The aim of this paper is to discuss the approximate rea- soning problems with interval-valued fuzzy environments based on the fully implicational idea. First, this paper constructs a class of interval-valued fuzzy imp...The aim of this paper is to discuss the approximate rea- soning problems with interval-valued fuzzy environments based on the fully implicational idea. First, this paper constructs a class of interval-valued fuzzy implications by means of a type of impli- cations and a parameter on the unit interval, then uses them to establish fully implicational reasoning methods for interval-valued fuzzy modus ponens (IFMP) and interval-valued fuzzy modus tel- lens (IFMT) problems. At the same time the reversibility properties of these methods are analyzed and the reversible conditions are given. It is shown that the existing unified forms of α-triple I (the abbreviation of triple implications) methods for FMP and FMT can be seen as the particular cases of our methods for IFMP and IFMT.展开更多
The objective of this paper is to deal with a kind of fuzzy linear programming problem based on interval\|valued fuzzy sets (IVFLP) through the medium of procedure that turns IVFLP into parametric linear programming v...The objective of this paper is to deal with a kind of fuzzy linear programming problem based on interval\|valued fuzzy sets (IVFLP) through the medium of procedure that turns IVFLP into parametric linear programming via the mathematical programming.Some useful results for the benefit of solving IVFLP are expounded and proved,developed and discussed.Furthermore,that the proposed techniques in this paper allow the decision\|maker to assign a different degree of importance can provide a useful way to efficiently help the decision\|maker make their decisions.展开更多
While interval-valued picture fuzzy sets(IvPFSs)provide a powerful tool for modeling uncertainty and ambiguity in various fields,existing divergence measures for IvPFSs remain limited and often produce counterintuitiv...While interval-valued picture fuzzy sets(IvPFSs)provide a powerful tool for modeling uncertainty and ambiguity in various fields,existing divergence measures for IvPFSs remain limited and often produce counterintuitive results.To address these shortcomings,this paper introduces two novel divergencemeasures for IvPFSs,inspired by the Jensen-Shannon divergence.The fundamental properties of the proposed measures-non-degeneracy,symmetry,triangular inequality,and boundedness-are rigorously proven.Comparative analyses with existing measures are conducted through specific cases and numerical examples,clearly demonstrating the advantages of our approach.Furthermore,we apply the new divergence measures to develop an enhanced interval-valued picture fuzzy TOPSIS method for risk assessment in construction projects,showing the practical applicability and effectiveness of our contributions.展开更多
Interval-valued pre-aggregation functions are a hot topic in the research of aggregation functions and have received considerable attention in recent years.As a special class of interval-valued pre-aggregation functio...Interval-valued pre-aggregation functions are a hot topic in the research of aggregation functions and have received considerable attention in recent years.As a special class of interval-valued pre-aggregation functions,(light)interval-valued pre-t-norms were initially proposed by Wang and Hu,but their properties were not further discussed by the authors.The main purpose of this paper is to study in depth the properties and generation of(light)intervalvalued pre-t-norms.Firstly,several properties of(light)interval-valued pre-t-norms and their relationship with(light)pre-t-norms are presented.Then,two different generation methods for(light)interval-valued pre-t-norms are introduced.Finally,it demonstrates a specific application of(light)interval-valued pre-t-norms in constructing interval-valued directional monotonic fuzzy implications,namely,using the(light)interval-valued pre-t-norm IT,interval-valued fuzzy negations IN,and(light)interval-valued pre-t-conorm IS to construct interval-valued QL-directional monotonic operations.展开更多
Green supplier selection is an important debate in green supply chain management(GSCM),attracting global attention from scholars,especially companies and policymakers.Companies frequently search for new ideas and stra...Green supplier selection is an important debate in green supply chain management(GSCM),attracting global attention from scholars,especially companies and policymakers.Companies frequently search for new ideas and strategies to assist them in realizing sustainable development.Because of the speculative character of human opinions,supplier selection frequently includes unreliable data,and the interval-valued Pythagorean fuzzy soft set(IVPFSS)provides an exceptional capacity to cope with excessive fuzziness,inconsistency,and inexactness through the decision-making procedure.The main goal of this study is to come up with new operational laws for interval-valued Pythagorean fuzzy soft numbers(IVPFSNs)and create two interaction operators-the intervalvalued Pythagorean fuzzy soft interaction weighted average(IVPFSIWA)and the interval-valued Pythagorean fuzzy soft interaction weighted geometric(IVPFSIWG)operators,and analyze their properties.These operators are highly advantageous in addressing uncertain problems by considering membership and non-membership values within intervals,providing a superior solution to other methods.Moreover,specialist judgments were calculated by the MCGDM technique,supporting the use of interaction AOs to regulate the interdependence and fundamental partiality of green supplier assessment aspects.Lastly,a statistical clarification of the planned method for green supplier selection is presented.展开更多
The concept of the degree of similarity between interval-valued intuitionistic fuzzy sets (IVIFSs) is introduced, and some distance measures between IVIFSs are defined based on the Hamming distance, the normalized H...The concept of the degree of similarity between interval-valued intuitionistic fuzzy sets (IVIFSs) is introduced, and some distance measures between IVIFSs are defined based on the Hamming distance, the normalized Hamming distance, the weighted Hamming distance, the Euclidean distance, the normalized Euclidean distance, and the weighted Euclidean distance, etc. Then, by combining the Hausdorff metric with the Hamming distance, the Euclidean distance and their weighted versions, two other similarity measures between IVIFSs, i. e., the weighted Hamming distance based on the Hausdorff metric and the weighted Euclidean distance based on the Hausdorff metric, are defined, and then some of their properties are studied. Finally, based on these distance measures, some similarity measures between IVIFSs are defined, and the similarity measures are applied to pattern recognitions with interval-valued intuitionistic fuzzy information.展开更多
Due to the numerous variables to take into account as well as the inherent ambiguity and uncertainty,evaluating educational institutions can be difficult.The concept of a possibility Pythagorean fuzzy hypersoft set(pP...Due to the numerous variables to take into account as well as the inherent ambiguity and uncertainty,evaluating educational institutions can be difficult.The concept of a possibility Pythagorean fuzzy hypersoft set(pPyFHSS)is more flexible in this regard than other theoretical fuzzy set-like models,even though some attempts have been made in the literature to address such uncertainties.This study investigates the elementary notions of pPyFHSS including its set-theoretic operations union,intersection,complement,OR-and AND-operations.Some results related to these operations are also modified for pPyFHSS.Additionally,the similarity measures between pPyFHSSs are formulated with the assistance of numerical examples and results.Lastly,an intelligent decision-assisted mechanism is developed with the proposal of a robust algorithm based on similarity measures for solving multi-attribute decision-making(MADM)problems.A case study that helps the decision-makers assess the best educational institution is discussed to validate the suggested system.The algorithmic results are compared with the most pertinent model to evaluate the adaptability of pPyFHSS,as it generalizes the classical possibility fuzzy set-like theoretical models.Similarly,while considering significant evaluating factors,the flexibility of pPyFHSS is observed through structural comparison.展开更多
The dramatic rise in the number of people living in cities has made many environmental and social problems worse.The search for a productive method for disposing of solid waste is the most notable of these problems.Ma...The dramatic rise in the number of people living in cities has made many environmental and social problems worse.The search for a productive method for disposing of solid waste is the most notable of these problems.Many scholars have referred to it as a fuzzy multi-attribute or multi-criteria decision-making problem using various fuzzy set-like approaches because of the inclusion of criteria and anticipated ambiguity.The goal of the current study is to use an innovative methodology to address the expected uncertainties in the problem of solid waste site selection.The characteristics(or sub-attributes)that decision-makers select and the degree of approximation they accept for various options can both be indicators of these uncertainties.To tackle these problems,a novel mathematical structure known as the fuzzy parameterized possibility single valued neutrosophic hypersoft expert set(ρˆ-set),which is initially described,is integrated with a modified version of Sanchez’s method.Following this,an intelligent algorithm is suggested.The steps of the suggested algorithm are explained with an example that explains itself.The compatibility of solid waste management sites and systems is discussed,and rankings are established along with detailed justifications for their viability.This study’s strengths lie in its application of fuzzy parameterization and possibility grading to effectively handle the uncertainties embodied in the parameters’nature and alternative approximations,respectively.It uses specific mathematical formulations to compute the fuzzy parameterized degrees and possibility grades that are missing from the prior literature.It is simpler for the decisionmakers to look at each option separately because the decision is uncertain.Comparing the computed results,it is discovered that they are consistent and dependable because of their preferred properties.展开更多
Urban transportation planning involves evaluating multiple conflicting criteria such as accessibility,cost-effectiveness,and environmental impact,often under uncertainty and incomplete information.These complex decisi...Urban transportation planning involves evaluating multiple conflicting criteria such as accessibility,cost-effectiveness,and environmental impact,often under uncertainty and incomplete information.These complex decisions require input from various stakeholders,including planners,policymakers,engineers,and community representatives,whose opinions may differ or contradict.Traditional decision-making approaches struggle to effectively handle such bipolar and multivalued expert evaluations.To address these challenges,we propose a novel decisionmaking framework based on Pythagorean fuzzy N-bipolar soft expert sets.This model allows experts to express both positive and negative opinions on a multinary scale,capturing nuanced judgments with higher accuracy.It introduces algebraic operations and a structured aggregation algorithm to systematically integrate and resolve conflicting expert inputs.Applied to a real-world case study,the framework evaluated five urban transport strategies based on key criteria,producing final scores as follows:improving public transit(−0.70),optimizing traffic signal timing(1.86),enhancing pedestrian infrastructure(3.10),expanding bike lanes(0.59),and implementing congestion pricing(0.77).The results clearly identify enhancing pedestrian infrastructure as the most suitable option,having obtained the highest final score of 3.10.Comparative analysis demonstrates the framework’s superior capability in modeling expert consensus,managing uncertainty,and supporting transparent multi-criteria group decision-making.展开更多
This paper introduces fuzzy N-bipolar soft(FN-BS)sets,a novel mathematical framework designed to enhance multi-criteria decision-making(MCDM)processes under uncertainty.The study addresses a significant limitation in ...This paper introduces fuzzy N-bipolar soft(FN-BS)sets,a novel mathematical framework designed to enhance multi-criteria decision-making(MCDM)processes under uncertainty.The study addresses a significant limitation in existing models by unifying fuzzy logic,the consideration of bipolarity,and the ability to evaluate attributes on a multinary scale.The specific contributions of the FN-BS framework include:(1)a formal definition and settheoretic foundation,(2)the development of two innovative algorithms for solving decision-making(DM)problems,and(3)a comparative analysis demonstrating its superiority over established models.The proposed framework is applied to a real-world case study on selecting vaccination programs across multiple countries,showcasing consistent DM outcomes and exceptional adaptability to complex and uncertain scenarios.These results position FN-BS sets as a versatile and powerful tool for addressing dynamic DM challenges.展开更多
Ensuring a sustainable and eco-friendly environment is essential for promoting a healthy and balanced social life.However,decision-making in such contexts often involves handling vague,imprecise,and uncertain informat...Ensuring a sustainable and eco-friendly environment is essential for promoting a healthy and balanced social life.However,decision-making in such contexts often involves handling vague,imprecise,and uncertain information.To address this challenge,this study presents a novel multi-criteria decision-making(MCDM)approach based on picture fuzzy hypersoft sets(PFHSS),integrating the flexibility of Schweizer-Sklar triangular norm-based aggregation operators.The proposed aggregation mechanisms—weighted average and weighted geometric operators—are formulated using newly defined operational laws under the PFHSS framework and are proven to satisfy essential mathematical properties,such as idempotency,monotonicity,and boundedness.The decision-making model system-atically incorporates both benefit and cost-type criteria,enabling more nuanced evaluations in complex social or environmental decision problems.To enhance interpretability and practical relevance,the study conducts a sensitivity analysis on the Schweizer-Sklar parameter(Δ).The results show that varyingΔaffects the strictness of aggregation,thereby influencing the ranking stability of alternatives.A comparative analysis with existing fuzzy and hypersoft-based MCDM methods confirms the robustness,expressiveness,and adaptability of the proposed approach.Notably,the use of picture fuzzy sets allows for the inclusion of positive,neutral,and negative memberships,offering a richer representation of expert opinions compared to traditional models.A case study focused on green technology adoption for environmental sustainability illustrates the real-world applicability of the proposed method.The analysis confirms that the approach yields consistent and interpretable results,even under varying degrees of decision uncertainty.Overall,this work contributes an efficient and flexible MCDM tool that can support decision-makers in formulating policies aligned with sustainable and socially responsible outcomes.展开更多
Multi-criteria decision-making(MCDM)is essential for handling complex decision problems under uncertainty,especially in fields such as criminal justice,healthcare,and environmental management.Traditional fuzzy MCDM te...Multi-criteria decision-making(MCDM)is essential for handling complex decision problems under uncertainty,especially in fields such as criminal justice,healthcare,and environmental management.Traditional fuzzy MCDM techniques have failed to deal with problems where uncertainty or vagueness is involved.To address this issue,we propose a novel framework that integrates group and overlap functions with Aczel-Alsina(AA)operational laws in the intuitionistic fuzzy set(IFS)environment.Overlap functions capture the degree to which two inputs share common features and are used to find how closely two values or criteria match in uncertain environments,while the Group functions are used to combine different expert opinions into a single collective result.This study introduces four new aggregation operators:Group Overlap function-based intuitionistic fuzzy Aczel-Alsina(GOF-IFAA)Weighted Averaging(GOF-IFAAWA)operator,intuitionistic fuzzy Aczel-Alsina(GOF-IFAA)Weighted Geometric(GOF-IFAAWG),intuitionistic fuzzy Aczel-Alsina(GOF-IFAA)OrderedWeighted Averaging(GOF-IFAAOWA),and intuitionistic fuzzy Aczel-Alsina(GOF-IFAA)Ordered Weighted Geometric(GOF-IFAAOWG),which are rigorously defined and mathematically analyzed and offer improved flexibility in managing overlapping,uncertain,and hesitant information.The properties of these operators are discussed in detail.Further,the effectiveness,validity,activeness,and ability to capture the uncertain information,the developed operators are applied to the AI-based Criminal Justice Policy Selection problem.At last,the comparison analysis between prior and proposed studies has been displayed,and then followed by the conclusion of the result.展开更多
In this paper,a robust and consistent COVID-19 emergency decision-making approach is proposed based on q-rung linear diophantine fuzzy set(q-RLDFS),differential evolutionary(DE)optimization principles,and evidential r...In this paper,a robust and consistent COVID-19 emergency decision-making approach is proposed based on q-rung linear diophantine fuzzy set(q-RLDFS),differential evolutionary(DE)optimization principles,and evidential reasoning(ER)methodology.The proposed approach uses q-RLDFS in order to represent the evaluating values of the alternatives corresponding to the attributes.DE optimization is used to obtain the optimal weights of the attributes,and ER methodology is used to compute the aggregated q-rung linear diophantine fuzzy values(q-RLDFVs)of each alternative.Then the score values of alternatives are computed based on the aggregated q-RLDFVs.An alternative with the maximum score value is selected as a better one.The applicability of the proposed approach has been illustrated in COVID-19 emergency decision-making system and sustainable energy planning management.Moreover,we have validated the proposed approach with a numerical example.Finally,a comparative study is provided with the existing models,where the proposed approach is found to be robust to perform better and consistent in uncertain environments.展开更多
This study introduces a novel distance measure(DM)for(p,q,r)-spherical fuzzy sets((p,q,to improve decision-making in complex and uncertain environments.Many existing distance measures eitherr)-SFSs)fail to satisfy ess...This study introduces a novel distance measure(DM)for(p,q,r)-spherical fuzzy sets((p,q,to improve decision-making in complex and uncertain environments.Many existing distance measures eitherr)-SFSs)fail to satisfy essential axiomatic properties or produce unintuitive outcomes.To address these limitations,we propose a new three-dimensional divergence-based DM that ensures mathematical consistency,enhances the discrimination of information,and adheres to the axiomatic framework of distance theory.Building on this foundation,we construct a multi-criteria decision-making(MCDM)model that utilizes the proposed DM to evaluate and rank alternatives effectively.The applicability and robustness of the model are validated through a practical case study,demonstrating that it leads to more rational,consistent,and reliable decision outcomes compared to existing approaches.展开更多
In this manuscript,the notion of a hesitant fuzzy soft fixed point is introduced.Using this notion and the concept of Suzuki-type(μ,ν)-weak contraction for hesitant fuzzy soft set valued-mapping,some fixed point res...In this manuscript,the notion of a hesitant fuzzy soft fixed point is introduced.Using this notion and the concept of Suzuki-type(μ,ν)-weak contraction for hesitant fuzzy soft set valued-mapping,some fixed point results are established in the framework of metric spaces.Based on the presented work,some examples reflecting decision-making problems related to real life are also solved.The suggested method’s flexibility and efficacy compared to conventional techniques are demonstrated in decision-making situations involving uncertainty,such as choosing the best options in multi-criteria settings.We noted that the presented work combines and generalizes two major concepts,the idea of soft sets and hesitant fuzzy set-valued mapping from the existing literature.展开更多
Interval-valued Pythagorean fuzzy soft set(IVPFSS)is a generalization of the interval-valued intuitionistic fuzzy soft set(IVIFSS)and interval-valued Pythagorean fuzzy set(IVPFS).The IVPFSS handled more uncertainty co...Interval-valued Pythagorean fuzzy soft set(IVPFSS)is a generalization of the interval-valued intuitionistic fuzzy soft set(IVIFSS)and interval-valued Pythagorean fuzzy set(IVPFS).The IVPFSS handled more uncertainty comparative to IVIFSS;it is the most significant technique for explaining fuzzy information in the decision-making process.In this work,some novel operational laws for IVPFSS have been proposed.Based on presented operational laws,two innovative aggregation operators(AOs)have been developed such as interval-valued Pythagorean fuzzy soft weighted average(IVPFSWA)and interval-valued Pythagorean fuzzy soft weighted geometric(IVPFSWG)operators with their fundamental properties.A multi-attribute group decision-making(MAGDM)approach has been established utilizing our developed operators.A numerical example has been presented to ensure the validity of the proposed MAGDM technique.Finally,comparative studies have been given between the proposed approach and some existing studies.The obtained results through comparative studies show that the proposed technique is more credible and reliable than existing approaches.展开更多
The paper aims at the problem of multi-targets threat degree being hard to be evaluated accurately in complex air defense battlefield environments. Combined with multi-sensors information fusion and interval-valued in...The paper aims at the problem of multi-targets threat degree being hard to be evaluated accurately in complex air defense battlefield environments. Combined with multi-sensors information fusion and interval-valued intuitionistic fuzzy sets(IVIFS) theories, the target priority determination is studied. The score and accuracy functions of IVIFS are improved with thinking about the hesitating information in order to increase the rationality.Then, the influence factors of target priority and the nonlinear relationship between the influence factors and target priority are analyzed. Next, the algorithms for calculating the factor weights and sensor weights are given. Based on the theory of IVIFS and technique for order preference by similarity to an ideal solution(TOPSIS), two methods of target priority determination based on the IVIFS and TOPSIS are proposed. At last, an application example verifies the effectiveness and flexibility of the proposed algorithms.展开更多
Experts use Pythagorean fuzzy hypersoft sets(PFHSS)in their investigations to resolve the indeterminate and imprecise information in the decision-making process.Aggregation operators(AOs)perform a leading role in perc...Experts use Pythagorean fuzzy hypersoft sets(PFHSS)in their investigations to resolve the indeterminate and imprecise information in the decision-making process.Aggregation operators(AOs)perform a leading role in perceptivity among two circulations of prospect and pull out concerns from that perception.In this paper,we extend the concept of PFHSS to interval-valued PFHSS(IVPFHSS),which is the generalized form of intervalvalued intuitionistic fuzzy soft set.The IVPFHSS competently deals with uncertain and ambagious information compared to the existing interval-valued Pythagorean fuzzy soft set.It is the most potent method for amplifying fuzzy data in the decision-making(DM)practice.Some operational laws for IVPFHSS have been proposed.Based on offered operational laws,two inventive AOs have been established:interval-valued Pythagorean fuzzy hypersoft weighted average(IVPFHSWA)and interval-valued Pythagorean fuzzy hypersoft weighted geometric(IVPFHSWG)operators with their essential properties.Multi-criteria group decision-making(MCGDM)shows an active part in contracts with the difficulties in industrial enterprise for material selection.But,the prevalent MCGDM approaches consistently carry irreconcilable consequences.Based on the anticipated AOs,a robust MCGDMtechnique is deliberate formaterial selection in industrial enterprises to accommodate this shortcoming.A real-world application of the projectedMCGDMmethod for material selection(MS)of cryogenic storing vessels is presented.The impacts show that the intended model is more effective and reliable in handling imprecise data based on IVPFHSS.展开更多
This paper combines interval-valued intuitionistic fuzzy sets and rough sets.It studies rougheness in interval-valued intuitionistic fuzzy sets and proposes one kind of interval-valued intuitionistic fuzzy-rough sets ...This paper combines interval-valued intuitionistic fuzzy sets and rough sets.It studies rougheness in interval-valued intuitionistic fuzzy sets and proposes one kind of interval-valued intuitionistic fuzzy-rough sets models under the equivalence relation in crisp sets.That extends the classical rough set defined by Pawlak.展开更多
In 1999, Molodtsov introduced the concept of soft set theory as a general mathematical tool for dealing with uncertainty. By combining the multi-fuzzy set and soft set models, Y. Yang, X. Tan and C. Meng introduced th...In 1999, Molodtsov introduced the concept of soft set theory as a general mathematical tool for dealing with uncertainty. By combining the multi-fuzzy set and soft set models, Y. Yang, X. Tan and C. Meng introduced the concept of multi-fuzzy soft sets and studied some of its operations, such as complement, “AND”, “OR”, Union and Intersection. They also gave an algorithm to analyze a decision problem using multi-fuzzy soft set. In this paper, we introduce the concept of multi-interval-valued fuzzy soft set (M-IVFSS). We also define its basic operations, namely complement, union, intersection, AND and OR. Finally, we give an application of this concept in decision-making problem.展开更多
基金supported by the National Natural Science Foundation of China(60774100)the Natural Science Foundation of Shandong Province of China(Y2007A15)
文摘The aim of this paper is to discuss the approximate rea- soning problems with interval-valued fuzzy environments based on the fully implicational idea. First, this paper constructs a class of interval-valued fuzzy implications by means of a type of impli- cations and a parameter on the unit interval, then uses them to establish fully implicational reasoning methods for interval-valued fuzzy modus ponens (IFMP) and interval-valued fuzzy modus tel- lens (IFMT) problems. At the same time the reversibility properties of these methods are analyzed and the reversible conditions are given. It is shown that the existing unified forms of α-triple I (the abbreviation of triple implications) methods for FMP and FMT can be seen as the particular cases of our methods for IFMP and IFMT.
文摘The objective of this paper is to deal with a kind of fuzzy linear programming problem based on interval\|valued fuzzy sets (IVFLP) through the medium of procedure that turns IVFLP into parametric linear programming via the mathematical programming.Some useful results for the benefit of solving IVFLP are expounded and proved,developed and discussed.Furthermore,that the proposed techniques in this paper allow the decision\|maker to assign a different degree of importance can provide a useful way to efficiently help the decision\|maker make their decisions.
基金the Deanship of Research and Graduate Studies at King Khalid University for funding this work through Small Research Project under grant number RGP1/141/46.
文摘While interval-valued picture fuzzy sets(IvPFSs)provide a powerful tool for modeling uncertainty and ambiguity in various fields,existing divergence measures for IvPFSs remain limited and often produce counterintuitive results.To address these shortcomings,this paper introduces two novel divergencemeasures for IvPFSs,inspired by the Jensen-Shannon divergence.The fundamental properties of the proposed measures-non-degeneracy,symmetry,triangular inequality,and boundedness-are rigorously proven.Comparative analyses with existing measures are conducted through specific cases and numerical examples,clearly demonstrating the advantages of our approach.Furthermore,we apply the new divergence measures to develop an enhanced interval-valued picture fuzzy TOPSIS method for risk assessment in construction projects,showing the practical applicability and effectiveness of our contributions.
基金the National Natural Science Foundation of China(Grant No.12171294)。
文摘Interval-valued pre-aggregation functions are a hot topic in the research of aggregation functions and have received considerable attention in recent years.As a special class of interval-valued pre-aggregation functions,(light)interval-valued pre-t-norms were initially proposed by Wang and Hu,but their properties were not further discussed by the authors.The main purpose of this paper is to study in depth the properties and generation of(light)intervalvalued pre-t-norms.Firstly,several properties of(light)interval-valued pre-t-norms and their relationship with(light)pre-t-norms are presented.Then,two different generation methods for(light)interval-valued pre-t-norms are introduced.Finally,it demonstrates a specific application of(light)interval-valued pre-t-norms in constructing interval-valued directional monotonic fuzzy implications,namely,using the(light)interval-valued pre-t-norm IT,interval-valued fuzzy negations IN,and(light)interval-valued pre-t-conorm IS to construct interval-valued QL-directional monotonic operations.
基金funded by King Saud University,Riyadh,Saudi Arabia.
文摘Green supplier selection is an important debate in green supply chain management(GSCM),attracting global attention from scholars,especially companies and policymakers.Companies frequently search for new ideas and strategies to assist them in realizing sustainable development.Because of the speculative character of human opinions,supplier selection frequently includes unreliable data,and the interval-valued Pythagorean fuzzy soft set(IVPFSS)provides an exceptional capacity to cope with excessive fuzziness,inconsistency,and inexactness through the decision-making procedure.The main goal of this study is to come up with new operational laws for interval-valued Pythagorean fuzzy soft numbers(IVPFSNs)and create two interaction operators-the intervalvalued Pythagorean fuzzy soft interaction weighted average(IVPFSIWA)and the interval-valued Pythagorean fuzzy soft interaction weighted geometric(IVPFSIWG)operators,and analyze their properties.These operators are highly advantageous in addressing uncertain problems by considering membership and non-membership values within intervals,providing a superior solution to other methods.Moreover,specialist judgments were calculated by the MCGDM technique,supporting the use of interaction AOs to regulate the interdependence and fundamental partiality of green supplier assessment aspects.Lastly,a statistical clarification of the planned method for green supplier selection is presented.
基金The National Natural Science Foundation of China (No70571087)the National Science Fund for Distinguished Young Scholarsof China (No70625005)
文摘The concept of the degree of similarity between interval-valued intuitionistic fuzzy sets (IVIFSs) is introduced, and some distance measures between IVIFSs are defined based on the Hamming distance, the normalized Hamming distance, the weighted Hamming distance, the Euclidean distance, the normalized Euclidean distance, and the weighted Euclidean distance, etc. Then, by combining the Hausdorff metric with the Hamming distance, the Euclidean distance and their weighted versions, two other similarity measures between IVIFSs, i. e., the weighted Hamming distance based on the Hausdorff metric and the weighted Euclidean distance based on the Hausdorff metric, are defined, and then some of their properties are studied. Finally, based on these distance measures, some similarity measures between IVIFSs are defined, and the similarity measures are applied to pattern recognitions with interval-valued intuitionistic fuzzy information.
基金supported by the Deanship of Graduate Studies and Scientific Research at Qassim University(QU-APC-2024-9/1).
文摘Due to the numerous variables to take into account as well as the inherent ambiguity and uncertainty,evaluating educational institutions can be difficult.The concept of a possibility Pythagorean fuzzy hypersoft set(pPyFHSS)is more flexible in this regard than other theoretical fuzzy set-like models,even though some attempts have been made in the literature to address such uncertainties.This study investigates the elementary notions of pPyFHSS including its set-theoretic operations union,intersection,complement,OR-and AND-operations.Some results related to these operations are also modified for pPyFHSS.Additionally,the similarity measures between pPyFHSSs are formulated with the assistance of numerical examples and results.Lastly,an intelligent decision-assisted mechanism is developed with the proposal of a robust algorithm based on similarity measures for solving multi-attribute decision-making(MADM)problems.A case study that helps the decision-makers assess the best educational institution is discussed to validate the suggested system.The algorithmic results are compared with the most pertinent model to evaluate the adaptability of pPyFHSS,as it generalizes the classical possibility fuzzy set-like theoretical models.Similarly,while considering significant evaluating factors,the flexibility of pPyFHSS is observed through structural comparison.
文摘The dramatic rise in the number of people living in cities has made many environmental and social problems worse.The search for a productive method for disposing of solid waste is the most notable of these problems.Many scholars have referred to it as a fuzzy multi-attribute or multi-criteria decision-making problem using various fuzzy set-like approaches because of the inclusion of criteria and anticipated ambiguity.The goal of the current study is to use an innovative methodology to address the expected uncertainties in the problem of solid waste site selection.The characteristics(or sub-attributes)that decision-makers select and the degree of approximation they accept for various options can both be indicators of these uncertainties.To tackle these problems,a novel mathematical structure known as the fuzzy parameterized possibility single valued neutrosophic hypersoft expert set(ρˆ-set),which is initially described,is integrated with a modified version of Sanchez’s method.Following this,an intelligent algorithm is suggested.The steps of the suggested algorithm are explained with an example that explains itself.The compatibility of solid waste management sites and systems is discussed,and rankings are established along with detailed justifications for their viability.This study’s strengths lie in its application of fuzzy parameterization and possibility grading to effectively handle the uncertainties embodied in the parameters’nature and alternative approximations,respectively.It uses specific mathematical formulations to compute the fuzzy parameterized degrees and possibility grades that are missing from the prior literature.It is simpler for the decisionmakers to look at each option separately because the decision is uncertain.Comparing the computed results,it is discovered that they are consistent and dependable because of their preferred properties.
文摘Urban transportation planning involves evaluating multiple conflicting criteria such as accessibility,cost-effectiveness,and environmental impact,often under uncertainty and incomplete information.These complex decisions require input from various stakeholders,including planners,policymakers,engineers,and community representatives,whose opinions may differ or contradict.Traditional decision-making approaches struggle to effectively handle such bipolar and multivalued expert evaluations.To address these challenges,we propose a novel decisionmaking framework based on Pythagorean fuzzy N-bipolar soft expert sets.This model allows experts to express both positive and negative opinions on a multinary scale,capturing nuanced judgments with higher accuracy.It introduces algebraic operations and a structured aggregation algorithm to systematically integrate and resolve conflicting expert inputs.Applied to a real-world case study,the framework evaluated five urban transport strategies based on key criteria,producing final scores as follows:improving public transit(−0.70),optimizing traffic signal timing(1.86),enhancing pedestrian infrastructure(3.10),expanding bike lanes(0.59),and implementing congestion pricing(0.77).The results clearly identify enhancing pedestrian infrastructure as the most suitable option,having obtained the highest final score of 3.10.Comparative analysis demonstrates the framework’s superior capability in modeling expert consensus,managing uncertainty,and supporting transparent multi-criteria group decision-making.
文摘This paper introduces fuzzy N-bipolar soft(FN-BS)sets,a novel mathematical framework designed to enhance multi-criteria decision-making(MCDM)processes under uncertainty.The study addresses a significant limitation in existing models by unifying fuzzy logic,the consideration of bipolarity,and the ability to evaluate attributes on a multinary scale.The specific contributions of the FN-BS framework include:(1)a formal definition and settheoretic foundation,(2)the development of two innovative algorithms for solving decision-making(DM)problems,and(3)a comparative analysis demonstrating its superiority over established models.The proposed framework is applied to a real-world case study on selecting vaccination programs across multiple countries,showcasing consistent DM outcomes and exceptional adaptability to complex and uncertain scenarios.These results position FN-BS sets as a versatile and powerful tool for addressing dynamic DM challenges.
基金supported by the National Natural Science Foundation of China(No.62172095).
文摘Ensuring a sustainable and eco-friendly environment is essential for promoting a healthy and balanced social life.However,decision-making in such contexts often involves handling vague,imprecise,and uncertain information.To address this challenge,this study presents a novel multi-criteria decision-making(MCDM)approach based on picture fuzzy hypersoft sets(PFHSS),integrating the flexibility of Schweizer-Sklar triangular norm-based aggregation operators.The proposed aggregation mechanisms—weighted average and weighted geometric operators—are formulated using newly defined operational laws under the PFHSS framework and are proven to satisfy essential mathematical properties,such as idempotency,monotonicity,and boundedness.The decision-making model system-atically incorporates both benefit and cost-type criteria,enabling more nuanced evaluations in complex social or environmental decision problems.To enhance interpretability and practical relevance,the study conducts a sensitivity analysis on the Schweizer-Sklar parameter(Δ).The results show that varyingΔaffects the strictness of aggregation,thereby influencing the ranking stability of alternatives.A comparative analysis with existing fuzzy and hypersoft-based MCDM methods confirms the robustness,expressiveness,and adaptability of the proposed approach.Notably,the use of picture fuzzy sets allows for the inclusion of positive,neutral,and negative memberships,offering a richer representation of expert opinions compared to traditional models.A case study focused on green technology adoption for environmental sustainability illustrates the real-world applicability of the proposed method.The analysis confirms that the approach yields consistent and interpretable results,even under varying degrees of decision uncertainty.Overall,this work contributes an efficient and flexible MCDM tool that can support decision-makers in formulating policies aligned with sustainable and socially responsible outcomes.
基金supported by“1 Decembrie 1918”University of Alba Iulia,510009 Alba Iuliasupported in part by the HEC-NRPU project,under the grant No.14566.
文摘Multi-criteria decision-making(MCDM)is essential for handling complex decision problems under uncertainty,especially in fields such as criminal justice,healthcare,and environmental management.Traditional fuzzy MCDM techniques have failed to deal with problems where uncertainty or vagueness is involved.To address this issue,we propose a novel framework that integrates group and overlap functions with Aczel-Alsina(AA)operational laws in the intuitionistic fuzzy set(IFS)environment.Overlap functions capture the degree to which two inputs share common features and are used to find how closely two values or criteria match in uncertain environments,while the Group functions are used to combine different expert opinions into a single collective result.This study introduces four new aggregation operators:Group Overlap function-based intuitionistic fuzzy Aczel-Alsina(GOF-IFAA)Weighted Averaging(GOF-IFAAWA)operator,intuitionistic fuzzy Aczel-Alsina(GOF-IFAA)Weighted Geometric(GOF-IFAAWG),intuitionistic fuzzy Aczel-Alsina(GOF-IFAA)OrderedWeighted Averaging(GOF-IFAAOWA),and intuitionistic fuzzy Aczel-Alsina(GOF-IFAA)Ordered Weighted Geometric(GOF-IFAAOWG),which are rigorously defined and mathematically analyzed and offer improved flexibility in managing overlapping,uncertain,and hesitant information.The properties of these operators are discussed in detail.Further,the effectiveness,validity,activeness,and ability to capture the uncertain information,the developed operators are applied to the AI-based Criminal Justice Policy Selection problem.At last,the comparison analysis between prior and proposed studies has been displayed,and then followed by the conclusion of the result.
文摘In this paper,a robust and consistent COVID-19 emergency decision-making approach is proposed based on q-rung linear diophantine fuzzy set(q-RLDFS),differential evolutionary(DE)optimization principles,and evidential reasoning(ER)methodology.The proposed approach uses q-RLDFS in order to represent the evaluating values of the alternatives corresponding to the attributes.DE optimization is used to obtain the optimal weights of the attributes,and ER methodology is used to compute the aggregated q-rung linear diophantine fuzzy values(q-RLDFVs)of each alternative.Then the score values of alternatives are computed based on the aggregated q-RLDFVs.An alternative with the maximum score value is selected as a better one.The applicability of the proposed approach has been illustrated in COVID-19 emergency decision-making system and sustainable energy planning management.Moreover,we have validated the proposed approach with a numerical example.Finally,a comparative study is provided with the existing models,where the proposed approach is found to be robust to perform better and consistent in uncertain environments.
文摘This study introduces a novel distance measure(DM)for(p,q,r)-spherical fuzzy sets((p,q,to improve decision-making in complex and uncertain environments.Many existing distance measures eitherr)-SFSs)fail to satisfy essential axiomatic properties or produce unintuitive outcomes.To address these limitations,we propose a new three-dimensional divergence-based DM that ensures mathematical consistency,enhances the discrimination of information,and adheres to the axiomatic framework of distance theory.Building on this foundation,we construct a multi-criteria decision-making(MCDM)model that utilizes the proposed DM to evaluate and rank alternatives effectively.The applicability and robustness of the model are validated through a practical case study,demonstrating that it leads to more rational,consistent,and reliable decision outcomes compared to existing approaches.
基金funded by National Science,Research and Innovation Fund(NSRF)King Mongkut's University of Technology North Bangkok with Contract No.KMUTNB-FF-68-B-46.
文摘In this manuscript,the notion of a hesitant fuzzy soft fixed point is introduced.Using this notion and the concept of Suzuki-type(μ,ν)-weak contraction for hesitant fuzzy soft set valued-mapping,some fixed point results are established in the framework of metric spaces.Based on the presented work,some examples reflecting decision-making problems related to real life are also solved.The suggested method’s flexibility and efficacy compared to conventional techniques are demonstrated in decision-making situations involving uncertainty,such as choosing the best options in multi-criteria settings.We noted that the presented work combines and generalizes two major concepts,the idea of soft sets and hesitant fuzzy set-valued mapping from the existing literature.
文摘Interval-valued Pythagorean fuzzy soft set(IVPFSS)is a generalization of the interval-valued intuitionistic fuzzy soft set(IVIFSS)and interval-valued Pythagorean fuzzy set(IVPFS).The IVPFSS handled more uncertainty comparative to IVIFSS;it is the most significant technique for explaining fuzzy information in the decision-making process.In this work,some novel operational laws for IVPFSS have been proposed.Based on presented operational laws,two innovative aggregation operators(AOs)have been developed such as interval-valued Pythagorean fuzzy soft weighted average(IVPFSWA)and interval-valued Pythagorean fuzzy soft weighted geometric(IVPFSWG)operators with their fundamental properties.A multi-attribute group decision-making(MAGDM)approach has been established utilizing our developed operators.A numerical example has been presented to ensure the validity of the proposed MAGDM technique.Finally,comparative studies have been given between the proposed approach and some existing studies.The obtained results through comparative studies show that the proposed technique is more credible and reliable than existing approaches.
基金the National Defense Pre-Research Foundation of China(No.9140A27020211JB34)
文摘The paper aims at the problem of multi-targets threat degree being hard to be evaluated accurately in complex air defense battlefield environments. Combined with multi-sensors information fusion and interval-valued intuitionistic fuzzy sets(IVIFS) theories, the target priority determination is studied. The score and accuracy functions of IVIFS are improved with thinking about the hesitating information in order to increase the rationality.Then, the influence factors of target priority and the nonlinear relationship between the influence factors and target priority are analyzed. Next, the algorithms for calculating the factor weights and sensor weights are given. Based on the theory of IVIFS and technique for order preference by similarity to an ideal solution(TOPSIS), two methods of target priority determination based on the IVIFS and TOPSIS are proposed. At last, an application example verifies the effectiveness and flexibility of the proposed algorithms.
基金funding this work through General Research Project under Grant No.R.G.P.327/43.
文摘Experts use Pythagorean fuzzy hypersoft sets(PFHSS)in their investigations to resolve the indeterminate and imprecise information in the decision-making process.Aggregation operators(AOs)perform a leading role in perceptivity among two circulations of prospect and pull out concerns from that perception.In this paper,we extend the concept of PFHSS to interval-valued PFHSS(IVPFHSS),which is the generalized form of intervalvalued intuitionistic fuzzy soft set.The IVPFHSS competently deals with uncertain and ambagious information compared to the existing interval-valued Pythagorean fuzzy soft set.It is the most potent method for amplifying fuzzy data in the decision-making(DM)practice.Some operational laws for IVPFHSS have been proposed.Based on offered operational laws,two inventive AOs have been established:interval-valued Pythagorean fuzzy hypersoft weighted average(IVPFHSWA)and interval-valued Pythagorean fuzzy hypersoft weighted geometric(IVPFHSWG)operators with their essential properties.Multi-criteria group decision-making(MCGDM)shows an active part in contracts with the difficulties in industrial enterprise for material selection.But,the prevalent MCGDM approaches consistently carry irreconcilable consequences.Based on the anticipated AOs,a robust MCGDMtechnique is deliberate formaterial selection in industrial enterprises to accommodate this shortcoming.A real-world application of the projectedMCGDMmethod for material selection(MS)of cryogenic storing vessels is presented.The impacts show that the intended model is more effective and reliable in handling imprecise data based on IVPFHSS.
基金supported by grants from the National Natural Science Foundation of China(Nos.10971185 and 10971186)the Natural Science Foundation of Fujiang Province in China(No.2008F5066).
文摘This paper combines interval-valued intuitionistic fuzzy sets and rough sets.It studies rougheness in interval-valued intuitionistic fuzzy sets and proposes one kind of interval-valued intuitionistic fuzzy-rough sets models under the equivalence relation in crisp sets.That extends the classical rough set defined by Pawlak.
文摘In 1999, Molodtsov introduced the concept of soft set theory as a general mathematical tool for dealing with uncertainty. By combining the multi-fuzzy set and soft set models, Y. Yang, X. Tan and C. Meng introduced the concept of multi-fuzzy soft sets and studied some of its operations, such as complement, “AND”, “OR”, Union and Intersection. They also gave an algorithm to analyze a decision problem using multi-fuzzy soft set. In this paper, we introduce the concept of multi-interval-valued fuzzy soft set (M-IVFSS). We also define its basic operations, namely complement, union, intersection, AND and OR. Finally, we give an application of this concept in decision-making problem.