a set of blocks to approximate geologically complex media that cannot be well described by layered models or cells. The geological body is described as an aggregate of arbitrarily shaped blocks,which are separated by triangulated interfaces. We can describe the media as homogenous or heterogeneous in each block. We define the velocities at the given rectangle grid points for each block,and the heterogeneous velocities in each block can be calculated by a linear interpolation algorithm. The parameters of the velocity grid positions are independent of the model parameterization,which is advantageous in the joint inversion of the velocities and the node depths of an interface. We implement a segmentally iterative ray tracer to calculate traveltimes in the 3D heterogeneous block models.The damped least squares method is employed in seismic traveltime inversion,which includes the partial derivatives of traveltime with respect to the depths of nodes in the triangulated interfaces and velocities defined in rectangular grids. The numerical tests indicate that the node depths of a triangulated interface and homogeneous velocity distributions can be well inverted in a stratified model.展开更多
It is now common practice to perform simultaneous traveltime inversion for the velocity field and the reflector geometry in reflection/refraction tomography, or the velocity field and the hypocenter locations in regio...It is now common practice to perform simultaneous traveltime inversion for the velocity field and the reflector geometry in reflection/refraction tomography, or the velocity field and the hypocenter locations in regional earthquake tomography, but seldom are all three classes of model parameters updated simultaneously. This is mainly due to the trade-off between the different types of model parameters and the lack of different seismic phases to constrain the model parameters. Using a spherical-coordinate ray tracing algorithm for first and later(primary reflected) arrival tracing algorithm in combination with a popular linearized inversion solver, it is possible to simultaneously recover the three classes of model parameters in regional or global tomographic studies. In this paper we incorporate the multistage irregular shortest-path ray tracing algorithm(in a spherical coordinate system) with a subspace inversion solver to formulate a simultaneous inversion algorithm for triple model parameters updating using direct and later arrival time information.Comparison tests for two sets of data(noise free and added noise) indicate that the new triple-class parameter inversion algorithm is capable of obtaining nearly the same results as the double-class parameter inversion scheme. Furthermore,the proposed multi-parameter type inversion method is not sensitive to a modest level of picking error in the traveltime data, and also performs well with a relatively large uncertainty in earthquake hypocentral locations. This shows it to be a feasible and promising approach in regional or global tomographic applications.展开更多
The fate of riverine sulfate ion (SO_(4)^(2-)) and its environmental effects in arid environment are difficult to evaluate due to its complicated sources and strongly coupled behaviors with water cycle which is signif...The fate of riverine sulfate ion (SO_(4)^(2-)) and its environmental effects in arid environment are difficult to evaluate due to its complicated sources and strongly coupled behaviors with water cycle which is significantly modified by humans.To understand the sulfur cycle in aquatic systems in arid environment,the chemical and sulfur and oxygen isotopic compositions (δ^(34)S_(SO4)and δ^(18)O_(SO4)) of major rivers around the Badain Jaran Desert,northwestern China,were investigated.These rivers had averaged SO_(4)^(2-)content at 1336μmol/L,over 10times higher than the global average.The δ^(34)S_(SO4)and δ^(18)O_(SO4)values ranged from-5.3‰to+11.8‰and+1.6‰to+12.8‰,respectively.The end-member analysis and the inverse model showed that riverine sulfate was mainly derived from evaporites dissolution (0-87%),sulfide oxidation (13%-100%) and precipitation (0-33%),indicating heterogeneity in sulfur sources and behaviors along the river drainage with the lithology variations and climate gradients.Multiple isotopic tools combining with hydro-chemistry compositions could be applied to reveal sulfur cycle in arid environment.Based on the calculation,sulfide oxidation plays the primary role in the headwater and upstream in the Qilian-Mountains area,where sulfide is widely exposed.While the proportion of evaporites dissolution contributing to riverine sulfate is much higher in downstream in a drier environment.Besides,less precipitation and higher temperature can lead to more intensive evaporation,affecting the process of sulfide oxidation and enhancing the rates of evaporites dissolution and sulfate precipitation in the basin.展开更多
Aircraft wake turbulence is an inherent outcome of aircraft flight,presenting a substan-tial challenge to air traffic control,aviation safety and operational efficiency.Building upon data obtained from coherent Dopple...Aircraft wake turbulence is an inherent outcome of aircraft flight,presenting a substan-tial challenge to air traffic control,aviation safety and operational efficiency.Building upon data obtained from coherent Doppler Lidar detection,and combining Dynamic Bayesian Networks(DBN)with Genetic Algorithm-optimized Backpropagation Neural Networks(GA-BPNN),this paper proposes a model for the inversion of wake vortex parameters.During the wake vortex flow field simulation analysis,the wind and turbulent environment were initially superimposed onto the simulated wake velocity field.Subsequently,Lidar-detected echoes of the velocity field are simulated to obtain a data set similar to the actual situation for model training.In the case study validation,real measured data underwent preprocessing and were then input into the established model.This allowed us to construct the wake vortex characteristic parameter inversion model.The final results demonstrated that our model achieved parameter inversion with only minor errors.In a practical example,our model in this paper significantly reduced the mean square error of the inverted velocity field when compared to the traditional algorithm.This study holds significant promise for real-time monitoring of wake vortices at airports,and is proved a crucial step in developing wake vortex interval standards.展开更多
Grassland biomass is an important parameter of grassland ecosystems.The complexity of the grassland canopy vegetation spectrum makes the long-term assessment of grassland growth a challenge.Few studies have explored t...Grassland biomass is an important parameter of grassland ecosystems.The complexity of the grassland canopy vegetation spectrum makes the long-term assessment of grassland growth a challenge.Few studies have explored the original spectral information of typical grasslands in Inner Mongolia and examined the influence of spectral information on aboveground biomass(AGB)estimation.In order to improve the accuracy of vegetation index inversion of grassland AGB,this study combined ground and Unmanned Aerial Vehicle(UAV)remote sensing technology and screened sensitive bands through ground hyperspectral data transformation and correlation analysis.The narrow band vegetation indices were calculated,and ground and airborne hyperspectral inversion models were established.Finally,the accuracy of the model was verified.The results showed that:(1)The vegetation indices constructed based on the ASD FieldSpec 4 and the UAV were significantly correlated with the dry and fresh weight of AGB.(2)The comparison between measured R^(2) with the prediction R^(2) indicated that the accuracy of the model was the best when using the Soil-Adjusted Vegetation Index(SAVI)as the independent variable in the analysis of AGB(fresh weight/dry weight)and four narrow-band vegetation indices.The SAVI vegetation index showed better applicability for biomass monitoring in typical grassland areas of Inner Mongolia.(3)The obtained ground and airborne hyperspectral data with the optimal vegetation index suggested that the dry weight of AGB has the best fitting effect with airborne hyperspectral data,where y=17.962e^(4.672x),the fitting R^(2) was 0.542,the prediction R^(2)was 0.424,and RMSE and REE were 57.03 and 0.65,respectively.Therefore,established vegetation indices by screening sensitive bands through hyperspectral feature analysis can significantly improve the inversion accuracy of typical grassland biomass in Inner Mongolia.Compared with ground monitoring,airborne hyperspectral monitoring better reflects the inversion of actual surface biomass.It provides a reliable modeling framework for grassland AGB monitoring and scientific and technological support for grazing management.展开更多
A hybrid compensation scheme for piezoelectric ceramic actuators(PEAs)is proposed.In the hybrid compensation scheme,the input rate-dependent hysteresis characteristics of the PEAs are compensated.The feedforward contr...A hybrid compensation scheme for piezoelectric ceramic actuators(PEAs)is proposed.In the hybrid compensation scheme,the input rate-dependent hysteresis characteristics of the PEAs are compensated.The feedforward controller is a novel input rate-dependent neural network hysteresis inverse model,while the feedback controller is a proportion integration differentiation(PID)controller.In the proposed inverse model,an input ratedependent auxiliary inverse operator(RAIO)and output of the hysteresis construct the expanded input space(EIS)of the inverse model which transforms the hysteresis inverse with multi-valued mapping into single-valued mapping,and the wiping-out,rate-dependent and continuous properties of the RAIO are analyzed in theories.Based on the EIS method,a hysteresis neural network inverse model,namely the dynamic back propagation neural network(DBPNN)model,is established.Moreover,a hybrid compensation scheme for the PEAs is designed to compensate for the hysteresis.Finally,the proposed method,the conventional PID controller and the hybrid controller with the modified input rate-dependent Prandtl-Ishlinskii(MRPI)model are all applied in the experimental platform.Experimental results show that the proposed method has obvious superiorities in the performance of the system.展开更多
Hyper spectrum remote sensing with fine spectrum information is an efficient method to estimate the verticillium wilt of cotton. The research was conducted in Xinjiang, the largest cotton plant region of China, by usi...Hyper spectrum remote sensing with fine spectrum information is an efficient method to estimate the verticillium wilt of cotton. The research was conducted in Xinjiang, the largest cotton plant region of China, by using the data which were collected both by canopy spectrum infected with verticillium wilt and severity level (SL) in the year 2005-2006. The quantitative correlation was analyzed between SL and canopy of reflectance spectrum or derivative spectrum reflectance. The results indicated that spectrum characteristics of cotton canopy infected with verticillium wilt changed regularly with the increase of SL in different periods and varieties, Spectrum reflectance increased in the visible light region (620-700 nm) with the increase of the SL, which inverted in near-infrared region and was extremely significant in the region of (780-1 300 nm). When SL attained b2 (DI = 25), cotton canopy infected with verticillium wilt was used as a watershed and diagnosed index in the beginning stages of the disease. The results also indicated that there were marked different characteristics of the first derivative spectrum in these SL, it changed significantly in the red edge ranges (680-760 nm) with different SL, i.e., red edge swing decreased, and red edge position equally moved to the blue. In this study 1 001-1 110 nm and 1 205- 1 320 nm were selected out as sensitive bands for SL of canopy. Inversion models established for estimating cotton canopy infected with verticillium wilt reached the most significant level. Finally, the different spectrum characteristics of cotton canopy infected with verticillium wilt were marked, some inversion models were established, which could estimate SL of canopy infected with verticillium wilt. The best recognized model was the first derivative spectra at (FD 731 nm- FD 1317 nm), and it might be used to forecast the position of cotton canopy infected with verticillium wilt quantitatively.展开更多
This paper describes an innovative, genetic algorithm based inverse model of nonlinear transducer. In the inverse modeling, using a genetic algorithm, the unknown coefficients of the model are estimated accurately. T...This paper describes an innovative, genetic algorithm based inverse model of nonlinear transducer. In the inverse modeling, using a genetic algorithm, the unknown coefficients of the model are estimated accurately. The simulation results indicate that this technique provides greater flexibility and suitability than the existing methods. It is very easy to modify the nonlinear transducer on line. Thus the method improves the transducer's accuracy. With the help of genetic algorithm (GA), the model coefficients' training are less likely to be trapped in local minima than traditional gradient based search algorithms.展开更多
This paper presents a unique and formal method of quantifying the similarity or distance between sedimentary facies successions from measured sections in outcrop or drilled wells and demonstrates its first application...This paper presents a unique and formal method of quantifying the similarity or distance between sedimentary facies successions from measured sections in outcrop or drilled wells and demonstrates its first application in inverse stratigraphic modeling. A sedimentary facies succession is represented with a string of symbols, or facies codes in its natural vertical order, in which each symbol brings with it one attribute such as thickness for the facies. These strings are called attributed strings. A similarity measure is defined between the attributed strings based on a syntactic pattern-recognition technique. A dynamic programming algorithm is used to calculate the similarity. Inverse stratigraphic modeling aims to generate quantitative 3D facies models based on forward stratigraphic modeling that honors observed datasets. One of the key techniques in inverse stratigraphic modeling is how to quantify the similarity or distance between simulated and observed sedimentary facies successions at data locations in order for the forward model to condition the simulation results to the observed dataset such as measured sections or drilled wells. This quantification technique comparing sedimentary successions is demonstrated in the form of a cost function based on the defined distance in our inverse stratigraphic modeling implemented with forward modeling optimization.展开更多
Leaf biochemical properties have been widely assessed using hyperspectral reflectance information by inversion of PROSPECT model or by using hyperspectral indices, but few studies have focused on arid ecosystems. As a...Leaf biochemical properties have been widely assessed using hyperspectral reflectance information by inversion of PROSPECT model or by using hyperspectral indices, but few studies have focused on arid ecosystems. As a dominant species of riparian ecosystems in arid lands, Populus euphratica Oliv. is an unusual tree species with polymorphic leaves along the vertical profile of canopy corresponding to different growth stages. In this study, we evaluated both the inversed PROSPECT model and hyperspectral indices for estimating biochemical properties of P. euphratica leaves. Both the shapes and biochemical properties of P. euphratica leaves were found to change with the heights from ground surface. The results indicated that the model inversion calibrated for each leaf shape performed much better than the model calibrated for all leaf shapes, and also better than hyperspectral indices. Similar results were obtained for estimations of equivalent water thickness (EWT) and leaf mass per area (LMA). Hyperspectral indices identified in this study for estimating these leaf properties had root mean square error (RMSE) and R2 values between those obtained with the two calibration strategies using the inversed PROSPECT model. Hence, the inversed PROSPECT model can be applied to estimate leaf biochemical properties in arid ecosystems, but the calibration to the model requires special attention.展开更多
On 3 July 2015, a Mw 6.4 earthquake occurred on a blind fault struck Pishan, Xinjiang,China. By combining Crustal Movement Observation Network of China(CMONOC) and other Static Global Positioning System(GPS) sites...On 3 July 2015, a Mw 6.4 earthquake occurred on a blind fault struck Pishan, Xinjiang,China. By combining Crustal Movement Observation Network of China(CMONOC) and other Static Global Positioning System(GPS) sites surrounding Pishan region, it provides a rare chance for us to constrain the slip rupture for such a moderate event. The maximum displacement is up to 12 cm, 2 cm for coseismic and postseismic deformation, respectively,and both the deformation patterns show a same direction moving northeastward. With rectangular dislocation model, a magnitude of Mw6.48, Mw6.3 is calculated based on coseismic, postseismic deformation respectively. Our result indicates the western Kunlun range is still moving toward Tarim Basin followed by an obvious postseismic slip associated with this earthquake. To determine a more reasonable model for postseismic deformation, a longer GPS dataset will be needed.展开更多
To avoid impacts and vibrations during the processes of acceleration and deceleration while possessing flexible working ways for cable-suspended parallel robots(CSPRs),point-to-point trajectory planning demands an und...To avoid impacts and vibrations during the processes of acceleration and deceleration while possessing flexible working ways for cable-suspended parallel robots(CSPRs),point-to-point trajectory planning demands an under-constrained cable-suspended parallel robot(UCPR)with variable angle and height cable mast as described in this paper.The end-effector of the UCPR with three cables can achieve three translational degrees of freedom(DOFs).The inverse kinematic and dynamic modeling of the UCPR considering the angle and height of cable mast are completed.The motion trajectory of the end-effector comprising six segments is given.The connection points of the trajectory segments(except for point P3 in the X direction)are devised to have zero instantaneous velocities,which ensure that the acceleration has continuity and the planned acceleration curve achieves smooth transition.The trajectory is respectively planned using three algebraic methods,including fifth degree polynomial,cycloid trajectory,and double-S velocity curve.The results indicate that the trajectory planned by fifth degree polynomial method is much closer to the given trajectory of the end-effector.Numerical simulation and experiments are accomplished for the given trajectory based on fifth degree polynomial planning.At the points where the velocity suddenly changes,the length and tension variation curves of the planned and unplanned three cables are compared and analyzed.The OptiTrack motion capture system is adopted to track the end-effector of the UCPR during the experiment.The effectiveness and feasibility of fifth degree polynomial planning are validated.展开更多
Even though a large number of large-scale arch dams with height larger than 200 m have been built in the world, the transient groundwater flow behaviors and the seepage control effects in the dam foundations under dif...Even though a large number of large-scale arch dams with height larger than 200 m have been built in the world, the transient groundwater flow behaviors and the seepage control effects in the dam foundations under difficult geological conditions are rarely reported. This paper presents a case study on the transient groundwater flow behaviors in the rock foundation of Jinping I double-curvature arch dam, the world's highest dam of this type to date that has been completed. Taking into account the geological settings at the site, an inverse modeling technique utilizing the time series measurements of both hydraulic head and discharge was adopted to back-calculate the permeability of the foundation rocks,which effectively improves the uniqueness and reliability of the inverse modeling results. The transient seepage flow in the dam foundation during the reservoir impounding was then modeled with a parabolic variational inequality(PVI) method. The distribution of pore water pressure, the amount of leakage, and the performance of the seepage control system in the dam foundation during the entire impounding process were finally illustrated with the numerical results.展开更多
Rapid and accurate identification of the characteristics(source location,number,and intensity)of pollution sources is essential for emergency assessment of contamination events.Compared with single-point source iden-t...Rapid and accurate identification of the characteristics(source location,number,and intensity)of pollution sources is essential for emergency assessment of contamination events.Compared with single-point source iden-tification,the reconstruction of multiple sources is more challenging.In this study,a two-step inversion method is proposed for multi-point pollution source reconstruction from limited measurements with the number of sources unknown.The applicability of the proposed method is validated with a set of synthetic experiments correspond-ing to one-,two-,and three-point pollution sources.The results show that the number and locations of pollution sources are retrieved exactly the same as prescribed,and the source intensities are estimated with negligible errors.The algorithm exhibits good performance in single-and multi-point pollution source identification,and its accuracy and efficiency of identification do not deteriorate with the increase in the number of sources.Some limitations of the algorithm,together with its capabilities,are also discussed in this paper.展开更多
基金Under the auspices of the Key Program of National Natural Science Foundation of China(No.50339010)Huaihe Valley Open Fund Projects(No.Hx2007)
文摘Research on quantitative models of suspended sediment concentration (SSC) using remote sensing technology is very important to understand the scouting and siltation variation in harbors and water channels. Based onlaboratory study of the relationship between different suspended sediment concentrations and reflectance spectra measured synchronously, quantitative inversion models of SSC based on single factor, band ratio and sediment parameter were developed, which provides an effective method to retrieve the SSC from satellite images. Results show that the bl (430-500nm) and b3 (670-735nm) are the optimal wavelengths for the estimation of lower SSC and the b4 (780-835nm) is the optimal wavelength to estimate the higher SSC. Furthermore the band ratio B2/B3 can be used to simulate the variation of lower SSC better and the B4/B1 to estimate the higher SSC accurately. Also the inversion models developed by sediment parameters of higher and lower SSCs can get a relatively higher accuracy than the single factor and band ratio models.
基金financially supported by the Scientific Research and Technology Development Project of China National Petroleum Corporation(No.2021ZG02)titled"Development of Seismic Data Processing Software for Ocean Nodes(OBN)"。
文摘In multi-component oil and gas exploration using ocean bottom nodes,converted wave data is rich in lithological and fracture information.One of the urgent problems to be solved is how to construct an accurate shear wave velocity model of the shallow sea bottom by leveraging the seismic wave information at the fluid-solid interface in the ocean,and improve the lateral resolution of marine converted wave data.Given that the dispersion characteristics of surface waves are sensitive to the S-wave velocity of subsurface media,and that Scholte surface waves,which propagate at the interface between liquid and solid media,exist in the data of marine oil and gas exploration,this paper proposes a Scholte wave inversion and modeling method based on oil and gas exploration using ocean bottom nodes.By using the method for calculating the Scholte wave dispersion spectrum based on the Bessel kernel function,the accuracy of dispersion spectrum analysis is improved,and more accurate dispersion curves are picked up.Through the adaptive weighted least squares Scholte wave dispersion inversion algorithm,the Scholte wave dispersion equation for liquid-solid media is solved,and the shear wave velocity model of the shallow sea bottom is calculated.Theoretical tests and applications of realdata have proven that this method can significantly improve the lateral resolution of converted wave data,provide high-quality data for subsequent inversion of marine multi-component oil and gas exploration data and reservoir reflection information,and contribute to the development of marine oil and gas exploration technology.
基金supported by the Fundamental Research Funds for the Central Universities(XJ2023005201)the National Natural Science Foundation of China(NSFC:U2267217,42141011,and 42002254).
文摘Groundwater inverse modeling is a vital technique for estimating unmeasurable model parameters and enhancing numerical simulation accuracy.This paper comprehensively reviews the current advances and future prospects of metaheuristic algorithm-based groundwater model parameter inversion.Initially,the simulation-optimization parameter estimation framework is introduced,which involves the integration of simulation models with metaheuristic algorithms.The subsequent sections explore the fundamental principles of four widely employed metaheuristic algorithms-genetic algorithm(GA),particle swarm optimization(PSO),simulated annealing(SA),and differential evolution(DE)-highlighting their recent applications in water resources research and related areas.Then,a solute transport model is designed to illustrate how to apply and evaluate these four optimization algorithms in addressing challenges related to model parameter inversion.Finally,three noteworthy directions are presented to address the common challenges among current studies,including balancing the diverse exploration and centralized exploitation within metaheuristic algorithms,local approxi-mate error of the surrogate model,and the curse of dimensionality in spatial variational heterogeneous pa-rameters.In summary,this review paper provides theoretical insights and practical guidance for further advancements in groundwater inverse modeling studies.
基金financially supported by the Independent Research fund of Joint National Local Engineering Research Centre for Safe and Precise Coal Mining(Anhui University of Science and Technology)(Grant No.EC2022001)State Key Research Development Program of China(Grant No.2022YFC3004602)the Fundamental Research Funds for the Central Universities(Grant No.2022YJSLJ08).
文摘Understanding dynamic visualization of mining-induced stress is of great significance to disaster prevention and control in coal mining activities.In this study,three theoretical models,including linear,polynomial,and exponential models,are proposed to inverse the mining-induced stress through the acquisition and analysis of hydraulic support stress and micro-seismicity in the coal mining face.The distribution of mining-induced stress in the coal seam are graphed by fitting two key stress parameters including hydraulic support stress and peak stress,and two key zones including goaf zone and in situ stress zone.These key stress parameters and zones are defined based on the critical nodes of the model curve.According to the geological background of Mataihao coal mine in Erdos,Inner Mongolia Autonomous Region,China,the contours of mining-induced stress are graphed through the stress calculation of these three inversion theoretical models.The multi-monitoring data of micro-seismicity,drilling chips,advanced borehole stress and bolts axial force are used to verify the key stress parameters and zones of the theoretical models.It shows that the monitoring data are in good agreement with the distribution of inversed results.It should be emphasized that,if the fault structure exists around the mining face,the mining-induced stress decreases obviously when the mining face is passing through the faults,and the location of the peak stress will be closer to the mining face.The results in this study could provide methods for early prevention of extreme mining-induced stress and disaster control in the mining activities.
文摘Accurate modeling and parameter estimation of sea clutter are fundamental for effective sea surface target detection.With the improvement of radar resolution,sea clutter exhibits a pronounced heavy-tailed characteristic,rendering traditional distribution models and parameter estimation methods less effective.To address this,this paper proposes a dual compound-Gaussian model with inverse Gaussian texture(CG-IG)distribution model and combines it with an improved Adam algorithm to introduce a method for parameter correction.This method effectively fits sea clutter with heavy-tailed characteristics.Experiments with real measured sea clutter data show that the dual CGIG distribution model,after parameter correction,accurately describes the heavy-tailed phenomenon in sea clutter amplitude distribution,and the overall mean square error of the distribution is reduced.
基金funded by the National Natural Science Foundation (41174009)National Major Science &Technology Projects (2011ZX05020, 2011ZX05035,2011ZX05003, 2011ZX05007)
文摘In order to improve reservoir fluid recognition, the sensitivity of array resistivity response to the difference of the invasion properties in both oil-bearing layers and water layers is analyzed. Then the primary inversion is carried out based on the array resistivity log. The mud invasion process is numerically simulated based on the oil-water flow equation and water convection diffusion equation. The results show that the radial resistivity of a fresh mud-invaded oil-bearing layer presents complex distribution characteristics, such as nonlinear increase, increasing to decreasing and low resistivity annulus, and the resistive invasion profile of a water layer is monotonic. Under specific conditions, array resistivity log can reflect these changes and the array induction log is more sensitive. Nevertheless, due to the effect of factors like large invasion depth, reservoir physical and oil-bearing properties, the measured apparent resistivity may differ greatly from the actual mud filtrate invasion profile in an oil-bearing layer. We proposed a five-parameter formation model to simulate the complex resistivity distribution of fresh mud-invaded formation. Then, based on the principle of non-linear least squares, the measured array resistivity log is used for inversion with the Marquardt method. It is demonstrated that the inverted resistivity is typically non-monotonic in oil-bearing layers and is monotonic in water layers. Processing of some field data shows that this is helpful in achieving efficient reservoir fluid recognition.
基金supported financially by the Ministry of Science and Technology of China(2011CB808904)the National Natural Science Foundation of China(Nos.41021063,41174075,41004034,41174043,and 41274090)
文摘Seismic traveltime tomographic inversion has played an important role in detecting the internal structure of the solid earth. We use a set of blocks to approximate geologically complex media that cannot be well described by layered models or cells. The geological body is described as an aggregate of arbitrarily shaped blocks,which are separated by triangulated interfaces. We can describe the media as homogenous or heterogeneous in each block. We define the velocities at the given rectangle grid points for each block,and the heterogeneous velocities in each block can be calculated by a linear interpolation algorithm. The parameters of the velocity grid positions are independent of the model parameterization,which is advantageous in the joint inversion of the velocities and the node depths of an interface. We implement a segmentally iterative ray tracer to calculate traveltimes in the 3D heterogeneous block models.The damped least squares method is employed in seismic traveltime inversion,which includes the partial derivatives of traveltime with respect to the depths of nodes in the triangulated interfaces and velocities defined in rectangular grids. The numerical tests indicate that the node depths of a triangulated interface and homogeneous velocity distributions can be well inverted in a stratified model.
基金partially supported by the Doctoral Programming Research Fund of Higher Education, Chinese Ministry of Education (No. 20110205110010)
文摘It is now common practice to perform simultaneous traveltime inversion for the velocity field and the reflector geometry in reflection/refraction tomography, or the velocity field and the hypocenter locations in regional earthquake tomography, but seldom are all three classes of model parameters updated simultaneously. This is mainly due to the trade-off between the different types of model parameters and the lack of different seismic phases to constrain the model parameters. Using a spherical-coordinate ray tracing algorithm for first and later(primary reflected) arrival tracing algorithm in combination with a popular linearized inversion solver, it is possible to simultaneously recover the three classes of model parameters in regional or global tomographic studies. In this paper we incorporate the multistage irregular shortest-path ray tracing algorithm(in a spherical coordinate system) with a subspace inversion solver to formulate a simultaneous inversion algorithm for triple model parameters updating using direct and later arrival time information.Comparison tests for two sets of data(noise free and added noise) indicate that the new triple-class parameter inversion algorithm is capable of obtaining nearly the same results as the double-class parameter inversion scheme. Furthermore,the proposed multi-parameter type inversion method is not sensitive to a modest level of picking error in the traveltime data, and also performs well with a relatively large uncertainty in earthquake hypocentral locations. This shows it to be a feasible and promising approach in regional or global tomographic applications.
基金supported by the Strategic Priority Research Program of Chinese Academy of Sciences (No. XDB26000000)the National Key Research and Development Program of China (No. 2020YFA0607700)+2 种基金the National Natural Science Foundation of China (Nos. 41730857 and 42273050)the Key Research Program of the Institute of Geology&Geophysics,CAS (No. IGGCAS-202204)support from the Youth Innovation Promotion Association CAS (No.2019067)。
文摘The fate of riverine sulfate ion (SO_(4)^(2-)) and its environmental effects in arid environment are difficult to evaluate due to its complicated sources and strongly coupled behaviors with water cycle which is significantly modified by humans.To understand the sulfur cycle in aquatic systems in arid environment,the chemical and sulfur and oxygen isotopic compositions (δ^(34)S_(SO4)and δ^(18)O_(SO4)) of major rivers around the Badain Jaran Desert,northwestern China,were investigated.These rivers had averaged SO_(4)^(2-)content at 1336μmol/L,over 10times higher than the global average.The δ^(34)S_(SO4)and δ^(18)O_(SO4)values ranged from-5.3‰to+11.8‰and+1.6‰to+12.8‰,respectively.The end-member analysis and the inverse model showed that riverine sulfate was mainly derived from evaporites dissolution (0-87%),sulfide oxidation (13%-100%) and precipitation (0-33%),indicating heterogeneity in sulfur sources and behaviors along the river drainage with the lithology variations and climate gradients.Multiple isotopic tools combining with hydro-chemistry compositions could be applied to reveal sulfur cycle in arid environment.Based on the calculation,sulfide oxidation plays the primary role in the headwater and upstream in the Qilian-Mountains area,where sulfide is widely exposed.While the proportion of evaporites dissolution contributing to riverine sulfate is much higher in downstream in a drier environment.Besides,less precipitation and higher temperature can lead to more intensive evaporation,affecting the process of sulfide oxidation and enhancing the rates of evaporites dissolution and sulfate precipitation in the basin.
基金supported by the National Natural Science Foundation of China (No.U2133210).
文摘Aircraft wake turbulence is an inherent outcome of aircraft flight,presenting a substan-tial challenge to air traffic control,aviation safety and operational efficiency.Building upon data obtained from coherent Doppler Lidar detection,and combining Dynamic Bayesian Networks(DBN)with Genetic Algorithm-optimized Backpropagation Neural Networks(GA-BPNN),this paper proposes a model for the inversion of wake vortex parameters.During the wake vortex flow field simulation analysis,the wind and turbulent environment were initially superimposed onto the simulated wake velocity field.Subsequently,Lidar-detected echoes of the velocity field are simulated to obtain a data set similar to the actual situation for model training.In the case study validation,real measured data underwent preprocessing and were then input into the established model.This allowed us to construct the wake vortex characteristic parameter inversion model.The final results demonstrated that our model achieved parameter inversion with only minor errors.In a practical example,our model in this paper significantly reduced the mean square error of the inverted velocity field when compared to the traditional algorithm.This study holds significant promise for real-time monitoring of wake vortices at airports,and is proved a crucial step in developing wake vortex interval standards.
基金This study was supported by the Basic Research Business Fee Project of Universities Directly under the Inner Mongolia Autonomous Region(JY20220108)the Inner Mongolia Autonomous Region Natural Science Foundation Project(2022LHMS03006)+1 种基金the Inner Mongolia University of Technology Doctoral Research Initiation Fund Project(DC2300001284)the Inner Mongolia Autonomous Region Natural Science Foundation Project(2021MS03082).
文摘Grassland biomass is an important parameter of grassland ecosystems.The complexity of the grassland canopy vegetation spectrum makes the long-term assessment of grassland growth a challenge.Few studies have explored the original spectral information of typical grasslands in Inner Mongolia and examined the influence of spectral information on aboveground biomass(AGB)estimation.In order to improve the accuracy of vegetation index inversion of grassland AGB,this study combined ground and Unmanned Aerial Vehicle(UAV)remote sensing technology and screened sensitive bands through ground hyperspectral data transformation and correlation analysis.The narrow band vegetation indices were calculated,and ground and airborne hyperspectral inversion models were established.Finally,the accuracy of the model was verified.The results showed that:(1)The vegetation indices constructed based on the ASD FieldSpec 4 and the UAV were significantly correlated with the dry and fresh weight of AGB.(2)The comparison between measured R^(2) with the prediction R^(2) indicated that the accuracy of the model was the best when using the Soil-Adjusted Vegetation Index(SAVI)as the independent variable in the analysis of AGB(fresh weight/dry weight)and four narrow-band vegetation indices.The SAVI vegetation index showed better applicability for biomass monitoring in typical grassland areas of Inner Mongolia.(3)The obtained ground and airborne hyperspectral data with the optimal vegetation index suggested that the dry weight of AGB has the best fitting effect with airborne hyperspectral data,where y=17.962e^(4.672x),the fitting R^(2) was 0.542,the prediction R^(2)was 0.424,and RMSE and REE were 57.03 and 0.65,respectively.Therefore,established vegetation indices by screening sensitive bands through hyperspectral feature analysis can significantly improve the inversion accuracy of typical grassland biomass in Inner Mongolia.Compared with ground monitoring,airborne hyperspectral monitoring better reflects the inversion of actual surface biomass.It provides a reliable modeling framework for grassland AGB monitoring and scientific and technological support for grazing management.
基金National Natural Science Foundation of China(Nos.62171285,61971120 and 62327807)。
文摘A hybrid compensation scheme for piezoelectric ceramic actuators(PEAs)is proposed.In the hybrid compensation scheme,the input rate-dependent hysteresis characteristics of the PEAs are compensated.The feedforward controller is a novel input rate-dependent neural network hysteresis inverse model,while the feedback controller is a proportion integration differentiation(PID)controller.In the proposed inverse model,an input ratedependent auxiliary inverse operator(RAIO)and output of the hysteresis construct the expanded input space(EIS)of the inverse model which transforms the hysteresis inverse with multi-valued mapping into single-valued mapping,and the wiping-out,rate-dependent and continuous properties of the RAIO are analyzed in theories.Based on the EIS method,a hysteresis neural network inverse model,namely the dynamic back propagation neural network(DBPNN)model,is established.Moreover,a hybrid compensation scheme for the PEAs is designed to compensate for the hysteresis.Finally,the proposed method,the conventional PID controller and the hybrid controller with the modified input rate-dependent Prandtl-Ishlinskii(MRPI)model are all applied in the experimental platform.Experimental results show that the proposed method has obvious superiorities in the performance of the system.
文摘Hyper spectrum remote sensing with fine spectrum information is an efficient method to estimate the verticillium wilt of cotton. The research was conducted in Xinjiang, the largest cotton plant region of China, by using the data which were collected both by canopy spectrum infected with verticillium wilt and severity level (SL) in the year 2005-2006. The quantitative correlation was analyzed between SL and canopy of reflectance spectrum or derivative spectrum reflectance. The results indicated that spectrum characteristics of cotton canopy infected with verticillium wilt changed regularly with the increase of SL in different periods and varieties, Spectrum reflectance increased in the visible light region (620-700 nm) with the increase of the SL, which inverted in near-infrared region and was extremely significant in the region of (780-1 300 nm). When SL attained b2 (DI = 25), cotton canopy infected with verticillium wilt was used as a watershed and diagnosed index in the beginning stages of the disease. The results also indicated that there were marked different characteristics of the first derivative spectrum in these SL, it changed significantly in the red edge ranges (680-760 nm) with different SL, i.e., red edge swing decreased, and red edge position equally moved to the blue. In this study 1 001-1 110 nm and 1 205- 1 320 nm were selected out as sensitive bands for SL of canopy. Inversion models established for estimating cotton canopy infected with verticillium wilt reached the most significant level. Finally, the different spectrum characteristics of cotton canopy infected with verticillium wilt were marked, some inversion models were established, which could estimate SL of canopy infected with verticillium wilt. The best recognized model was the first derivative spectra at (FD 731 nm- FD 1317 nm), and it might be used to forecast the position of cotton canopy infected with verticillium wilt quantitatively.
文摘This paper describes an innovative, genetic algorithm based inverse model of nonlinear transducer. In the inverse modeling, using a genetic algorithm, the unknown coefficients of the model are estimated accurately. The simulation results indicate that this technique provides greater flexibility and suitability than the existing methods. It is very easy to modify the nonlinear transducer on line. Thus the method improves the transducer's accuracy. With the help of genetic algorithm (GA), the model coefficients' training are less likely to be trapped in local minima than traditional gradient based search algorithms.
基金financially was supported by Colorado School of Minessupported by the Science and Technology Ministry of China (2016ZX05033003)+1 种基金China Academy of Sciences (XDA14010204)Sinopec (G5800-15-ZS-KJB016)
文摘This paper presents a unique and formal method of quantifying the similarity or distance between sedimentary facies successions from measured sections in outcrop or drilled wells and demonstrates its first application in inverse stratigraphic modeling. A sedimentary facies succession is represented with a string of symbols, or facies codes in its natural vertical order, in which each symbol brings with it one attribute such as thickness for the facies. These strings are called attributed strings. A similarity measure is defined between the attributed strings based on a syntactic pattern-recognition technique. A dynamic programming algorithm is used to calculate the similarity. Inverse stratigraphic modeling aims to generate quantitative 3D facies models based on forward stratigraphic modeling that honors observed datasets. One of the key techniques in inverse stratigraphic modeling is how to quantify the similarity or distance between simulated and observed sedimentary facies successions at data locations in order for the forward model to condition the simulation results to the observed dataset such as measured sections or drilled wells. This quantification technique comparing sedimentary successions is demonstrated in the form of a cost function based on the defined distance in our inverse stratigraphic modeling implemented with forward modeling optimization.
基金supported by the West Light Talents Cultivation Program of Chinese Academy of Sciences (XBBS 200801)the National Natural Science Foundation of China (40801146)the JSPS Project (21403001)
文摘Leaf biochemical properties have been widely assessed using hyperspectral reflectance information by inversion of PROSPECT model or by using hyperspectral indices, but few studies have focused on arid ecosystems. As a dominant species of riparian ecosystems in arid lands, Populus euphratica Oliv. is an unusual tree species with polymorphic leaves along the vertical profile of canopy corresponding to different growth stages. In this study, we evaluated both the inversed PROSPECT model and hyperspectral indices for estimating biochemical properties of P. euphratica leaves. Both the shapes and biochemical properties of P. euphratica leaves were found to change with the heights from ground surface. The results indicated that the model inversion calibrated for each leaf shape performed much better than the model calibrated for all leaf shapes, and also better than hyperspectral indices. Similar results were obtained for estimations of equivalent water thickness (EWT) and leaf mass per area (LMA). Hyperspectral indices identified in this study for estimating these leaf properties had root mean square error (RMSE) and R2 values between those obtained with the two calibration strategies using the inversed PROSPECT model. Hence, the inversed PROSPECT model can be applied to estimate leaf biochemical properties in arid ecosystems, but the calibration to the model requires special attention.
基金supported by National Natural Science Foundation of China(41304014,41204001,41274037 and 41431069)National 863 Project of China(2013AA122501)+4 种基金China postdoctoral science foundation(2015M57228)the Basic Fund of Hubei Subsurface Multi-scale Imaging Key Laboratory,Institute of Geophysics and Geomatics,China University of Geosciences,Wuhan(SMIL-2015-01)the Fundamental Research Funds for National Universities(CUGL150810)China Scholarship Council(201506415072)the Basic Research Fund of Key Laboratory of Geospace Environment and Geodesy,Ministry of Education of China(13-02-11 and 14-01-01)
文摘On 3 July 2015, a Mw 6.4 earthquake occurred on a blind fault struck Pishan, Xinjiang,China. By combining Crustal Movement Observation Network of China(CMONOC) and other Static Global Positioning System(GPS) sites surrounding Pishan region, it provides a rare chance for us to constrain the slip rupture for such a moderate event. The maximum displacement is up to 12 cm, 2 cm for coseismic and postseismic deformation, respectively,and both the deformation patterns show a same direction moving northeastward. With rectangular dislocation model, a magnitude of Mw6.48, Mw6.3 is calculated based on coseismic, postseismic deformation respectively. Our result indicates the western Kunlun range is still moving toward Tarim Basin followed by an obvious postseismic slip associated with this earthquake. To determine a more reasonable model for postseismic deformation, a longer GPS dataset will be needed.
基金National Natural Science Foundation of China(Grant Nos.51925502,51575150).
文摘To avoid impacts and vibrations during the processes of acceleration and deceleration while possessing flexible working ways for cable-suspended parallel robots(CSPRs),point-to-point trajectory planning demands an under-constrained cable-suspended parallel robot(UCPR)with variable angle and height cable mast as described in this paper.The end-effector of the UCPR with three cables can achieve three translational degrees of freedom(DOFs).The inverse kinematic and dynamic modeling of the UCPR considering the angle and height of cable mast are completed.The motion trajectory of the end-effector comprising six segments is given.The connection points of the trajectory segments(except for point P3 in the X direction)are devised to have zero instantaneous velocities,which ensure that the acceleration has continuity and the planned acceleration curve achieves smooth transition.The trajectory is respectively planned using three algebraic methods,including fifth degree polynomial,cycloid trajectory,and double-S velocity curve.The results indicate that the trajectory planned by fifth degree polynomial method is much closer to the given trajectory of the end-effector.Numerical simulation and experiments are accomplished for the given trajectory based on fifth degree polynomial planning.At the points where the velocity suddenly changes,the length and tension variation curves of the planned and unplanned three cables are compared and analyzed.The OptiTrack motion capture system is adopted to track the end-effector of the UCPR during the experiment.The effectiveness and feasibility of fifth degree polynomial planning are validated.
基金financially supported through NSERC Discovery Grant(RGPIN/4994-2014)
文摘Even though a large number of large-scale arch dams with height larger than 200 m have been built in the world, the transient groundwater flow behaviors and the seepage control effects in the dam foundations under difficult geological conditions are rarely reported. This paper presents a case study on the transient groundwater flow behaviors in the rock foundation of Jinping I double-curvature arch dam, the world's highest dam of this type to date that has been completed. Taking into account the geological settings at the site, an inverse modeling technique utilizing the time series measurements of both hydraulic head and discharge was adopted to back-calculate the permeability of the foundation rocks,which effectively improves the uniqueness and reliability of the inverse modeling results. The transient seepage flow in the dam foundation during the reservoir impounding was then modeled with a parabolic variational inequality(PVI) method. The distribution of pore water pressure, the amount of leakage, and the performance of the seepage control system in the dam foundation during the entire impounding process were finally illustrated with the numerical results.
基金supported by the National Key R&D Program of China[Grant Nos.2017YFC1501803 and 2017YFC1502102].
文摘Rapid and accurate identification of the characteristics(source location,number,and intensity)of pollution sources is essential for emergency assessment of contamination events.Compared with single-point source iden-tification,the reconstruction of multiple sources is more challenging.In this study,a two-step inversion method is proposed for multi-point pollution source reconstruction from limited measurements with the number of sources unknown.The applicability of the proposed method is validated with a set of synthetic experiments correspond-ing to one-,two-,and three-point pollution sources.The results show that the number and locations of pollution sources are retrieved exactly the same as prescribed,and the source intensities are estimated with negligible errors.The algorithm exhibits good performance in single-and multi-point pollution source identification,and its accuracy and efficiency of identification do not deteriorate with the increase in the number of sources.Some limitations of the algorithm,together with its capabilities,are also discussed in this paper.