In this study,an inverse design framework was established to find lightweight honeycomb structures(HCSs)with high impact resistance.The hybrid HCS,composed of re-entrant(RE)and elliptical annular re-entrant(EARE)honey...In this study,an inverse design framework was established to find lightweight honeycomb structures(HCSs)with high impact resistance.The hybrid HCS,composed of re-entrant(RE)and elliptical annular re-entrant(EARE)honeycomb cells,was created by constructing arrangement matrices to achieve structural lightweight.The machine learning(ML)framework consisted of a neural network(NN)forward regression model for predicting impact resistance and a multi-objective optimization algorithm for generating high-performance designs.The surrogate of the local design space was initially realized by establishing the NN in the small sample dataset,and the active learning strategy was used to continuously extended the local optimal design until the model converged in the global space.The results indicated that the active learning strategy significantly improved the inference capability of the NN model in unknown design domains.By guiding the iteration direction of the optimization algorithm,lightweight designs with high impact resistance were identified.The energy absorption capacity of the optimal design reached 94.98%of the EARE honeycomb,while the initial peak stress and mass decreased by 28.85%and 19.91%,respectively.Furthermore,Shapley Additive Explanations(SHAP)for global explanation of the NN indicated a strong correlation between the arrangement mode of HCS and its impact resistance.By reducing the stiffness of the cells at the top boundary of the structure,the initial impact damage sustained by the structure can be significantly improved.Overall,this study proposed a general lightweight design method for array structures under impact loads,which is beneficial for the widespread application of honeycomb-based protective structures.展开更多
Subsurface reservoirs commonly exhibit layered structures.Conventional amplitude variation with angle(AVA)inversion,which relies on the Zoeppritz equation and its approximations,often fails to accurately estimate elas...Subsurface reservoirs commonly exhibit layered structures.Conventional amplitude variation with angle(AVA)inversion,which relies on the Zoeppritz equation and its approximations,often fails to accurately estimate elastic parameters because it assumes single-interface models and ignores multiple reflections and transmission losses.To address these limitations,this study proposes a novel prestack time-frequency domain joint inversion method that utilizes the reflection matrix method(RMM)as the forward operator.The RMM accurately simulates wave propagation in layered media,while the joint inversion framework minimizes the misfit between observed and synthetic data in both the time and frequency domains.By incorporating Bayesian theory to optimize the inversion process,the method effectively balances contributions from both time-domain waveforms and frequency-domain spectral information through a weighting factor.Tests on both synthetic data and field data demonstrate that the proposed method outperforms conventional AVA inversion and time-domain waveform inversion in accuracy and robustness.Furthermore,the method demonstrates good robustness against variations in initial models,random noise,and coherent noise interference.This study provides a practical and effective approach for high-precision reservoir characterization,with potential applications in complex layered media.展开更多
We introduce and study a new kind of generalized inverses named w-(b,c)-core inverses,which is a generalization of the(b,c)-core inverse.An example is given to show that w-(b,c)-core inverses need not be(b,c)-core inv...We introduce and study a new kind of generalized inverses named w-(b,c)-core inverses,which is a generalization of the(b,c)-core inverse.An example is given to show that w-(b,c)-core inverses need not be(b,c)-core inverses.In addition,the dual version of the w-(b,c)-core inverse is studied.Some results on(b,c)-core inverses and e-(b,c)-core inverses are unifed and generalized.展开更多
Young's modulus and Poisson's ratio are crucial parameters for reservoir characterization and rock brittleness evaluation.Conventional methods often rely on indirect computation or approximations of the Zoeppr...Young's modulus and Poisson's ratio are crucial parameters for reservoir characterization and rock brittleness evaluation.Conventional methods often rely on indirect computation or approximations of the Zoeppritz equations to estimate Young's modulus,which can introduce cumulative errors and reduce the accuracy of inversion results.To address these issues,this paper introduces the analytical solution of the Zoeppritz equation into the inversion process.The equation is re-derived and expressed in terms of Young's modulus,Poisson's ratio,and density.Within the Bayesian framework,we construct an objective function for the joint inversion of PP and PS waves.Traditional gradient-based algorithms often suffer from low precision and the computational complexity.In this study,we address limitations of conventional approaches related to low precision and complicated code by using Circle chaotic mapping,Levy flights,and Gaussian mutation to optimize the quantum particle swarm optimization(QPSO),named improved quantum particle swarm optimization(IQPSO).The IQPSO demonstrates superior global optimization capabilities.We test the proposed inversion method with both synthetic and field data.The test results demonstrate the proposed method's feasibility and effectiveness,indicating an improvement in inversion accuracy over traditional methods.展开更多
Incremental Nonlinear Dynamic Inversion(INDI)is a control approach that has gained popularity in flight control over the past decade.Besides the INDI law,several common additional components complement an INDI-based c...Incremental Nonlinear Dynamic Inversion(INDI)is a control approach that has gained popularity in flight control over the past decade.Besides the INDI law,several common additional components complement an INDI-based controller.This paper,the second part of a two-part series of surveys on INDI,aims to summarize the modern trends in INDI and its related components.Besides a comprehensive components specification,it addresses their most common challenges,compares different variants,and discusses proposed advances.Further important aspects of INDI are gain design,stability,and robustness.This paper also provides an overview of research conducted concerning these aspects.This paper is written in a tutorial style to familiarize researchers with the essential specifics and pitfalls of INDI and its components.At the same time,it can also serve as a reference for readers already familiar with INDI.展开更多
Ultrasound computed tomography(USCT)is a noninvasive biomedical imaging modality that offers insights into acoustic properties such as the sound speed(SS)and acoustic attenuation(AA)of the human body,enhancing diagnos...Ultrasound computed tomography(USCT)is a noninvasive biomedical imaging modality that offers insights into acoustic properties such as the sound speed(SS)and acoustic attenuation(AA)of the human body,enhancing diagnostic accuracy and therapy planning.Full waveform inversion(FWI)is a promising USCT image reconstruction method that optimizes the parameter fields of a wave propagation model via gradient-based optimization.However,twodimensional FWI methods are limited by their inability to account for three-dimensional wave propagation in the elevation direction,resulting in image artifacts.To address this problem,we propose a three-dimensional time-domain full waveform inversion algorithm to reconstruct the SS and AA distributions on the basis of a fractional Laplacian wave equation,adjoint field formulation,and gradient descent optimization.Validated by two sets of simulations,the proposed algorithm has potential for generating high-resolution and quantitative SS and AA distributions.This approach holds promise for clinical USCT applications,assisting early disease detection,precise abnormality localization,and optimized treatment planning,thus contributing to better healthcare outcomes.展开更多
Reverse design of highly GeO2-doped silica optical fibers with broadband and flat dispersion profiles is proposed using a neural network(NN) combined with a particle swarm optimization(PSO) algorithm.Firstly,the NN mo...Reverse design of highly GeO2-doped silica optical fibers with broadband and flat dispersion profiles is proposed using a neural network(NN) combined with a particle swarm optimization(PSO) algorithm.Firstly,the NN model designed to predict optical fiber dispersion is trained with an appropriate choice of hyperparameters,achieving a root mean square error(RMSE) of 9.47×10-7on the test dataset,with a determination coefficient(R2) of 0.999.Secondly,the NN is combined with the PSO algorithm for the inverse design of dispersion-flattened optical fibers.To expand the search space and avoid particles becoming trapped in local optimal solutions,the PSO algorithm incorporates adaptive inertia weight updating and a simulated annealing algorithm.Finally,by using a suitable fitness function,the designed fibers exhibit flat group velocity dispersion(GVD) profiles at 1 400—2 400 nm,where the GVD fluctuations and minimum absolute GVD values are below 18 ps·nm-1·km-1and 7 ps·nm-1·km-1,respectively.展开更多
In Rayleigh wave exploration,the inversion of dispersion curves is a crucial step for obtaining subsurface stratigraphic information,characterized by its multi-parameter and multi-extremum nature.Local optimization al...In Rayleigh wave exploration,the inversion of dispersion curves is a crucial step for obtaining subsurface stratigraphic information,characterized by its multi-parameter and multi-extremum nature.Local optimization algorithms used in dispersion curve inversion are highly dependent on the initial model and are prone to being trapped in local optima,while classical global optimization algorithms often suffer from slow convergence and low solution accuracy.To address these issues,this study introduces the Osprey Optimization Algorithm(OOA),known for its strong global search and local exploitation capabilities,into the inversion of dispersion curves to enhance inversion performance.In noiseless theoretical models,the OOA demonstrates excellent inversion accuracy and stability,accurately recovering model parameters.Even in noisy models,OOA maintains robust performance,achieving high inversion precision under high-noise conditions.In multimode dispersion curve tests,OOA effectively handles higher modes due to its efficient global and local search capabilities,and the inversion results show high consistency with theoretical values.Field data from the Wyoming region in the United States and a landfill site in Italy further verify the practical applicability of the OOA.Comprehensive test results indicate that the OOA outperforms the Particle Swarm Optimization(PSO)algorithm,providing a highly accurate and reliable inversion strategy for dispersion curve inversion.展开更多
Fluid identification and anisotropic parameters characterization are crucial for shale reservoir exploration and development.However,the anisotropic reflection coefficient equation,based on the transverse isotropy wit...Fluid identification and anisotropic parameters characterization are crucial for shale reservoir exploration and development.However,the anisotropic reflection coefficient equation,based on the transverse isotropy with a vertical axis of symmetry(VTI)medium assumption,involves numerous parameters to be inverted.This complexity reduces its stability and impacts the accuracy of seismic amplitude variation with offset(AVO)inversion results.In this study,a novel anisotropic equation that includes the fluid term and Thomsen anisotropic parameters is rewritten,which reduces the equation's dimensionality and increases its stability.Additionally,the traditional Markov Chain Monte Carlo(MCMC)inversion algorithm exhibits a high rejection rate for random samples and relies on known parameter distributions such as the Gaussian distribution,limiting the algorithm's convergence and sample randomness.To address these limitations and evaluate the uncertainty of AVO inversion,the IADR-Gibbs algorithm is proposed,which incorporates the Independent Adaptive Delayed Rejection(IADR)algorithm with the Gibbs sampling algorithm.Grounded in Bayesian theory,the new algorithm introduces support points to construct a proposal distribution of non-parametric distribution and reselects the rejected samples according to the Delayed Rejection(DR)strategy.Rejected samples are then added to the support points to update the proposal distribution function adaptively.The equation rewriting method and the IADR-Gibbs algorithm improve the accuracy and robustness of AVO inversion.The effectiveness and applicability of the proposed method are validated through synthetic gather tests and practical data applications.展开更多
The weighted Drazin invertibility of rectangular matrixs over an arbitrary ring are studied.Some equivalent conditions and Characterizations are given for existence of the weighted Drazin inverse of a rectangular matr...The weighted Drazin invertibility of rectangular matrixs over an arbitrary ring are studied.Some equivalent conditions and Characterizations are given for existence of the weighted Drazin inverse of a rectangular matrix over an arbitrary ring.Moreover,the weighted Drazin inverse of a rectangular matrices product PAQ can be characterized and computed.This generalizes results obtained for the Drazin inverse of such product of square matrices.The results also apply to morphisms in(additive)categories.展开更多
The 2D data processing adopted by the high-density resistivity method regards the geological structures as two degrees, which makes the results of the 2D data inversion only an approximate interpretation;the accuracy ...The 2D data processing adopted by the high-density resistivity method regards the geological structures as two degrees, which makes the results of the 2D data inversion only an approximate interpretation;the accuracy and effect can not meet the precise requirement of the inversion. Two typical models of the geological bodies were designed, and forward calculation was carried out using finite element method. The forward-modeled profiles were obtained. 1% Gaussian random error was added in the forward models and then 2D and 3D inversions using a high-density resistivity method were undertaken to realistically simulate field data and analyze the sensitivity of the 2D and 3D inversion algorithms to noise. Contrast between the 2D and 3D inversion results of least squares inversion shows that two inversion results of high-density resistivity method all can basically reflect the spatial position of an anomalous body. However, the 3D inversion can more effectively eliminate the influence of interference from Gaussian random error and better reflect the distribution of resistivity in the anomalous bodies. Overall, the 3D inversion was better than 2D inversion in terms of embodying anomalous body positions, morphology and resistivity properties.展开更多
In this paper, we revisit the core inverse introduced by Baksalary and Trenkler. We first give some new characterizations of the core inverse. Then, we give a new representation of the core inverse, which is related t...In this paper, we revisit the core inverse introduced by Baksalary and Trenkler. We first give some new characterizations of the core inverse. Then, we give a new representation of the core inverse, which is related to AT,S^(2).展开更多
Finding materials with specific properties is a hot topic in materials science.Traditional materials design relies on empirical and trial-and-error methods,requiring extensive experiments and time,resulting in high co...Finding materials with specific properties is a hot topic in materials science.Traditional materials design relies on empirical and trial-and-error methods,requiring extensive experiments and time,resulting in high costs.With the development of physics,statistics,computer science,and other fields,machine learning offers opportunities for systematically discovering new materials.Especially through machine learning-based inverse design,machine learning algorithms analyze the mapping relationships between materials and their properties to find materials with desired properties.This paper first outlines the basic concepts of materials inverse design and the challenges faced by machine learning-based approaches to materials inverse design.Then,three main inverse design methods—exploration-based,model-based,and optimization-based—are analyzed in the context of different application scenarios.Finally,the applications of inverse design methods in alloys,optical materials,and acoustic materials are elaborated on,and the prospects for materials inverse design are discussed.The authors hope to accelerate the discovery of new materials and provide new possibilities for advancing materials science and innovative design methods.展开更多
Recently, solutions to inverse problems have been required in various engineering fields. The neural network inversion method has been studied as one of the neural network-based solutions. On the other hand, the exten...Recently, solutions to inverse problems have been required in various engineering fields. The neural network inversion method has been studied as one of the neural network-based solutions. On the other hand, the extension of the neural network to a higher-dimensional domain, e.g., complex-value or quaternion, has been proposed, and a number of higher-dimensional neural network models have been proposed. Using the quatemion, we have the advantage of expressing 3D (three-dimensional) object attitudes easily. In the quaternion domain, we can define inverse problems where the cause and the result are expressed by the quaternion. In this paper, we extend the neural network inversion method to the quatemion domain. Further, we provide the results of the computer experiments to demonstrate the process and effectiveness of our method.展开更多
The Pamir Plateau,at the northwestern margin of the Tibetan Plateau,is a key region for investigating continental collision and plateau uplifting.To probe its deep structure,we collected seismic data from 263 stations...The Pamir Plateau,at the northwestern margin of the Tibetan Plateau,is a key region for investigating continental collision and plateau uplifting.To probe its deep structure,we collected seismic data from 263 stations across 11 research projects.We applied cross-correlation to noise data and extracted surface wave dispersion data from cross-correlation functions.The extracted dispersion data were subsequently inverted using a 3-D transdimensional Bayesian inversion method(rj-3 DMcMC).The inversion result reveals several crustal low-velocity zones(LVZs).Their formation is likely related to crustal thickening,the exposure of gneiss domes,and thicker sedimentary sequences compared to surrounding areas.In the lower crust and upper mantle,the LVZs in southern Pamir and southeastern Karakoram evolve into high-velocity zones,which expand northeastward with increasing depth.This suggests northward underthrusting of the Indian Plate.We also analyzed the Moho using both the standard deviation of S-wave velocity and the S-wave velocity structure.Results show that significant variations in velocity standard deviation reliably delineate the Moho interface.展开更多
Due to the heterogeneity of rock masses and the variability of in situ stress,the traditional linear inversion method is insufficiently accurate to achieve high accuracy of the in situ stress field.To address this cha...Due to the heterogeneity of rock masses and the variability of in situ stress,the traditional linear inversion method is insufficiently accurate to achieve high accuracy of the in situ stress field.To address this challenge,nonlinear stress boundaries for a numerical model are determined through regression analysis of a series of nonlinear coefficient matrices,which are derived from the bubbling method.Considering the randomness and flexibility of the bubbling method,a parametric study is conducted to determine recommended ranges for these parameters,including the standard deviation(σb)of bubble radii,the non-uniform coefficient matrix number(λ)for nonlinear stress boundaries,and the number(m)and positions of in situ stress measurement points.A model case study provides a reference for the selection of these parameters.Additionally,when the nonlinear in situ stress inversion method is employed,stress distortion inevitably occurs near model boundaries,aligning with the Saint Venant's principle.Two strategies are proposed accordingly:employing a systematic reduction of nonlinear coefficients to achieve high inversion accuracy while minimizing significant stress distortion,and excluding regions with severe stress distortion near the model edges while utilizing the central part of the model for subsequent simulations.These two strategies have been successfully implemented in the nonlinear in situ stress inversion of the Xincheng Gold Mine and have achieved higher inversion accuracy than the linear method.Specifically,the linear and nonlinear inversion methods yield root mean square errors(RMSE)of 4.15 and 3.2,and inversion relative errors(δAve)of 22.08%and 17.55%,respectively.Therefore,the nonlinear inversion method outperforms the traditional multiple linear regression method,even in the presence of a systematic reduction in the nonlinear stress boundaries.展开更多
Serial-parallel manipulators are of great interest to academic community in recent years,especially those composed of classical parallel mechanisms.There have been many studies around 2(3RPS)and 2(3SPR)S-PMs,but unfor...Serial-parallel manipulators are of great interest to academic community in recent years,especially those composed of classical parallel mechanisms.There have been many studies around 2(3RPS)and 2(3SPR)S-PMs,but unfortunately their inverse kinematics have not yet been resolved.This paper discovers that the unknown kinematic parameters of middle platform are responsible for the unresolvable of inverse kinematics,meanwhile the unknown kinematic parameters of middle platform also have huge coupling relationships.Therefore,to break through this challenges,the huge coupling relationships are decoupled layer by layer,the kinematic parameters of middle platform are solved by combining Sylvester's elimination method,and the inverse displacements of 2(3RPS)and 2(3SPR)S-PMs are obtained subsequently.This paper not only solves the inverse kinematics of classical 2(3RPS)and 2(3SPR)S-PMs,but also reveals the essence of the inverse kinematics of general(3-DOF)+(3-DOF)6-DOF S-PMs and proposes a corresponding solution.展开更多
In this study,we examine the problem of sliced inverse regression(SIR),a widely used method for sufficient dimension reduction(SDR).It was designed to find reduced-dimensional versions of multivariate predictors by re...In this study,we examine the problem of sliced inverse regression(SIR),a widely used method for sufficient dimension reduction(SDR).It was designed to find reduced-dimensional versions of multivariate predictors by replacing them with a minimally adequate collection of their linear combinations without loss of information.Recently,regularization methods have been proposed in SIR to incorporate a sparse structure of predictors for better interpretability.However,existing methods consider convex relaxation to bypass the sparsity constraint,which may not lead to the best subset,and particularly tends to include irrelevant variables when predictors are correlated.In this study,we approach sparse SIR as a nonconvex optimization problem and directly tackle the sparsity constraint by establishing the optimal conditions and iteratively solving them by means of the splicing technique.Without employing convex relaxation on the sparsity constraint and the orthogonal constraint,our algorithm exhibits superior empirical merits,as evidenced by extensive numerical studies.Computationally,our algorithm is much faster than the relaxed approach for the natural sparse SIR estimator.Statistically,our algorithm surpasses existing methods in terms of accuracy for central subspace estimation and best subset selection and sustains high performance even with correlated predictors.展开更多
We report a robust pillar-layered metal-organic framework,Zn‑tfbdc‑dabco(tfbdc:tetrafluoroterephthal-ate,dabco:1,4-diazabicyclo[2.2.2]octane),featuring the fluorinated pore environment,for the preferential binding of ...We report a robust pillar-layered metal-organic framework,Zn‑tfbdc‑dabco(tfbdc:tetrafluoroterephthal-ate,dabco:1,4-diazabicyclo[2.2.2]octane),featuring the fluorinated pore environment,for the preferential binding of propane over propylene and thus highly inverse selective separation of propane/propylene mixture.The inverse propane-selective performance of Zn‑tfbdc‑dabco for the propane/propylene separation was validated by single-component gas adsorption isotherms,isosteric enthalpy of adsorption calculations,ideal adsorbed solution theory calculations,along with the breakthrough experiment.The customized fluorinated networks served as a propane-trap to form more interactions with the exposed hydrogen atoms of propane,as unveiled by the simulation studies at the molecular level.With the advantage of inverse propane-selective adsorption behavior,high adsorption capacity,good cycling stability,and low isosteric enthalpy of adsorption,Zn‑tfbdc‑dabco can be a promising candidate adsorbent for the challenging propane/propylene separation to realize one-step purification of the target propylene substance.展开更多
Prestack seismic inversion methods adopt approximations of the Zoeppritz equations to describe the relation between reflection coefficients and P-wave velocity, S-wave velocity, and density. However, the error in thes...Prestack seismic inversion methods adopt approximations of the Zoeppritz equations to describe the relation between reflection coefficients and P-wave velocity, S-wave velocity, and density. However, the error in these approximations increases with increasing angle of incidence and variation of the elastic parameters, which increases the number of inversion solutions and minimizes the inversion accuracy. In this study, we explore a method for solving the reflection coefficients by using the Zoeppritz equations. To increase the accuracy of prestack inversion, the simultaneous inversion of P-wave velocity, S-wave velocity, and density by using prestack large-angle seismic data is proposed based on generalized linear inversion theory. Moreover, we reduce the ill posedness and increase the convergence of prestack inversion by using the regularization constraint damping factor and the conjugate gradient algorithm. The proposed prestack inversion method uses prestack large-angle seismic data to obtain accurate seismic elastic parameters that conform to prestack seismic data and are consistent with logging data from wells.展开更多
基金the financial supports from National Key R&D Program for Young Scientists of China(Grant No.2022YFC3080900)National Natural Science Foundation of China(Grant No.52374181)+1 种基金BIT Research and Innovation Promoting Project(Grant No.2024YCXZ017)supported by Science and Technology Innovation Program of Beijing institute of technology under Grant No.2022CX01025。
文摘In this study,an inverse design framework was established to find lightweight honeycomb structures(HCSs)with high impact resistance.The hybrid HCS,composed of re-entrant(RE)and elliptical annular re-entrant(EARE)honeycomb cells,was created by constructing arrangement matrices to achieve structural lightweight.The machine learning(ML)framework consisted of a neural network(NN)forward regression model for predicting impact resistance and a multi-objective optimization algorithm for generating high-performance designs.The surrogate of the local design space was initially realized by establishing the NN in the small sample dataset,and the active learning strategy was used to continuously extended the local optimal design until the model converged in the global space.The results indicated that the active learning strategy significantly improved the inference capability of the NN model in unknown design domains.By guiding the iteration direction of the optimization algorithm,lightweight designs with high impact resistance were identified.The energy absorption capacity of the optimal design reached 94.98%of the EARE honeycomb,while the initial peak stress and mass decreased by 28.85%and 19.91%,respectively.Furthermore,Shapley Additive Explanations(SHAP)for global explanation of the NN indicated a strong correlation between the arrangement mode of HCS and its impact resistance.By reducing the stiffness of the cells at the top boundary of the structure,the initial impact damage sustained by the structure can be significantly improved.Overall,this study proposed a general lightweight design method for array structures under impact loads,which is beneficial for the widespread application of honeycomb-based protective structures.
基金the sponsorship of National Natural Science Foundation of China(42325403)Deep Earth Probe and Mineral Resources Exploration-National Science and Technology Major Project of China(2024ZD1004201)。
文摘Subsurface reservoirs commonly exhibit layered structures.Conventional amplitude variation with angle(AVA)inversion,which relies on the Zoeppritz equation and its approximations,often fails to accurately estimate elastic parameters because it assumes single-interface models and ignores multiple reflections and transmission losses.To address these limitations,this study proposes a novel prestack time-frequency domain joint inversion method that utilizes the reflection matrix method(RMM)as the forward operator.The RMM accurately simulates wave propagation in layered media,while the joint inversion framework minimizes the misfit between observed and synthetic data in both the time and frequency domains.By incorporating Bayesian theory to optimize the inversion process,the method effectively balances contributions from both time-domain waveforms and frequency-domain spectral information through a weighting factor.Tests on both synthetic data and field data demonstrate that the proposed method outperforms conventional AVA inversion and time-domain waveform inversion in accuracy and robustness.Furthermore,the method demonstrates good robustness against variations in initial models,random noise,and coherent noise interference.This study provides a practical and effective approach for high-precision reservoir characterization,with potential applications in complex layered media.
基金pported by National Natural Science Foundation of China(Grant No.12161049).
文摘We introduce and study a new kind of generalized inverses named w-(b,c)-core inverses,which is a generalization of the(b,c)-core inverse.An example is given to show that w-(b,c)-core inverses need not be(b,c)-core inverses.In addition,the dual version of the w-(b,c)-core inverse is studied.Some results on(b,c)-core inverses and e-(b,c)-core inverses are unifed and generalized.
基金supported by Fundamental Research Funds for the Central Universities,CHD300102264715National Key Research and Development Program of China under Grant 2021YFA0716902Natural Science Basic Research Program of Shaanxi 2024JCYBMS-199。
文摘Young's modulus and Poisson's ratio are crucial parameters for reservoir characterization and rock brittleness evaluation.Conventional methods often rely on indirect computation or approximations of the Zoeppritz equations to estimate Young's modulus,which can introduce cumulative errors and reduce the accuracy of inversion results.To address these issues,this paper introduces the analytical solution of the Zoeppritz equation into the inversion process.The equation is re-derived and expressed in terms of Young's modulus,Poisson's ratio,and density.Within the Bayesian framework,we construct an objective function for the joint inversion of PP and PS waves.Traditional gradient-based algorithms often suffer from low precision and the computational complexity.In this study,we address limitations of conventional approaches related to low precision and complicated code by using Circle chaotic mapping,Levy flights,and Gaussian mutation to optimize the quantum particle swarm optimization(QPSO),named improved quantum particle swarm optimization(IQPSO).The IQPSO demonstrates superior global optimization capabilities.We test the proposed inversion method with both synthetic and field data.The test results demonstrate the proposed method's feasibility and effectiveness,indicating an improvement in inversion accuracy over traditional methods.
文摘Incremental Nonlinear Dynamic Inversion(INDI)is a control approach that has gained popularity in flight control over the past decade.Besides the INDI law,several common additional components complement an INDI-based controller.This paper,the second part of a two-part series of surveys on INDI,aims to summarize the modern trends in INDI and its related components.Besides a comprehensive components specification,it addresses their most common challenges,compares different variants,and discusses proposed advances.Further important aspects of INDI are gain design,stability,and robustness.This paper also provides an overview of research conducted concerning these aspects.This paper is written in a tutorial style to familiarize researchers with the essential specifics and pitfalls of INDI and its components.At the same time,it can also serve as a reference for readers already familiar with INDI.
基金supported by the National Key Research and Development Program of China(2022YFA1404400)the National Natural Science Foundation of China(62122072,12174368,61705216,62405306)+4 种基金Anhui Provincial Department of Science and Technology(202203a07020020,18030801138)Anhui Provincial Natural Science Foundation(2308085QA21,2408085QF187)the USTC Research Funds of the Double First-Class Initiative(YD2090002015)the Institute of Artificial Intelligence at Hefei Comprehensive National Science Center(23YGXT005)the Fundamental Research Funds for the Central Universities(WK2090000083).
文摘Ultrasound computed tomography(USCT)is a noninvasive biomedical imaging modality that offers insights into acoustic properties such as the sound speed(SS)and acoustic attenuation(AA)of the human body,enhancing diagnostic accuracy and therapy planning.Full waveform inversion(FWI)is a promising USCT image reconstruction method that optimizes the parameter fields of a wave propagation model via gradient-based optimization.However,twodimensional FWI methods are limited by their inability to account for three-dimensional wave propagation in the elevation direction,resulting in image artifacts.To address this problem,we propose a three-dimensional time-domain full waveform inversion algorithm to reconstruct the SS and AA distributions on the basis of a fractional Laplacian wave equation,adjoint field formulation,and gradient descent optimization.Validated by two sets of simulations,the proposed algorithm has potential for generating high-resolution and quantitative SS and AA distributions.This approach holds promise for clinical USCT applications,assisting early disease detection,precise abnormality localization,and optimized treatment planning,thus contributing to better healthcare outcomes.
基金supported by the Fundamental Research Funds for the Central Universities (No.2024JBZY021)the National Natural Science Foundation of China (No.61575018)。
文摘Reverse design of highly GeO2-doped silica optical fibers with broadband and flat dispersion profiles is proposed using a neural network(NN) combined with a particle swarm optimization(PSO) algorithm.Firstly,the NN model designed to predict optical fiber dispersion is trained with an appropriate choice of hyperparameters,achieving a root mean square error(RMSE) of 9.47×10-7on the test dataset,with a determination coefficient(R2) of 0.999.Secondly,the NN is combined with the PSO algorithm for the inverse design of dispersion-flattened optical fibers.To expand the search space and avoid particles becoming trapped in local optimal solutions,the PSO algorithm incorporates adaptive inertia weight updating and a simulated annealing algorithm.Finally,by using a suitable fitness function,the designed fibers exhibit flat group velocity dispersion(GVD) profiles at 1 400—2 400 nm,where the GVD fluctuations and minimum absolute GVD values are below 18 ps·nm-1·km-1and 7 ps·nm-1·km-1,respectively.
基金sponsored by China Geological Survey Project(DD20243193 and DD20230206508).
文摘In Rayleigh wave exploration,the inversion of dispersion curves is a crucial step for obtaining subsurface stratigraphic information,characterized by its multi-parameter and multi-extremum nature.Local optimization algorithms used in dispersion curve inversion are highly dependent on the initial model and are prone to being trapped in local optima,while classical global optimization algorithms often suffer from slow convergence and low solution accuracy.To address these issues,this study introduces the Osprey Optimization Algorithm(OOA),known for its strong global search and local exploitation capabilities,into the inversion of dispersion curves to enhance inversion performance.In noiseless theoretical models,the OOA demonstrates excellent inversion accuracy and stability,accurately recovering model parameters.Even in noisy models,OOA maintains robust performance,achieving high inversion precision under high-noise conditions.In multimode dispersion curve tests,OOA effectively handles higher modes due to its efficient global and local search capabilities,and the inversion results show high consistency with theoretical values.Field data from the Wyoming region in the United States and a landfill site in Italy further verify the practical applicability of the OOA.Comprehensive test results indicate that the OOA outperforms the Particle Swarm Optimization(PSO)algorithm,providing a highly accurate and reliable inversion strategy for dispersion curve inversion.
基金the sponsorship of the Key Technology for Geophysical Prediction of Ultra-Deep Carbonate Reservoirs(P24240)the National Natural Science Foundation of China(U24B2020)the National Science and Technology Major Project of China for New Oil and Gas Exploration and Development(Grant No.2024ZD1400102)。
文摘Fluid identification and anisotropic parameters characterization are crucial for shale reservoir exploration and development.However,the anisotropic reflection coefficient equation,based on the transverse isotropy with a vertical axis of symmetry(VTI)medium assumption,involves numerous parameters to be inverted.This complexity reduces its stability and impacts the accuracy of seismic amplitude variation with offset(AVO)inversion results.In this study,a novel anisotropic equation that includes the fluid term and Thomsen anisotropic parameters is rewritten,which reduces the equation's dimensionality and increases its stability.Additionally,the traditional Markov Chain Monte Carlo(MCMC)inversion algorithm exhibits a high rejection rate for random samples and relies on known parameter distributions such as the Gaussian distribution,limiting the algorithm's convergence and sample randomness.To address these limitations and evaluate the uncertainty of AVO inversion,the IADR-Gibbs algorithm is proposed,which incorporates the Independent Adaptive Delayed Rejection(IADR)algorithm with the Gibbs sampling algorithm.Grounded in Bayesian theory,the new algorithm introduces support points to construct a proposal distribution of non-parametric distribution and reselects the rejected samples according to the Delayed Rejection(DR)strategy.Rejected samples are then added to the support points to update the proposal distribution function adaptively.The equation rewriting method and the IADR-Gibbs algorithm improve the accuracy and robustness of AVO inversion.The effectiveness and applicability of the proposed method are validated through synthetic gather tests and practical data applications.
文摘The weighted Drazin invertibility of rectangular matrixs over an arbitrary ring are studied.Some equivalent conditions and Characterizations are given for existence of the weighted Drazin inverse of a rectangular matrix over an arbitrary ring.Moreover,the weighted Drazin inverse of a rectangular matrices product PAQ can be characterized and computed.This generalizes results obtained for the Drazin inverse of such product of square matrices.The results also apply to morphisms in(additive)categories.
基金Projects(41074085,41374118)supported by the National Natural Science Foundation of ChinaProject(20120162110015)supported by Doctoral Fund of Ministry of Education of ChinaProject(NCET-12-0551)supported by Program for New Century Excellent Talents in University,China
文摘The 2D data processing adopted by the high-density resistivity method regards the geological structures as two degrees, which makes the results of the 2D data inversion only an approximate interpretation;the accuracy and effect can not meet the precise requirement of the inversion. Two typical models of the geological bodies were designed, and forward calculation was carried out using finite element method. The forward-modeled profiles were obtained. 1% Gaussian random error was added in the forward models and then 2D and 3D inversions using a high-density resistivity method were undertaken to realistically simulate field data and analyze the sensitivity of the 2D and 3D inversion algorithms to noise. Contrast between the 2D and 3D inversion results of least squares inversion shows that two inversion results of high-density resistivity method all can basically reflect the spatial position of an anomalous body. However, the 3D inversion can more effectively eliminate the influence of interference from Gaussian random error and better reflect the distribution of resistivity in the anomalous bodies. Overall, the 3D inversion was better than 2D inversion in terms of embodying anomalous body positions, morphology and resistivity properties.
基金Supported by the National Natural Science Foundation of China(11271105)the Key Research Project of Educational Department of Hubei Province(D20122202)Youth Research Project of Educational Department of Hubei Province(B20122203)
文摘In this paper, we revisit the core inverse introduced by Baksalary and Trenkler. We first give some new characterizations of the core inverse. Then, we give a new representation of the core inverse, which is related to AT,S^(2).
基金funded by theNationalNatural Science Foundation of China(52061020)Major Science and Technology Projects in Yunnan Province(202302AG050009)Yunnan Fundamental Research Projects(202301AV070003).
文摘Finding materials with specific properties is a hot topic in materials science.Traditional materials design relies on empirical and trial-and-error methods,requiring extensive experiments and time,resulting in high costs.With the development of physics,statistics,computer science,and other fields,machine learning offers opportunities for systematically discovering new materials.Especially through machine learning-based inverse design,machine learning algorithms analyze the mapping relationships between materials and their properties to find materials with desired properties.This paper first outlines the basic concepts of materials inverse design and the challenges faced by machine learning-based approaches to materials inverse design.Then,three main inverse design methods—exploration-based,model-based,and optimization-based—are analyzed in the context of different application scenarios.Finally,the applications of inverse design methods in alloys,optical materials,and acoustic materials are elaborated on,and the prospects for materials inverse design are discussed.The authors hope to accelerate the discovery of new materials and provide new possibilities for advancing materials science and innovative design methods.
文摘Recently, solutions to inverse problems have been required in various engineering fields. The neural network inversion method has been studied as one of the neural network-based solutions. On the other hand, the extension of the neural network to a higher-dimensional domain, e.g., complex-value or quaternion, has been proposed, and a number of higher-dimensional neural network models have been proposed. Using the quatemion, we have the advantage of expressing 3D (three-dimensional) object attitudes easily. In the quaternion domain, we can define inverse problems where the cause and the result are expressed by the quaternion. In this paper, we extend the neural network inversion method to the quatemion domain. Further, we provide the results of the computer experiments to demonstrate the process and effectiveness of our method.
基金supported by the National Natural Science Foundation of China(Grant No.42174126)the Alliance of International Science Organizations(ANSO)Project(Grant No.ANSO-CR-PP2022-04)+1 种基金the Deep Earth Probe and Mineral Resources Exploration National Science and Technology Major Project(Grant Nos.2024ZD1002206,2024ZD1002201)Key R&D Program of Xinjiang Uyghur Autonomous Region(Grant No.2024B03013-2)。
文摘The Pamir Plateau,at the northwestern margin of the Tibetan Plateau,is a key region for investigating continental collision and plateau uplifting.To probe its deep structure,we collected seismic data from 263 stations across 11 research projects.We applied cross-correlation to noise data and extracted surface wave dispersion data from cross-correlation functions.The extracted dispersion data were subsequently inverted using a 3-D transdimensional Bayesian inversion method(rj-3 DMcMC).The inversion result reveals several crustal low-velocity zones(LVZs).Their formation is likely related to crustal thickening,the exposure of gneiss domes,and thicker sedimentary sequences compared to surrounding areas.In the lower crust and upper mantle,the LVZs in southern Pamir and southeastern Karakoram evolve into high-velocity zones,which expand northeastward with increasing depth.This suggests northward underthrusting of the Indian Plate.We also analyzed the Moho using both the standard deviation of S-wave velocity and the S-wave velocity structure.Results show that significant variations in velocity standard deviation reliably delineate the Moho interface.
基金funded by the National Key R&D Program of China(Grant No.2022YFC2903904)the National Natural Science Foundation of China(Grant Nos.51904057 and U1906208).
文摘Due to the heterogeneity of rock masses and the variability of in situ stress,the traditional linear inversion method is insufficiently accurate to achieve high accuracy of the in situ stress field.To address this challenge,nonlinear stress boundaries for a numerical model are determined through regression analysis of a series of nonlinear coefficient matrices,which are derived from the bubbling method.Considering the randomness and flexibility of the bubbling method,a parametric study is conducted to determine recommended ranges for these parameters,including the standard deviation(σb)of bubble radii,the non-uniform coefficient matrix number(λ)for nonlinear stress boundaries,and the number(m)and positions of in situ stress measurement points.A model case study provides a reference for the selection of these parameters.Additionally,when the nonlinear in situ stress inversion method is employed,stress distortion inevitably occurs near model boundaries,aligning with the Saint Venant's principle.Two strategies are proposed accordingly:employing a systematic reduction of nonlinear coefficients to achieve high inversion accuracy while minimizing significant stress distortion,and excluding regions with severe stress distortion near the model edges while utilizing the central part of the model for subsequent simulations.These two strategies have been successfully implemented in the nonlinear in situ stress inversion of the Xincheng Gold Mine and have achieved higher inversion accuracy than the linear method.Specifically,the linear and nonlinear inversion methods yield root mean square errors(RMSE)of 4.15 and 3.2,and inversion relative errors(δAve)of 22.08%and 17.55%,respectively.Therefore,the nonlinear inversion method outperforms the traditional multiple linear regression method,even in the presence of a systematic reduction in the nonlinear stress boundaries.
基金Supported by National Natural Science Foundation of China(Grant No.52275033)National Natural Science Youth Foundation of China(Grant No.52205033)Hebei Provincial Natural Science Foundation of China(Grant No.E2021203019)。
文摘Serial-parallel manipulators are of great interest to academic community in recent years,especially those composed of classical parallel mechanisms.There have been many studies around 2(3RPS)and 2(3SPR)S-PMs,but unfortunately their inverse kinematics have not yet been resolved.This paper discovers that the unknown kinematic parameters of middle platform are responsible for the unresolvable of inverse kinematics,meanwhile the unknown kinematic parameters of middle platform also have huge coupling relationships.Therefore,to break through this challenges,the huge coupling relationships are decoupled layer by layer,the kinematic parameters of middle platform are solved by combining Sylvester's elimination method,and the inverse displacements of 2(3RPS)and 2(3SPR)S-PMs are obtained subsequently.This paper not only solves the inverse kinematics of classical 2(3RPS)and 2(3SPR)S-PMs,but also reveals the essence of the inverse kinematics of general(3-DOF)+(3-DOF)6-DOF S-PMs and proposes a corresponding solution.
文摘In this study,we examine the problem of sliced inverse regression(SIR),a widely used method for sufficient dimension reduction(SDR).It was designed to find reduced-dimensional versions of multivariate predictors by replacing them with a minimally adequate collection of their linear combinations without loss of information.Recently,regularization methods have been proposed in SIR to incorporate a sparse structure of predictors for better interpretability.However,existing methods consider convex relaxation to bypass the sparsity constraint,which may not lead to the best subset,and particularly tends to include irrelevant variables when predictors are correlated.In this study,we approach sparse SIR as a nonconvex optimization problem and directly tackle the sparsity constraint by establishing the optimal conditions and iteratively solving them by means of the splicing technique.Without employing convex relaxation on the sparsity constraint and the orthogonal constraint,our algorithm exhibits superior empirical merits,as evidenced by extensive numerical studies.Computationally,our algorithm is much faster than the relaxed approach for the natural sparse SIR estimator.Statistically,our algorithm surpasses existing methods in terms of accuracy for central subspace estimation and best subset selection and sustains high performance even with correlated predictors.
文摘We report a robust pillar-layered metal-organic framework,Zn‑tfbdc‑dabco(tfbdc:tetrafluoroterephthal-ate,dabco:1,4-diazabicyclo[2.2.2]octane),featuring the fluorinated pore environment,for the preferential binding of propane over propylene and thus highly inverse selective separation of propane/propylene mixture.The inverse propane-selective performance of Zn‑tfbdc‑dabco for the propane/propylene separation was validated by single-component gas adsorption isotherms,isosteric enthalpy of adsorption calculations,ideal adsorbed solution theory calculations,along with the breakthrough experiment.The customized fluorinated networks served as a propane-trap to form more interactions with the exposed hydrogen atoms of propane,as unveiled by the simulation studies at the molecular level.With the advantage of inverse propane-selective adsorption behavior,high adsorption capacity,good cycling stability,and low isosteric enthalpy of adsorption,Zn‑tfbdc‑dabco can be a promising candidate adsorbent for the challenging propane/propylene separation to realize one-step purification of the target propylene substance.
基金supported by the 973 Program of China(No.2011CB201104 and 2011ZX05009)the National Science and the Technology Major Project(No.2011ZX05006-06)
文摘Prestack seismic inversion methods adopt approximations of the Zoeppritz equations to describe the relation between reflection coefficients and P-wave velocity, S-wave velocity, and density. However, the error in these approximations increases with increasing angle of incidence and variation of the elastic parameters, which increases the number of inversion solutions and minimizes the inversion accuracy. In this study, we explore a method for solving the reflection coefficients by using the Zoeppritz equations. To increase the accuracy of prestack inversion, the simultaneous inversion of P-wave velocity, S-wave velocity, and density by using prestack large-angle seismic data is proposed based on generalized linear inversion theory. Moreover, we reduce the ill posedness and increase the convergence of prestack inversion by using the regularization constraint damping factor and the conjugate gradient algorithm. The proposed prestack inversion method uses prestack large-angle seismic data to obtain accurate seismic elastic parameters that conform to prestack seismic data and are consistent with logging data from wells.