In an ambiguous decision domain, the evaluation values of alternatives against attributes would be interval numbers because of the inherent, uncertain property of the problems. By using a number of linear programming ...In an ambiguous decision domain, the evaluation values of alternatives against attributes would be interval numbers because of the inherent, uncertain property of the problems. By using a number of linear programming models, Bryson and Mobolurin propose an approach to compute attribute weights and overall values of the alternatives in the form of interval numbers. The intervals of the overall values of alternatives are then transformed into points or crisp values for comparisons among the alternatives. However, the attribute weights are different because of the use of linear programming models in Bryson and Mobolurin's approach. Thus, the alternatives are not comparable because different attribute weights are employed to calculate the overall values of the alternatives. A new approach is proposed to overcome the drawbacks of Bryson and Mobolurin's approach. By transforming the decision matrix with intervals into the one with crisp values, a new linear programming model is proposed, to calculate the attribute weights for conducting alternative ranking.展开更多
An interval linear traffic planning model is developed for supporting vehicle emissions limited under uncertainty. The interval linear traffic planning model can address uncertainties of traffic system and vehicle emi...An interval linear traffic planning model is developed for supporting vehicle emissions limited under uncertainty. The interval linear traffic planning model can address uncertainties of traffic system and vehicle emissions related to system costs and limitation of emission. The interval linear traffic planning model is applicable to complex traffic system. One virtual city as our study object was taken by using the interval linear traffic planning model. In this study, one virtual case and a scenario are provided for three planning periods. The results indicate that the interval linear traffic planning model can effectively reduce the vehicles emission and provide strategies for authorities to deal with problems of transportation system.展开更多
This paper studies a time-variant multi-objective linear fractional transportation problem. In reality, transported goods should reach in destinations within a specific time. Considering the importance of time, a time...This paper studies a time-variant multi-objective linear fractional transportation problem. In reality, transported goods should reach in destinations within a specific time. Considering the importance of time, a time-variant multi-objective linear fractional transportation problem is formulated here. We take into account the parameters as cost, supply and demand are interval valued that involved in the proposed model, so we treat the model as a multi-objective linear fractional interval transportation problem. To solve the formulated model, we first convert it into a deterministic form using a new transformation technique and then apply fuzzy programming to solve it. The applicability of our proposed method is shown by considering two numerical examples. At last, conclusions and future research directions regarding our study is included.展开更多
In the model of geometric programming, values of parameters cannot be gotten owing to data fluctuation and incompletion. But reasonable bounds of these parameters can be attained. This is to say, parameters of this mo...In the model of geometric programming, values of parameters cannot be gotten owing to data fluctuation and incompletion. But reasonable bounds of these parameters can be attained. This is to say, parameters of this model can be regarded as interval grey numbers. When the model contains grey numbers, it is hard for common programming method to solve them. By combining the common programming model with the grey system theory, and using some analysis strategies, a model of grey polynomial geometric programming, a model of θ positioned geometric programming and their quasi-optimum solution or optimum solution are put forward. At the same time, we also developed an algorithm for the problem. This approach brings a new way for the application research of geometric programming. An example at the end of this paper shows the rationality and feasibility of the algorithm.展开更多
This paper presents a general solution procedure and an interactive fuzzy satisfying method for a kind of fuzzy multi-objective linear programming-problems based on interval valued fuzzy sets. Firstly, a fuzzy set of ...This paper presents a general solution procedure and an interactive fuzzy satisfying method for a kind of fuzzy multi-objective linear programming-problems based on interval valued fuzzy sets. Firstly, a fuzzy set of the fuzzy solutions, which can be focused on providing complete information for the final decision, can be obtained by the proposed tolerance analysis of a non-dominated set. Secondly, the satisfying solution for the decisionmaker can be derived from Pareto optimal solutions by updating the current reference membership levels on the basis of the current levels of the membership functions together with the trade-off rates between the membership functions.展开更多
基金the National Natural Science Foundation of China (70571041).
文摘In an ambiguous decision domain, the evaluation values of alternatives against attributes would be interval numbers because of the inherent, uncertain property of the problems. By using a number of linear programming models, Bryson and Mobolurin propose an approach to compute attribute weights and overall values of the alternatives in the form of interval numbers. The intervals of the overall values of alternatives are then transformed into points or crisp values for comparisons among the alternatives. However, the attribute weights are different because of the use of linear programming models in Bryson and Mobolurin's approach. Thus, the alternatives are not comparable because different attribute weights are employed to calculate the overall values of the alternatives. A new approach is proposed to overcome the drawbacks of Bryson and Mobolurin's approach. By transforming the decision matrix with intervals into the one with crisp values, a new linear programming model is proposed, to calculate the attribute weights for conducting alternative ranking.
文摘An interval linear traffic planning model is developed for supporting vehicle emissions limited under uncertainty. The interval linear traffic planning model can address uncertainties of traffic system and vehicle emissions related to system costs and limitation of emission. The interval linear traffic planning model is applicable to complex traffic system. One virtual city as our study object was taken by using the interval linear traffic planning model. In this study, one virtual case and a scenario are provided for three planning periods. The results indicate that the interval linear traffic planning model can effectively reduce the vehicles emission and provide strategies for authorities to deal with problems of transportation system.
文摘This paper studies a time-variant multi-objective linear fractional transportation problem. In reality, transported goods should reach in destinations within a specific time. Considering the importance of time, a time-variant multi-objective linear fractional transportation problem is formulated here. We take into account the parameters as cost, supply and demand are interval valued that involved in the proposed model, so we treat the model as a multi-objective linear fractional interval transportation problem. To solve the formulated model, we first convert it into a deterministic form using a new transformation technique and then apply fuzzy programming to solve it. The applicability of our proposed method is shown by considering two numerical examples. At last, conclusions and future research directions regarding our study is included.
基金Supported by the NSF Jiangsu Province(BK2003211)Supported by the NSF of Henan Province(2003120001)
文摘In the model of geometric programming, values of parameters cannot be gotten owing to data fluctuation and incompletion. But reasonable bounds of these parameters can be attained. This is to say, parameters of this model can be regarded as interval grey numbers. When the model contains grey numbers, it is hard for common programming method to solve them. By combining the common programming model with the grey system theory, and using some analysis strategies, a model of grey polynomial geometric programming, a model of θ positioned geometric programming and their quasi-optimum solution or optimum solution are put forward. At the same time, we also developed an algorithm for the problem. This approach brings a new way for the application research of geometric programming. An example at the end of this paper shows the rationality and feasibility of the algorithm.
基金This work is supported by the National Natural Science Foundation of China(No. 79670060).
文摘This paper presents a general solution procedure and an interactive fuzzy satisfying method for a kind of fuzzy multi-objective linear programming-problems based on interval valued fuzzy sets. Firstly, a fuzzy set of the fuzzy solutions, which can be focused on providing complete information for the final decision, can be obtained by the proposed tolerance analysis of a non-dominated set. Secondly, the satisfying solution for the decisionmaker can be derived from Pareto optimal solutions by updating the current reference membership levels on the basis of the current levels of the membership functions together with the trade-off rates between the membership functions.