期刊文献+
共找到1,129篇文章
< 1 2 57 >
每页显示 20 50 100
Learning a Deep Predictive Coding Network for a Semi-Supervised 3D-Hand Pose Estimation 被引量:3
1
作者 Jamal Banzi Isack Bulugu Zhongfu Ye 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2020年第5期1371-1379,共9页
In this paper we present a CNN based approach for a real time 3 D-hand pose estimation from the depth sequence.Prior discriminative approaches have achieved remarkable success but are facing two main challenges:Firstl... In this paper we present a CNN based approach for a real time 3 D-hand pose estimation from the depth sequence.Prior discriminative approaches have achieved remarkable success but are facing two main challenges:Firstly,the methods are fully supervised hence require large numbers of annotated training data to extract the dynamic information from a hand representation.Secondly,unreliable hand detectors based on strong assumptions or a weak detector which often fail in several situations like complex environment and multiple hands.In contrast to these methods,this paper presents an approach that can be considered as semi-supervised by performing predictive coding of image sequences of hand poses in order to capture latent features underlying a given image without supervision.The hand is modelled using a novel latent tree dependency model(LDTM)which transforms internal joint location to an explicit representation.Then the modeled hand topology is integrated with the pose estimator using data dependent method to jointly learn latent variables of the posterior pose appearance and the pose configuration respectively.Finally,an unsupervised error term which is a part of the recurrent architecture ensures smooth estimations of the final pose.Experiments on three challenging public datasets,ICVL,MSRA,and NYU demonstrate the significant performance of the proposed method which is comparable or better than state-of-the-art approaches. 展开更多
关键词 Convolutional neural networks deep learning hand pose estimation human-machine interaction predictive coding recurrent neural networks unsupervised learning
在线阅读 下载PDF
Lateral predictive coding revisited:internal model,symmetry breaking,and response time
2
作者 Zhen-Ye Huang Xin-Yi Fan +1 位作者 Jianwen Zhou Hai-Jun Zhou 《Communications in Theoretical Physics》 SCIE CAS CSCD 2022年第9期158-169,共12页
Predictive coding is a promising theoretical framework in neuroscience for understanding information transmission and perception.It posits that the brain perceives the external world through internal models and update... Predictive coding is a promising theoretical framework in neuroscience for understanding information transmission and perception.It posits that the brain perceives the external world through internal models and updates these models under the guidance of prediction errors.Previous studies on predictive coding emphasized top-down feedback interactions in hierarchical multilayered networks but largely ignored lateral recurrent interactions.We perform analytical and numerical investigations in this work on the effects of single-layer lateral interactions.We consider a simple predictive response dynamics and run it on the MNIST dataset of hand-written digits.We find that learning will generally break the interaction symmetry between peer neurons,and that high input correlation between two neurons does not necessarily bring strong direct interactions between them.The optimized network responds to familiar input signals much faster than to novel or random inputs,and it significantly reduces the correlations between the output states of pairs of neurons. 展开更多
关键词 neural network response dynamics predictive coding SIMILARITY symmetry breaking
原文传递
Complete Focal Plane Compression Based on CMOS Image Sensor Using Predictive Coding
3
作者 姚素英 于潇 +1 位作者 高静 徐江涛 《Transactions of Tianjin University》 EI CAS 2015年第1期83-89,共7页
In this paper, a CMOS image sensor(CIS) is proposed, which can accomplish both decorrelation and entropy coding of image compression directly on the focal plane. The design is based on predictive coding for image deco... In this paper, a CMOS image sensor(CIS) is proposed, which can accomplish both decorrelation and entropy coding of image compression directly on the focal plane. The design is based on predictive coding for image decorrelation. The predictions are performed in analog domain by 2×2 pixel units. Both the prediction residuals and original pixel values are quantized and encoded in parallel. Since the residuals have a peak distribution around zero,the output codewords can be replaced by the valid part of the residuals' binary mode. The compressed bit stream is accessible directly at the output of CIS without extra disposition. Simulation results show that the proposed approach achieves a compression rate of 2. 2 and PSNR of 51 on different test images. 展开更多
关键词 CMOS image sensor focal plane compression predictive coding entropy coder
在线阅读 下载PDF
Two Comments on Predictive Picture Coding
4
作者 Xu Mengxia(Peking University, Beijing 100871) 《通信学报》 EI CSCD 北大核心 1998年第5期90-92,共3页
TwoCommentsonPredictivePictureCodingXuMengxia(PekingUniversity,Beijing100871)AbstractTwocommentsonpredictive... TwoCommentsonPredictivePictureCodingXuMengxia(PekingUniversity,Beijing100871)AbstractTwocommentsonpredictivepicturecodingare... 展开更多
关键词 图像编码 估计方法 MPEG JPEG
在线阅读 下载PDF
A Novel Low-bit-rate Speech Coding Based on Decomposition of the Pitch-cycle Waveform of the Linear Predictive Residual
5
作者 Bao ChangchunAssociate professor of Information Engineering, Beijing Polytechnic University, Ph.D, CIE senior member (Department of Electronic Engineering, Beijing Polytechnic University, Beijing 100022) Fan ChangxinProfessor of Information Engineerin 《通信学报》 EI CSCD 北大核心 1998年第5期39-44,共6页
ANovelLowbitrateSpechCodingBasedonDecompositionofthePitchcycleWaveformoftheLinearPredictiveResidualBaoChangc... ANovelLowbitrateSpechCodingBasedonDecompositionofthePitchcycleWaveformoftheLinearPredictiveResidualBaoChangchun(Departm... 展开更多
关键词 线性估计 语音编码 失量量化 分解 节圈波形
在线阅读 下载PDF
Effects of Mapping Methods on Accuracy of Protein Coding Regions Prediction
6
作者 马玉韬 张成 +2 位作者 杨泽林 李琦 杨婷 《Agricultural Science & Technology》 CAS 2011年第12期1802-1806,1860,共6页
[Objective] To discuss the effects of major mapping methods for DNA sequence on the accuracy of protein coding regions prediction,and to find out the effective mapping methods.[Method] By taking Approximate Correlatio... [Objective] To discuss the effects of major mapping methods for DNA sequence on the accuracy of protein coding regions prediction,and to find out the effective mapping methods.[Method] By taking Approximate Correlation(AC) as the full measure of the prediction accuracy at nucleotide level,the windowed narrow pass-band filter(WNPBF) based prediction algorithm was applied to study the effects of different mapping methods on prediction accuracy.[Result] In DNA data sets ALLSEQ and HMR195,the Voss and Z-Curve methods are proved to be more effective mapping methods than paired numeric(PN),Electron-ion Interaction Potential(EIIP) and complex number methods.[Conclusion] This study lays the foundation to verify the effectiveness of new mapping methods by using the predicted AC value,and it is meaningful to reveal DNA structure by using bioinformatics methods. 展开更多
关键词 prediction accuracy Protein coding regions Mapping method Windowed Narrow pass-band filter
在线阅读 下载PDF
Local prediction of the chaotic fh-code based on LS-SVM 被引量:6
7
作者 Wang Yi Guo Wei 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2008年第1期65-70,共6页
Support vector machine (SVM) is powerful to solve some problems such as nonlinear classification, function estimation and density estimation. To consider the chaotic fh (frequency hopping)-code's characters in ch... Support vector machine (SVM) is powerful to solve some problems such as nonlinear classification, function estimation and density estimation. To consider the chaotic fh (frequency hopping)-code's characters in chaotic dynamic system, the forecasting model of the support vector machine in combination with Takens' delay coordinate phase reconstruction of chaotic times is established and the least squares model for large-scale problems is used in local training for this model. Finally, a fh-code series generated by Logistic-Kent mapping is applied to verify the local prediction model. Simulation results show that the high accuracy and fault tolerant SVM model has an excellent performance in predicting the fh code, with a very low mean square error and a high relative coefficient. 展开更多
关键词 support vector machine(SVM) fh code least squares(LS) predictION
在线阅读 下载PDF
Identification of a five-long non-coding RNA signature to improve the prognosis prediction for patients with hepatocellular carcinoma 被引量:9
8
作者 Qiu-Jie Zhao Jiao Zhang +1 位作者 Lin Xu Fang-Feng Liu 《World Journal of Gastroenterology》 SCIE CAS 2018年第30期3426-3439,共14页
AIM To construct a long non-coding RNA(lnc RNA) signature for predicting hepatocellular carcinoma(HCC) prognosis with high efficiency.METHODS Differentially expressed lnc RNAs(DELs) between HCC specimens and peritumor... AIM To construct a long non-coding RNA(lnc RNA) signature for predicting hepatocellular carcinoma(HCC) prognosis with high efficiency.METHODS Differentially expressed lnc RNAs(DELs) between HCC specimens and peritumor liver specimens were identified using the edge R package to analyze The Cancer Genome Atlas(TCGA) LIHC dataset.Univariate Cox proportional hazards regression was performed to obtain the DELs significantly associated with overall survival(OS) in a training set.These OS-related DELs were further analyzed using a stepwise multivariate Cox regression model.Those lnc RNAs fitted in the multivariate Cox regression model and independently associated with overall survival were chosen to build a prognostic risk formula.The prognostic value ofthis formula was then validated in the test group and the entire cohort and further compared with two previously identified prognostic signatures for HCC.Gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses were performed to explore the potential biological functions of the lnc RNAs in the signature.RESULTS Based on lnc RNA expression profiling of 370 HCC patients from the TCGA database,we constructed a 5-lnc RNA signature(AC015908.3,AC091057.3,TMCC1-AS1,DCST1-AS1 and FOXD2-AS1) that was significantly associated with prognosis.HCC patients with high-risk scores based on the expression of the 5 lnc RNAs had significantly shorter survival times compared to patients with low-risk scores in both the training and test groups.Multivariate Cox regression analysis demonstrated that the prognostic value of the 5 lnc RNAs was independent of clinicopathological parameters.A comparison study involving two previously identified prognostic signatures for HCC demonstrated that this 5-lnc RNA signature showed improved prognostic power compared with the other two signatures.Functional enrichment analysis indicated that the 5 lnc RNAs were potentially involved in metabolic processes,fibrinolysis and complement activation.CONCLUSION Our present study constructed a 5-lnc RNA signature that improves survival prediction and can be used as a prognostic biomarker for HCC patients. 展开更多
关键词 Long NON-coding RNA HEPATOCELLULAR carcinoma PROGNOSIS Survival predictION PROGNOSTIC BIOMARKER
暂未订购
Prediction of β-Turns Using Double BP Network with Novel Coding Schemes of Amino Acids
9
作者 LIU Feng LIU Juan 《Wuhan University Journal of Natural Sciences》 CAS 2009年第2期119-124,共6页
Protein structure prediction is one of the most important problems in structural biology, β-turns are always at the turn of a protein tertiary structure and thus β-turn's prediction is a key step in tertiary struct... Protein structure prediction is one of the most important problems in structural biology, β-turns are always at the turn of a protein tertiary structure and thus β-turn's prediction is a key step in tertiary structure prediction. There are some methods to predict β-turns based on machine learning techniques such as k-nearest method, neural networks and support vector machine. In this paper, we construct a classifier using double BP networks and put forward two novel methods to code amino acids in the second network. When trained and tested on different datasets, they achieve more accuracy than other coding methods. 展开更多
关键词 protein structure prediction neural network coding method data mining BIOINFORMATICS
原文传递
Software Defect Prediction Method Based on Stable Learning 被引量:1
10
作者 Xin Fan Jingen Mao +3 位作者 Liangjue Lian Li Yu Wei Zheng Yun Ge 《Computers, Materials & Continua》 SCIE EI 2024年第1期65-84,共20页
The purpose of software defect prediction is to identify defect-prone code modules to assist software quality assurance teams with the appropriate allocation of resources and labor.In previous software defect predicti... The purpose of software defect prediction is to identify defect-prone code modules to assist software quality assurance teams with the appropriate allocation of resources and labor.In previous software defect prediction studies,transfer learning was effective in solving the problem of inconsistent project data distribution.However,target projects often lack sufficient data,which affects the performance of the transfer learning model.In addition,the presence of uncorrelated features between projects can decrease the prediction accuracy of the transfer learning model.To address these problems,this article propose a software defect prediction method based on stable learning(SDP-SL)that combines code visualization techniques and residual networks.This method first transforms code files into code images using code visualization techniques and then constructs a defect prediction model based on these code images.During the model training process,target project data are not required as prior knowledge.Following the principles of stable learning,this paper dynamically adjusted the weights of source project samples to eliminate dependencies between features,thereby capturing the“invariance mechanism”within the data.This approach explores the genuine relationship between code defect features and labels,thereby enhancing defect prediction performance.To evaluate the performance of SDP-SL,this article conducted comparative experiments on 10 open-source projects in the PROMISE dataset.The experimental results demonstrated that in terms of the F-measure,the proposed SDP-SL method outperformed other within-project defect prediction methods by 2.11%-44.03%.In cross-project defect prediction,the SDP-SL method provided an improvement of 5.89%-25.46% in prediction performance compared to other cross-project defect prediction methods.Therefore,SDP-SL can effectively enhance within-and cross-project defect predictions. 展开更多
关键词 Software defect prediction code visualization stable learning sample reweight residual network
在线阅读 下载PDF
Predictive Block-Matching Algorithm for Wireless Video Sensor Network Using Neural Network
11
作者 Zhuge Yan Siu-Yeung Cho Sherif Welsen Shaker 《Journal of Computer and Communications》 2017年第10期66-77,共12页
This paper proposed a back propagation neural network model for predictive block-matching. Predictive block-matching is a way to significantly decrease the computational complexity of motion estimation, but the tradit... This paper proposed a back propagation neural network model for predictive block-matching. Predictive block-matching is a way to significantly decrease the computational complexity of motion estimation, but the traditional prediction model was proposed 26 years ago. It is straight forward but not accurate enough. The proposed back propagation neural network has 5 inputs, 5 neutrons and 1 output. Because of its simplicity, it requires very little calculation power which is negligible compared with existing computation complexity. The test results show 10% - 30% higher prediction accuracy and PSNR improvement up to 0.3 dB. The above advantages make it a feasible replacement of the current model. 展开更多
关键词 Wireless Sensor NETWORK predictive BLOCK-MATCHING NEURAL NETWORK High Efficaciously Video coding
在线阅读 下载PDF
肾病综合征病人血清lncRNA ANRIL和BDNF水平变化与血栓栓塞的相关性分析 被引量:1
12
作者 顾玉 梁晓艳 +2 位作者 马胜辉 佟娜 阎泽君 《安徽医药》 CAS 2025年第1期141-146,共6页
目的探究肾病综合征(NS)病人血清长链非编码RNA(lncRNA)细胞周期激酶抑制因子4基因座中反义非编码RNA(ANRIL)和脑源性神经营养因子(BDNF)水平变化与血栓栓塞(TE)的相关性。方法选取2019年3月至2021年12月在承德市中心医院住院治疗的220... 目的探究肾病综合征(NS)病人血清长链非编码RNA(lncRNA)细胞周期激酶抑制因子4基因座中反义非编码RNA(ANRIL)和脑源性神经营养因子(BDNF)水平变化与血栓栓塞(TE)的相关性。方法选取2019年3月至2021年12月在承德市中心医院住院治疗的220例NS病人为研究对象,根据随访结果将其分为NS组118例和TE组102例,另外选取同期体检健康者100例为对照组。采用实时荧光定量PCR(qRT-PCR)测定研究对象血清lncRNA ANRIL水平;采用酶联免疫吸附测定(ELISA)检测研究对象血清BDNF水平;使用全自动生化分析仪检测相关生化指标;采用Pearson相关性分析血清lncRNA ANRIL、BDNF水平与生化指标相关性;采用多因素logistic回归分析NS病人发生TE的影响因素;采用受试者操作特征曲线(ROC曲线)分析血清lncRNA ANRIL、BDNF在预测NS病人发生TE中的价值。结果与对照组相比较,NS组、TE组血清lncRNA ANRIL水平显著升高(2.54±0.43比5.82±1.34、8.35±2.17),BDNF水平显著降低[(32.77±8.25)μg/L比(24.49±4.58)μg/L、(18.63±3.62)μg/L](P<0.05);与NS组相比较,TE组血清lncRNA ANRIL水平显著升高,BDNF水平显著降低(P<0.05);对照组、NS组、TE组三组的尿酸、血肌酐、乳酸脱氢酶、血尿素氮、尿蛋白水平呈逐渐升高趋势,血清白蛋白、血红蛋白水平呈逐渐降低趋势(P<0.05)。Pearson相关性分析显示,NS合并TE病人血清lncRNA ANRIL水平与尿酸、血肌酐、乳酸脱氢酶、血尿素氮、尿蛋白水平呈正相关,与血清白蛋白、血红蛋白水平呈负相关(P<0.05);NS合并TE病人血清BDNF水平与尿酸、血肌酐、乳酸脱氢酶、血尿素氮、尿蛋白水平呈负相关,与血清白蛋白、血红蛋白水平呈正相关(P<0.05)。多因素logistic回归分析显示,lncRNA ANRIL、尿蛋白和BDNF是NS病人发生TE的影响因素(P<0.05);ROC曲线结果显示,血清lncRNA ANRIL、BDNF预测NS病人发生TE的曲线下面积(AUC)分别为0.84、0.85,两者联合预测的AUC为0.92,高于lncRNA ANRIL、BDNF单独检测,特异度为83.05%,灵敏度为88.24%。结论NS伴TE病人中血清lncRNA ANRIL水平升高,BDNF水平降低,二者对NS病人发生TE具有一定的预测价值。 展开更多
关键词 肾病综合征 非编码RNA ANRIL 脑源性神经营养因子 血栓栓塞 预测价值
暂未订购
Achieving view‑distance and‑angle invariance in motion prediction using a simple network
13
作者 Haichuan Zhao Xudong Ru +4 位作者 Peng Du Shaolong Liu Na Liu Xingce Wang Zhongke Wu 《Visual Computing for Industry,Biomedicine,and Art》 2024年第1期63-82,共20页
Recently,human motion prediction has gained significant attention and achieved notable success.However,current methods primarily rely on training and testing with ideal datasets,overlooking the impact of variations in... Recently,human motion prediction has gained significant attention and achieved notable success.However,current methods primarily rely on training and testing with ideal datasets,overlooking the impact of variations in the viewing distance and viewing angle,which are commonly encountered in practical scenarios.In this study,we address the issue of model invariance by ensuring robust performance despite variations in view distances and angles.To achieve this,we employed Riemannian geometry methods to constrain the learning process of neural networks,enabling the prediction of invariances using a simple network.Furthermore,this enhances the application of motion prediction in various scenarios.Our framework uses Riemannian geometry to encode motion into a novel motion space to achieve prediction with an invariant viewing distance and angle using a simple network.Specifically,the specified path transport square-root velocity function is proposed to aid in removing the view-angle equivalence class and encode motion sequences into a flattened space.Motion coding by the geometry method linearizes the optimization problem in a non-flattened space and effectively extracts motion information,allowing the proposed method to achieve competitive performance using a simple network.Experimental results on Human 3.6M and CMU MoCap demonstrate that the proposed framework has competitive performance and invariance to the viewing distance and viewing angle. 展开更多
关键词 Geometric coding Motion prediction Motion space View distance invariance View angle invariance Multi-layer perceptrons
在线阅读 下载PDF
基于细粒度代码表示和特征融合的即时软件缺陷预测方法 被引量:1
14
作者 朱晓燕 王文格 +1 位作者 王嘉寅 张选平 《计算机科学》 北大核心 2025年第1期242-249,共8页
即时软件缺陷预测指在软件更改初次提交之际预测该更改引入缺陷的倾向。此类预测针对单一程序变更,而非在粗粒度上进行。由于其即时性和可追溯性,该技术已在持续测试等领域得到广泛应用。目前的研究中,提取变更代码表示的方法粒度较粗,... 即时软件缺陷预测指在软件更改初次提交之际预测该更改引入缺陷的倾向。此类预测针对单一程序变更,而非在粗粒度上进行。由于其即时性和可追溯性,该技术已在持续测试等领域得到广泛应用。目前的研究中,提取变更代码表示的方法粒度较粗,仅标出了变更行,而没有进行细粒度的标记。此外,现有的使用提交内容进行缺陷预测的方法,仅仅是把提交消息与变更代码的特征进行简单拼接,缺失了在特征空间上的深度对齐,这使得在提交消息质量参差不齐的情况下,会出现预测结果易受噪声干扰的情形,并且现有方法也未将领域专家设计的人工特征以及变更内容中的语义语法信息综合起来进行预测。为了解决上述问题,提出了一种基于细粒度代码表征和特征融合的即时软件缺陷预测方法。通过引入新的变更嵌入计算方法来在细粒度上表示变更代码。同时,引入特征对齐模块,降低提交消息中噪声对方法性能的影响。此外,使用神经网络从人工设计的特征中学习专业知识,充分利用现有特征进行预测。实验结果表明,相较于现有方法,该方法在3个性能指标上均有显著提升。 展开更多
关键词 即时软件缺陷预测 特征融合 软件工程 深度学习 代码表示
在线阅读 下载PDF
一种HEVC帧内预测模式决策的快速算法
15
作者 王爽 刘家良 +1 位作者 张海坤 胡越黎 《上海大学学报(自然科学版)》 北大核心 2025年第3期561-570,共10页
高效视频编码(high efficiency video coding,HEVC)相较于上一代编码标准H.264降低了约50%的比特率,但为了提高帧内预测的准确性,HEVC提出的35种预测模式导致计算量大幅增加,对软件和硬件实现均构成了挑战.针对该问题,在HEVC的基础上提... 高效视频编码(high efficiency video coding,HEVC)相较于上一代编码标准H.264降低了约50%的比特率,但为了提高帧内预测的准确性,HEVC提出的35种预测模式导致计算量大幅增加,对软件和硬件实现均构成了挑战.针对该问题,在HEVC的基础上提出了一种依据图片纹理方向,结合预测模式之间的关联性来确定帧内预测模式的快速算法.实验结果表明,本算法与HEVC参考软件HM16.20相比,在BD-Rate损失仅为5.79%的情况下,节省46%以上的编码时间,显著降低了帧内预测模式决策的复杂度,便于在嵌入式系统等硬件资源有限的端侧实现算法落地. 展开更多
关键词 高效视频编码 帧内预测 角度模式 预测模式决策
在线阅读 下载PDF
人工智能算法在核反应堆热工水力预测分析中的初步探索
16
作者 章静 王明军 +2 位作者 田文喜 苏光辉 秋穗正 《核动力工程》 北大核心 2025年第2期127-140,共14页
人工智能算法快速预测、自学习与强泛用性的优势已应用于解决核反应堆热工水力现象和机理复杂的问题,包括热工水力参数预测、热工安全分析程序优化与计算流体动力学(CFD)效率提升等。本文回顾了人工智能算法在流型、沸腾换热及临界流等... 人工智能算法快速预测、自学习与强泛用性的优势已应用于解决核反应堆热工水力现象和机理复杂的问题,包括热工水力参数预测、热工安全分析程序优化与计算流体动力学(CFD)效率提升等。本文回顾了人工智能算法在流型、沸腾换热及临界流等热工水力参数预测研究现状,针对严苛运行条件下机理不明、预测范围局限性问题,基于人工智能非线性快速预测优势扩展分析范围与精度;针对热工分析程序受限于参数模型的问题,利用人工智能自学习、自适应与极强泛用性优势,通过模型校准及数据同化技术提升复杂现象参数识别能力与预测性能;基于模型降阶与快速预测,提高热工水力物理场复杂现象参数的计算效率和多维复现重构能力。提出人工智能算法在反应堆系统大型关键设备全寿期准确预测、液态金属快堆等新型先进反应堆的加快设计迭代、跨尺度多物理场复杂交互的加速优化的未来应用前景。 展开更多
关键词 人工智能 核反应堆热工水力 计算流体动力学(CFD) 热工水力参数预测 安全分析程序
原文传递
融合静态分析警告的软件缺陷预测模型及其应用研究
17
作者 吴海涛 马景悦 高建华 《计算机科学与探索》 北大核心 2025年第3期818-834,共17页
静态分析警告作为一种重要的软件质量指标,被广泛用于识别源代码中潜在的违规问题。近期的研究表明,静态分析警告在代码异味检测和即时缺陷预测中有所应用,但有关项目早期缺少提交修改记录的情况没有涉及。针对上述问题,利用三种流行的... 静态分析警告作为一种重要的软件质量指标,被广泛用于识别源代码中潜在的违规问题。近期的研究表明,静态分析警告在代码异味检测和即时缺陷预测中有所应用,但有关项目早期缺少提交修改记录的情况没有涉及。针对上述问题,利用三种流行的静态分析工具的警告信息,在原有的缺陷预测模型中融合静态分析警告这个新的度量,构建一个涵盖软件开发和代码可维护性的缺陷预测模型,并探究静态分析警告与缺陷的潜在关系,融合警告对软件缺陷预测模型性能的影响以及在跨项目场景中的影响。实验结果表明,警告数量往往与缺陷分布密切相关,呈现正相关的关系,即警告这一度量在软件缺陷预测模型中有相当大的潜力,并且在有缺陷数据中报告的警告信息往往与编码规范相关;融合警告之后,缺陷预测模型在各项目上的平均精度提高1.4%~14.7%,平均召回率提高0.2%~2.4%,平均F1提高0.3%~3.0%,平均AUC提高0.2%~1.4%。在跨项目场景中,CODE+SAW_VIF度量提供了最佳性能的缺陷预测模型,融合静态分析警告能够提升模型识别缺陷的性能。 展开更多
关键词 软件缺陷 静态分析工具 静态分析警告 代码度量 跨项目场景预测
在线阅读 下载PDF
一种面向AV1粗模式决策的高吞吐量硬件设计方法
18
作者 盛庆华 陶泽浩 +4 位作者 黄小芳 赖昌材 黄晓峰 殷海兵 董哲康 《电子与信息学报》 北大核心 2025年第4期1202-1214,共13页
随着视频编码标准的不断更新迭代,开放媒体联盟(AOM)发布最新视频编码标准开放媒体视频编码标准(AV1)。其中,帧内编码技术采用更加丰富的预测模式来提高预测效率,预测种类从VP9中的10种扩展至61种。为了应对预测种类增加的变化并提高硬... 随着视频编码标准的不断更新迭代,开放媒体联盟(AOM)发布最新视频编码标准开放媒体视频编码标准(AV1)。其中,帧内编码技术采用更加丰富的预测模式来提高预测效率,预测种类从VP9中的10种扩展至61种。为了应对预测种类增加的变化并提高硬件的处理吞吐能力,该文提出基于全流水线结构的AV1粗模式决策硬件架构设计。在算法层面,以4×4块为最小处理单元,按照Z顺序对64×64编码树单元(CTU)中不同尺寸的预测单元(PUs)进行粗模式决策,同时采用基于1:1 PU的代价累加近似方法来完成1:2,1:4,2:1和4:1 PU的代价计算,以减少计算复杂度;在硬件层面,设计兼容4×4至32×32等多尺寸PU的粗模式决策电路,取代为不同尺寸PU单独设计电路的方法,有效减少逻辑资源的闲置。实验结果表明,在全帧内(AI)配置下,提出的改进算法相较于AV1标准算法平均节省了45.78%的时间,提高了1.94%BD-Rate。同时,提出的硬件架构设计能够在1057个时钟周期内完成64×64 CTU的粗模式决策,使用Synopsys公司的Design Compiler 2016工具及UMC 28 nm工艺库对硬件设计综合得到,该设计能够在432.7 MHz工作频率下实时处理8k@50.6fps的视频。 展开更多
关键词 开放媒体视频编码标准 帧内预测 粗模式决策 视频编码 流水线
在线阅读 下载PDF
基于线粒体自噬相关lncRNA构建胃癌预后预测模型
19
作者 陈伟 刘涛 +2 位作者 李桐桐 许建江 姜雷 《兰州大学学报(医学版)》 2025年第8期32-43,共12页
目的 基于线粒体自噬相关的长链非编码RNA(lncRNA)构建胃癌的预后预测模型。方法 从TCGA和GEO数据库获取与胃癌相关的RNA-seq数据和临床数据。通过维思图识别差异表达的线粒体自噬相关基因。使用Wilcoxon检验识别线粒体自噬相关lncRNA(M... 目的 基于线粒体自噬相关的长链非编码RNA(lncRNA)构建胃癌的预后预测模型。方法 从TCGA和GEO数据库获取与胃癌相关的RNA-seq数据和临床数据。通过维思图识别差异表达的线粒体自噬相关基因。使用Wilcoxon检验识别线粒体自噬相关lncRNA(MRLs),采用单因素Cox回归、LASSO回归和多因素Cox回归分析,建立基于MRLs的胃癌预后模型。根据模型将患者分为实验组和验证组,并在验证队列中进一步评估该风险模型的预测价值。使用Kaplan-Meier生存分析、受试者操作特征曲线和主成分分析评估模型的准确性,进行GO和KEGG分析检查与风险模型相关的富集功能和通路。分析MRLs模型对各种胃癌药物的敏感性,利用ULCAN数据库验证模型lncRNA的表达及其对预后的影响。最后,使用lncSEA 2.0数据库分析LINC01614与胃癌肿瘤免疫微环境的关系。结果 获得6个线粒体自噬相关基因(COL1A1、 CHGA、 FN1、 SFRP4、 CHGB和CA2),并建立了一个包含4个线粒体自噬相关lncRNA(LINC01614、AC107021.2、AP005262.1和AC022467.1)的胃癌预后模型。Kaplan-Meier生存分析显示,高危组患者预后不良(P<0.001)。单因素和多因素Cox回归分析均表明MRLs风险评分是胃癌患者的独立预后指标,且该模型对5年生存率的预测具有较高的准确性(曲线下面积=0.740)。研究发现MRLs风险模型与胃癌患者的各种临床变量和多种药物敏感性特征显著关联。此外,还发现LINC01614与胃癌的肿瘤免疫微环境相关。结论 基于4个lncRNA的MRLs风险模型可以辅助评估胃癌患者的生存和药物敏感性,LINC01614有望成为胃癌治疗的新靶点。 展开更多
关键词 线粒体自噬 胃癌 长链非编码RNA 预测模型 风险评分 肿瘤免疫微环境
暂未订购
基于HLS的HEIF图像预测编码模块设计
20
作者 胡锦 黄明帅 毕晓猛 《计算技术与自动化》 2025年第2期117-120,182,共5页
设计使用高层次综合语言HLS(High Level Synthesize)来实现图像预测帧内编码模块的功能。帧内预测编码是指利用视频空间域的相关性,使用当前图像已编码的像素预测当前像素,然后将预测残差(当前像素真实值与预测值之间的差值)作为后续编... 设计使用高层次综合语言HLS(High Level Synthesize)来实现图像预测帧内编码模块的功能。帧内预测编码是指利用视频空间域的相关性,使用当前图像已编码的像素预测当前像素,然后将预测残差(当前像素真实值与预测值之间的差值)作为后续编码模块的输入,进行下一步编码处理。HLS实现相比与直接使用verilog和其他的语言来实现,HLS具有开发周期短,可以极大地节省人力成本和时间成本、平台可移植性强以及更便捷的代码迭代等的优势。设计使用HLS实现的对HEIF编码IP中图像预测编码模块,主要用于FPGA中,优化后的IP总占用10795个FIFO和30705个LUT,并且设计在后续优化代码之后缩短了1/3原有编码所需时间,大大提升了编码速率。 展开更多
关键词 图像帧内预测编码 预测残差 HEIF编码 HLS
在线阅读 下载PDF
上一页 1 2 57 下一页 到第
使用帮助 返回顶部