The invariant subspace method is used to construct the explicit solution of a nonlinear evolution equation. The second-order nonlinear differential operators that possess invariant subspaces of submaximal dimension ar...The invariant subspace method is used to construct the explicit solution of a nonlinear evolution equation. The second-order nonlinear differential operators that possess invariant subspaces of submaximal dimension are described. There are second-order nonlinear differential operators, including cubic operators and quadratic operators, which preserve an invariant subspace of submaximal dimension. A full. description, of the second-order cubic operators with constant coefficients admitting a four-dimensional invariant subspace is given. It is shown that the maximal dimension of invaxiant subspaces preserved by a second-order cubic operator is four. Several examples are given for the construction of the exact solutions to nonlinear evolution equations with cubic nonlinearities. These solutions blow up in a finite展开更多
In this paper, third-order nonlinear differential operators are studied. It is shown that they are quadratic forms when they preserve invariant subspaces of maximal dimension. A complete description of third-order qua...In this paper, third-order nonlinear differential operators are studied. It is shown that they are quadratic forms when they preserve invariant subspaces of maximal dimension. A complete description of third-order quadratic operators with constant coefficients is obtained. One example is given to derive special solutions for evolution equations with third-order quadratic operators.展开更多
In this research,invariant subspaces and exact solutions for the governing equation are obtained through the invariant subspace method,and the generalized second-order Kudryashov-Sinelshchikov equation is used to desc...In this research,invariant subspaces and exact solutions for the governing equation are obtained through the invariant subspace method,and the generalized second-order Kudryashov-Sinelshchikov equation is used to describe pressure waves in a liquid with bubbles.The governing equations are classified and transformed into a system of ordinary differential equations,and the exact solutions of the classified equation are obtained by solving the system of ordinary differential equations.The method gives logarithmic,polynomial,exponential,and trigonometric solutions for equations.The primary accomplishments of this work are displaying how to obtain the exact solutions of the classified equations and giving the stability analysis of reduced ordinarydifferential equations.展开更多
In the present paper,invariant subspace method has been extended for solving systems of multi-term fractional partial differential equations(FPDEs)involving both time and space fractional derivatives.Further,the metho...In the present paper,invariant subspace method has been extended for solving systems of multi-term fractional partial differential equations(FPDEs)involving both time and space fractional derivatives.Further,the method has also been employed for solving multi-term fractional PDEs in(1+n)dimensions.A diverse set of examples is solved to illustrate the method.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.10926082)the Natural Science Foundation of Anhui Province of China(Grant No.KJ2010A128)the Fund for Youth of Anhui Normal University,China(Grant No.2009xqn55)
文摘The invariant subspace method is used to construct the explicit solution of a nonlinear evolution equation. The second-order nonlinear differential operators that possess invariant subspaces of submaximal dimension are described. There are second-order nonlinear differential operators, including cubic operators and quadratic operators, which preserve an invariant subspace of submaximal dimension. A full. description, of the second-order cubic operators with constant coefficients admitting a four-dimensional invariant subspace is given. It is shown that the maximal dimension of invaxiant subspaces preserved by a second-order cubic operator is four. Several examples are given for the construction of the exact solutions to nonlinear evolution equations with cubic nonlinearities. These solutions blow up in a finite
基金supported by the National Natural Science Foundation of China(Grant No.11371293)the Civil Military Integration Research Foundation of Shaanxi Province,China(Grant No.13JMR13)+2 种基金the Natural Science Foundation of Shaanxi Province,China(Grant No.14JK1246)the Mathematical Discipline Foundation of Shaanxi Province,China(Grant No.14SXZD015)the Basic Research Project Foundation of Weinan City,China(Grant No.2013JCYJ-4)
文摘In this paper, third-order nonlinear differential operators are studied. It is shown that they are quadratic forms when they preserve invariant subspaces of maximal dimension. A complete description of third-order quadratic operators with constant coefficients is obtained. One example is given to derive special solutions for evolution equations with third-order quadratic operators.
基金supported by a training program for key young teachers of colleges and universities in Henan Province(No.2019GGJS143)the Natural Science Foundation of Shannxi Province of China(No.2021JM-521)+2 种基金key research projects of Henan higher education institutions(No.21A110026)research team development project of Zhongyuan University of Technology(No.K2020TD004)the Natural Science of Foundation of Zhongyuan University of Technology(No.K2023MS002).
文摘In this research,invariant subspaces and exact solutions for the governing equation are obtained through the invariant subspace method,and the generalized second-order Kudryashov-Sinelshchikov equation is used to describe pressure waves in a liquid with bubbles.The governing equations are classified and transformed into a system of ordinary differential equations,and the exact solutions of the classified equation are obtained by solving the system of ordinary differential equations.The method gives logarithmic,polynomial,exponential,and trigonometric solutions for equations.The primary accomplishments of this work are displaying how to obtain the exact solutions of the classified equations and giving the stability analysis of reduced ordinarydifferential equations.
文摘In the present paper,invariant subspace method has been extended for solving systems of multi-term fractional partial differential equations(FPDEs)involving both time and space fractional derivatives.Further,the method has also been employed for solving multi-term fractional PDEs in(1+n)dimensions.A diverse set of examples is solved to illustrate the method.