In this paper, based on the robust inverse scattering method, we construct two kinds of solutions to the focusing modified Korteweg–de Vries equation. One is the classical soliton solution under the zero background c...In this paper, based on the robust inverse scattering method, we construct two kinds of solutions to the focusing modified Korteweg–de Vries equation. One is the classical soliton solution under the zero background condition and the other one is given through the nonzero background.Especially, for the nonzero background case, we choose a special spectral parameter such that the nonzero background solution is changed into the rational travelling waves. Finally, we also give a simple analysis of the soliton as the time t is large, then we give the comparison between the exact solution and the asymptotic solution.展开更多
A Hauser-Ernst-type extended hyperbolic complex linear system given in our previous paper [Gao Y J 2004 Chin. Phys. 13 602] is slightly modified and used to develop a new inverse scattering method for the stationary a...A Hauser-Ernst-type extended hyperbolic complex linear system given in our previous paper [Gao Y J 2004 Chin. Phys. 13 602] is slightly modified and used to develop a new inverse scattering method for the stationary axisymmetric Einstein-Maxwell theory with multiple Abelian gauge fields. The reduction procedures in this inverse scattering method are found to be fairly simple, which makes the inverse scattering method be fine and effective in practical application. As an example, a concrete family of soliton solutions for the considered theory is obtained.展开更多
Using the integral representation of the Jost solution,we deduce some conditions as the kernel functionN(x,y,t)if the Jost solution satisfies the two Lax equations.Then we verify the multi-soliton solution of NLS equa...Using the integral representation of the Jost solution,we deduce some conditions as the kernel functionN(x,y,t)if the Jost solution satisfies the two Lax equations.Then we verify the multi-soliton solution of NLS equationwith non-vanishing boundary conditions if we prove that these conditions can be demonstrated by the GLM equation,which determines the kernel function N(x,y,t)in according to the inverse scattering method.展开更多
The nested Bethe ansatz (BA) method is applied to find the eigenvalues and the eigenvectors of the transfer matrix for spin-ladder model with open boundary conditions. Based on the reflection equation, we find the gen...The nested Bethe ansatz (BA) method is applied to find the eigenvalues and the eigenvectors of the transfer matrix for spin-ladder model with open boundary conditions. Based on the reflection equation, we find the general diagonal solution, which determines the generalboundary interaction in the Hamiltonian. We introduce the spin-ladder model with open boundary conditions. By finding the solution K± of the reflection equation which determines the nontrivial boundary terms in the Hamiltonian, we diagonalize the transfer matrix of the spin-ladder model with open boundary conditions in the framework of nested BA.展开更多
The surface in R3 associated with the Tzitzeica equation & considered. By curvature coordinate transformation and surface imbedding, the Gauss-Codazzi equation is presented. Resorting to the solutions of the Gauss-Co...The surface in R3 associated with the Tzitzeica equation & considered. By curvature coordinate transformation and surface imbedding, the Gauss-Codazzi equation is presented. Resorting to the solutions of the Gauss-Codazzi equation, the solution of the Tzitzeica equation & obtained under a restrictive condition.展开更多
In this note, it is shown that the revision of the Kaup-Newell's works on 1ST for DNLS equation is only available in the ease of solving the bright one-soliton solution to the equation. An example is taken to illustr...In this note, it is shown that the revision of the Kaup-Newell's works on 1ST for DNLS equation is only available in the ease of solving the bright one-soliton solution to the equation. An example is taken to illustrate our point of view.展开更多
The admissibility of the initial-boundary data,which characterizes the existence of solution for the initial-boundary value problem,is important.Based on the Fokas method and the inverse scattering transformation,an a...The admissibility of the initial-boundary data,which characterizes the existence of solution for the initial-boundary value problem,is important.Based on the Fokas method and the inverse scattering transformation,an approach is developed to solve the initial-boundary value problem of the nonlinear Schrodinger equation on a finite interval.A necessary and sufficient condition for the admissibility of the initial-boundary data is given,and the reconstruction of the potential is obtained.展开更多
基金supported by the Natural Science Foundation of Shandong Province(Grant No.ZR2019QD018)National Natural Science Foundation of China(Grant Nos.11975143,12105161,61602188)+1 种基金CAS Key Laboratory of Science and Technology on Operational Oceanography(Grant No.OOST2021-05)Scientific Research Foundation of Shandong University of Science and Technology for Recruited Talents(Grant Nos.2017RCJJ068,2017RCJJ069)。
文摘In this paper, based on the robust inverse scattering method, we construct two kinds of solutions to the focusing modified Korteweg–de Vries equation. One is the classical soliton solution under the zero background condition and the other one is given through the nonzero background.Especially, for the nonzero background case, we choose a special spectral parameter such that the nonzero background solution is changed into the rational travelling waves. Finally, we also give a simple analysis of the soliton as the time t is large, then we give the comparison between the exact solution and the asymptotic solution.
基金Project supported by the National Natural Science Foundation of China (Grant No 10475036)
文摘A Hauser-Ernst-type extended hyperbolic complex linear system given in our previous paper [Gao Y J 2004 Chin. Phys. 13 602] is slightly modified and used to develop a new inverse scattering method for the stationary axisymmetric Einstein-Maxwell theory with multiple Abelian gauge fields. The reduction procedures in this inverse scattering method are found to be fairly simple, which makes the inverse scattering method be fine and effective in practical application. As an example, a concrete family of soliton solutions for the considered theory is obtained.
基金the Huazhong University of Science and Technology under Grant No.0101011110National Natural Science Foundation of China under Grant No.10375041
文摘Using the integral representation of the Jost solution,we deduce some conditions as the kernel functionN(x,y,t)if the Jost solution satisfies the two Lax equations.Then we verify the multi-soliton solution of NLS equationwith non-vanishing boundary conditions if we prove that these conditions can be demonstrated by the GLM equation,which determines the kernel function N(x,y,t)in according to the inverse scattering method.
文摘The nested Bethe ansatz (BA) method is applied to find the eigenvalues and the eigenvectors of the transfer matrix for spin-ladder model with open boundary conditions. Based on the reflection equation, we find the general diagonal solution, which determines the generalboundary interaction in the Hamiltonian. We introduce the spin-ladder model with open boundary conditions. By finding the solution K± of the reflection equation which determines the nontrivial boundary terms in the Hamiltonian, we diagonalize the transfer matrix of the spin-ladder model with open boundary conditions in the framework of nested BA.
基金Supported by the National Natural Science Foundation of China under Grant No 10471132, and the Special Foundation for the Major State Basic Research Project 'Nonlinear Science' in China.
文摘The surface in R3 associated with the Tzitzeica equation & considered. By curvature coordinate transformation and surface imbedding, the Gauss-Codazzi equation is presented. Resorting to the solutions of the Gauss-Codazzi equation, the solution of the Tzitzeica equation & obtained under a restrictive condition.
基金the Postdoctoral Fund of Huazhong University of Science and Technology under Grant No.0128011006
文摘In this note, it is shown that the revision of the Kaup-Newell's works on 1ST for DNLS equation is only available in the ease of solving the bright one-soliton solution to the equation. An example is taken to illustrate our point of view.
基金supported by the National Natural Science Foundation of China(Grant Nos.11931017 and 11871440)by the Henan Youth Talent Support Project(Grant No.2020HYTP001)。
文摘The admissibility of the initial-boundary data,which characterizes the existence of solution for the initial-boundary value problem,is important.Based on the Fokas method and the inverse scattering transformation,an approach is developed to solve the initial-boundary value problem of the nonlinear Schrodinger equation on a finite interval.A necessary and sufficient condition for the admissibility of the initial-boundary data is given,and the reconstruction of the potential is obtained.