A current-turbidity monitoring system (CTMS) was deployed on the intertidal flat at Wanggang, northern Jiangsu during October 16-17, 2000, to measure the tidal current speeds and seawater turbidities at 5 levels above...A current-turbidity monitoring system (CTMS) was deployed on the intertidal flat at Wanggang, northern Jiangsu during October 16-17, 2000, to measure the tidal current speeds and seawater turbidities at 5 levels above the seabed. Based upon the logarithmic-profile equation, the boundary layer parameters, i.e., u, z0 and C60, were obtained for 247 tidal flow velocity profiles. Around 90% of the profiles were logarithmic according to the critical correlation coefficient. Internal consistency analysis shows that these parameters derived by different methods are consistent with each other. In addition, the height of the bedforms observed is close to the seabed roughness lengths calculated from the velocity profiles, indicating that the boundary layer parameters obtained can reveal the conditions at the sediment-water interface on the intertidal flats. Suspended sediment concentrations were obtained from the 5 CTMS turbidity meters using laboratory and in-situ calibrations. The results show that the in-situ calibrated SSCs have a much higher accuracy than the laboratory calibrated ones. Calculation of suspended sediment fluxes on the intertidal flats, with a magnitude of 104 kg/m per spring tidal cycle, indicates that suspended sediment moves towards the northwest, which is reversal to the transport pattern controlled by the southward Northern Jiangsu Coastal Current in the sub-tidal zone and adjacent shallow waters.展开更多
Biogenic silica (BSi) contents in the marsh plants (Phragmites australis, Scirpus mariqueter and Spartina alterniflora) and associated sediments in Chongming Island eastern intertidal flat of the Yangtze Estuary w...Biogenic silica (BSi) contents in the marsh plants (Phragmites australis, Scirpus mariqueter and Spartina alterniflora) and associated sediments in Chongming Island eastern intertidal flat of the Yangtze Estuary were determined. The BSi contents in P. australis, S. mariqueter and S. alterniflora varied from 25.78–42.74 mg/g, 5.71–19.53 mg/g and 6.71–8.92 mg/g, respectively. Over the entire growth season, P. australis and S. mariqueter were characterized by linear accumulation patterns of BSi. The aboveground biomass (leaves and culms) of the marsh plants generally contained more BSi than underground biomass (roots). BSi contents were relatively higher in dead plant tissues than in live tissues which was probably due to the decomposition and the leaching of labile components of plant tissues such as organic carbon and nitrogen. Comparing with the habitats of S. mariqueter and S. alterniflora, the highest BSi content was recorded in sediments inhabited by P. australis, with an annual average of 15.69 mg/g. Overall, the intertidal marshes in the Yangtze Estuary may act as a net sink of BSi via plant uptake and sedimentary burial.展开更多
Sedimentary biogenic silica is known to be an important parameter to understand biogeochemical processes and paleoenviromental records in estuarine and coastal ecosystems. Consequently, it is of great significance to ...Sedimentary biogenic silica is known to be an important parameter to understand biogeochemical processes and paleoenviromental records in estuarine and coastal ecosystems. Consequently, it is of great significance to investigate accumulation and distribution of biogenic silica in sediments. The two-step mild acid-mild alkaline extraction procedure was used to leach biogenic silica and its early diagenetic products in intertidal sediments of the Yangtze Estuary. The results showed that total biogenic silica (t-BSi) in the intertidal sediments varied from 237.7-419.4 μmol Si/g, while the mild acid leachable silica (Si-HCl) and the mild alkaline leachable silica (Si- Alk) were in the range of 25.1-72.9 μmol Si/g and 208.1-350.4 μmol Si/g, respectively. Significant correlations were observed for the grain size distributions of sediments and different biogenic silica pools in intertidal sediments. This confirms that grain size distribution can significantly affect biogenic silica contents in sediments. Close relationships of biogenic silica with organic carbon and nitrogen were also found, reflecting that there is a strong coupling between biogenic silica and organic matter biogeochemical cycles in the intertidal system of the Yangtze Estuary. Additionally, the early diagenetic changes of biogenic silica in sediments are discussed in the present study.展开更多
Ammonium and nitrate concentrations were analyzed in near-bottom water and pore water collected from ten stations of the intertidal flat of the Changjiang Estuary during April, July, November and February. The magnitu...Ammonium and nitrate concentrations were analyzed in near-bottom water and pore water collected from ten stations of the intertidal flat of the Changjiang Estuary during April, July, November and February. The magnitudes of the benthic exchange fluxes were determined on the basis of concentration gradients of ammonium and nitrate at the near-bottom water and interstitial water interface in combination with calculations of a modified Fick' s first law. Ammonium fluxes varied from - 5.05 to 1.43 μg/( cm^2·d) and were greatly regulated by the production of ammonium in surface sediments, while nitrate fluxes ranged from - 0. 38 to 1.36 μg/ ( cm^2·d) and were dominated by nitrate concentrations in the tidal water. It was found that ammonium was mainly released from sediments into water columns at most of stations whereas nitrate was mostly diffused from overlying waters to intertidal sediments. In total, 823.75 t/a ammonium-N was passed from intertidal sediments to water while about 521.90 t/a nitrate-N was removed from overlying waters to intertidal sediments. This suggests that intertidal sediments had the significant influence on modulating inorganic nitrogen in the tidal water.展开更多
The intertidal flats are classified as 'attached bar', 'spit' and 'isolated bar' in relation to the land, and 'broad flat', 'sharp bank' and 'eroded cliff' according to ...The intertidal flats are classified as 'attached bar', 'spit' and 'isolated bar' in relation to the land, and 'broad flat', 'sharp bank' and 'eroded cliff' according to the shape of the cross-shore profile. Tidal currents on the flat are basically back and forth along the river channel banks but gyratory on the seaward side of the Chongming Island. The flow velocity on the intertidal flat is gradually reduced with increasing elevation. The river discharge strengthens ebb flows and modifies current asymmetry especially on the lower flat in neap tide, although hydrodynamics over the tidal flat is tide-dominated. The wave height on the tidal flat is normally limited to a few decimeters although it changes with water depth, slope and wind. Suspended sediment concentration over the tidal flat is typically hundreds to thousands of mg / 1. Although the delta has grown rapidly in history, the rate of growth is different in different periods. A maximum advancing rate of 330 m / a was recently found in the central part of the river month towards the sea. In view of the natural conditions, reclamation of higher intertidal flat (above the mean tidal level) in advancing coasts is suggested, which would leave broad wetlands for wild lives. In addition, some possible influences of coastal engineering projects and the future natural backgrounds of engineering under reduction in riverine sediment supply and sea level rise are addressed.展开更多
The reclamation of tidal fiats has been one of the important approaches to replenish the arable lands in the coastal areas; pollution status of reclaimed soils has received wide attention recently, especially for the ...The reclamation of tidal fiats has been one of the important approaches to replenish the arable lands in the coastal areas; pollution status of reclaimed soils has received wide attention recently, especially for the study of heavy metals due to the relative high pollutant concentrations in wetlands. To understand the impact of land use change on heavy metal and arsenic (As) geochemistry by the reclamation of wetlands for agriculture, surface soils and soil profiles were collected from the agricultural land reclaimed in the 1990s and the intertidal flat wetland at Dongtan on Chongming Island in the Yangtze River Estuary, China. The soil samples were analyzed for total concentrations and chemical speciation of chromium (Cr), zinc (Zn), copper (Cu), lead (Pb), nickel (Ni), cadmium (Cd) and As using inductively coupled plasma mass spectrometry (ICP-MS). Results showed that soil properties (salinity, total organic carbon and grain-size distribution) and the concentrations of heavy metals and As in the soils differed under the different land use types. The conversion of wetland to forest had caused obvious losses of all the measured heavy metals. In paddy field and dryland with frequent cultivation, the concentrations of Cr, Zn, Cu, Ni and As were higher when compared to forest land which was disturbed rarely by human activities. Speciation analysis showed that Cr, Zn, Cu, Ni and As were predominated by the immobile residual fraction, while Pb and Cd showed relatively higher mobility. In general, metal (except Ni) and As mobility decreased in the following order: wetland 〉 dryland 〉 paddy field 〉 forest land, which suggested that the reclaimed soils had lower metal and As mobility than the intertidal fiat wetland. The results of this study contribute to a better understanding of the effects of land use on heavy metals and As in the reclaimed soils of the study area and other similar coastal areas.展开更多
China’s coastal wetlands provide breeding,migration stopover,and wintering habitats for about 230 waterbird species,which is more than a quarter of all waterbirds in the world.Large-scale and high intensity human act...China’s coastal wetlands provide breeding,migration stopover,and wintering habitats for about 230 waterbird species,which is more than a quarter of all waterbirds in the world.Large-scale and high intensity human activities have resulted in serious loss and degradation of coastal wetlands over the past half century,causing population declines in many waterbirds.Through a literature review and expert surveys,this article reviews conservation measures taken in recent decades to protect waterbirds in China’s coastal wetlands and provides recommendations for future conservation action from three aspects:policy and administration,habitat conservation and management,and multiparty participation.Over the past decades,many conservation legislation,regulations and action plans at the national level and more site-specific measures and interventions have been implemented,with notable improvement in the effectiveness in policy making and multi-stakeholder participation.Accordingly,some threats to waterbirds have been mitigated and many key sites for waterbirds have been designated as strictly protected nature reserves.However,some critical issues still remain,mostly related to habitat conservation and management,such as coastal wetland restoration,control of invasive Spartina alterniflora,control of environmental pollution,and improvement of artificial habitat quality.We highlight that protecting natural tidal wetlands and improving habitat quality are critical for the conservation of coastal waterbirds,especially those highly dependent on the intertidal wetlands.China has demonstrated strong commitment to ecological conservation and restoration for the future,in terms of both funding and policies for biodiversity and wetland ecosystems.It is important that this commitment to conserve coastal waterbirds is supported continuously by science-and evidence-based decisions and actions.展开更多
River deltas are the best place to study intense human–earth interactions and the resultant morphological changes and sedimentary records.The coastal evolution history of the Red River Delta(RRD)is examined by time-s...River deltas are the best place to study intense human–earth interactions and the resultant morphological changes and sedimentary records.The coastal evolution history of the Red River Delta(RRD)is examined by time-series analysis of multiple coastline locations.We find that spatiotemporal variation in seawall locations and vegetation lines are obviously site-specific due to intense human interference,while changes in 0 m isobaths are highly dependent on external stresses.Coastal erosion and deposition patterns are determined firstly by sediment inputs from different distributaries,and secondly by sediment redistribution with tides,waves,and longshore currents.The causes of chronic erosion along the Hai Hau coast include swift distributary channels,negligible sediment supply by the regional longshore current,and continuous sediment export by local wave-generated longshore and offshore currents.The area of intertidal flats decreased significantly due to land reclamation and decelerating coastal accretion.The area of mangrove forests decreased first due to human deforestation,and then increased gradually due to artificial plantation.Poorly designed coastal infrastructures may increase risks of coastal erosion and flooding disasters.More coastal sectors in the RRD may turn into erosion due to continuous decrease in riverine sediment discharges,deserving more attention on proper coastal protection and management.展开更多
文摘A current-turbidity monitoring system (CTMS) was deployed on the intertidal flat at Wanggang, northern Jiangsu during October 16-17, 2000, to measure the tidal current speeds and seawater turbidities at 5 levels above the seabed. Based upon the logarithmic-profile equation, the boundary layer parameters, i.e., u, z0 and C60, were obtained for 247 tidal flow velocity profiles. Around 90% of the profiles were logarithmic according to the critical correlation coefficient. Internal consistency analysis shows that these parameters derived by different methods are consistent with each other. In addition, the height of the bedforms observed is close to the seabed roughness lengths calculated from the velocity profiles, indicating that the boundary layer parameters obtained can reveal the conditions at the sediment-water interface on the intertidal flats. Suspended sediment concentrations were obtained from the 5 CTMS turbidity meters using laboratory and in-situ calibrations. The results show that the in-situ calibrated SSCs have a much higher accuracy than the laboratory calibrated ones. Calculation of suspended sediment fluxes on the intertidal flats, with a magnitude of 104 kg/m per spring tidal cycle, indicates that suspended sediment moves towards the northwest, which is reversal to the transport pattern controlled by the southward Northern Jiangsu Coastal Current in the sub-tidal zone and adjacent shallow waters.
基金supported by the National Natural Science Foundation of China (No. 40701167, 40671171)the Doctoral Program Foundation of Ministry of Education of China (No. 20070269006)the State Key Laboratory of Estuarine and Coastal Research (No. 2008KYQN01,2008KYYW07)
文摘Biogenic silica (BSi) contents in the marsh plants (Phragmites australis, Scirpus mariqueter and Spartina alterniflora) and associated sediments in Chongming Island eastern intertidal flat of the Yangtze Estuary were determined. The BSi contents in P. australis, S. mariqueter and S. alterniflora varied from 25.78–42.74 mg/g, 5.71–19.53 mg/g and 6.71–8.92 mg/g, respectively. Over the entire growth season, P. australis and S. mariqueter were characterized by linear accumulation patterns of BSi. The aboveground biomass (leaves and culms) of the marsh plants generally contained more BSi than underground biomass (roots). BSi contents were relatively higher in dead plant tissues than in live tissues which was probably due to the decomposition and the leaching of labile components of plant tissues such as organic carbon and nitrogen. Comparing with the habitats of S. mariqueter and S. alterniflora, the highest BSi content was recorded in sediments inhabited by P. australis, with an annual average of 15.69 mg/g. Overall, the intertidal marshes in the Yangtze Estuary may act as a net sink of BSi via plant uptake and sedimentary burial.
文摘Sedimentary biogenic silica is known to be an important parameter to understand biogeochemical processes and paleoenviromental records in estuarine and coastal ecosystems. Consequently, it is of great significance to investigate accumulation and distribution of biogenic silica in sediments. The two-step mild acid-mild alkaline extraction procedure was used to leach biogenic silica and its early diagenetic products in intertidal sediments of the Yangtze Estuary. The results showed that total biogenic silica (t-BSi) in the intertidal sediments varied from 237.7-419.4 μmol Si/g, while the mild acid leachable silica (Si-HCl) and the mild alkaline leachable silica (Si- Alk) were in the range of 25.1-72.9 μmol Si/g and 208.1-350.4 μmol Si/g, respectively. Significant correlations were observed for the grain size distributions of sediments and different biogenic silica pools in intertidal sediments. This confirms that grain size distribution can significantly affect biogenic silica contents in sediments. Close relationships of biogenic silica with organic carbon and nitrogen were also found, reflecting that there is a strong coupling between biogenic silica and organic matter biogeochemical cycles in the intertidal system of the Yangtze Estuary. Additionally, the early diagenetic changes of biogenic silica in sediments are discussed in the present study.
基金This research is part of the project of the biogeochemical cycling of multi-materials in the Changjiang estuarine and coastal complex ecosystem supported by the National Natural Science Key Foundation of China under contract Nos 40131020 and 49801018 the Tidal Flat Project by Science and Technology Committee of Shanghai under contract No. 04DZ12049+1 种基金 China Postdoctoral Science Foundation under contract No. 2005037135 Shanghai Postdoctoral Science Foundation under contract No.04R214122.
文摘Ammonium and nitrate concentrations were analyzed in near-bottom water and pore water collected from ten stations of the intertidal flat of the Changjiang Estuary during April, July, November and February. The magnitudes of the benthic exchange fluxes were determined on the basis of concentration gradients of ammonium and nitrate at the near-bottom water and interstitial water interface in combination with calculations of a modified Fick' s first law. Ammonium fluxes varied from - 5.05 to 1.43 μg/( cm^2·d) and were greatly regulated by the production of ammonium in surface sediments, while nitrate fluxes ranged from - 0. 38 to 1.36 μg/ ( cm^2·d) and were dominated by nitrate concentrations in the tidal water. It was found that ammonium was mainly released from sediments into water columns at most of stations whereas nitrate was mostly diffused from overlying waters to intertidal sediments. In total, 823.75 t/a ammonium-N was passed from intertidal sediments to water while about 521.90 t/a nitrate-N was removed from overlying waters to intertidal sediments. This suggests that intertidal sediments had the significant influence on modulating inorganic nitrogen in the tidal water.
基金This work is financially supported by the National Natural Science Foundation of China(No.49676277)
文摘The intertidal flats are classified as 'attached bar', 'spit' and 'isolated bar' in relation to the land, and 'broad flat', 'sharp bank' and 'eroded cliff' according to the shape of the cross-shore profile. Tidal currents on the flat are basically back and forth along the river channel banks but gyratory on the seaward side of the Chongming Island. The flow velocity on the intertidal flat is gradually reduced with increasing elevation. The river discharge strengthens ebb flows and modifies current asymmetry especially on the lower flat in neap tide, although hydrodynamics over the tidal flat is tide-dominated. The wave height on the tidal flat is normally limited to a few decimeters although it changes with water depth, slope and wind. Suspended sediment concentration over the tidal flat is typically hundreds to thousands of mg / 1. Although the delta has grown rapidly in history, the rate of growth is different in different periods. A maximum advancing rate of 330 m / a was recently found in the central part of the river month towards the sea. In view of the natural conditions, reclamation of higher intertidal flat (above the mean tidal level) in advancing coasts is suggested, which would leave broad wetlands for wild lives. In addition, some possible influences of coastal engineering projects and the future natural backgrounds of engineering under reduction in riverine sediment supply and sea level rise are addressed.
基金supported by the National Natural Science Foundation of China (Nos. 41271466 and 40871216)
文摘The reclamation of tidal fiats has been one of the important approaches to replenish the arable lands in the coastal areas; pollution status of reclaimed soils has received wide attention recently, especially for the study of heavy metals due to the relative high pollutant concentrations in wetlands. To understand the impact of land use change on heavy metal and arsenic (As) geochemistry by the reclamation of wetlands for agriculture, surface soils and soil profiles were collected from the agricultural land reclaimed in the 1990s and the intertidal flat wetland at Dongtan on Chongming Island in the Yangtze River Estuary, China. The soil samples were analyzed for total concentrations and chemical speciation of chromium (Cr), zinc (Zn), copper (Cu), lead (Pb), nickel (Ni), cadmium (Cd) and As using inductively coupled plasma mass spectrometry (ICP-MS). Results showed that soil properties (salinity, total organic carbon and grain-size distribution) and the concentrations of heavy metals and As in the soils differed under the different land use types. The conversion of wetland to forest had caused obvious losses of all the measured heavy metals. In paddy field and dryland with frequent cultivation, the concentrations of Cr, Zn, Cu, Ni and As were higher when compared to forest land which was disturbed rarely by human activities. Speciation analysis showed that Cr, Zn, Cu, Ni and As were predominated by the immobile residual fraction, while Pb and Cd showed relatively higher mobility. In general, metal (except Ni) and As mobility decreased in the following order: wetland 〉 dryland 〉 paddy field 〉 forest land, which suggested that the reclaimed soils had lower metal and As mobility than the intertidal fiat wetland. The results of this study contribute to a better understanding of the effects of land use on heavy metals and As in the reclaimed soils of the study area and other similar coastal areas.
基金financially supported by National Key Research and Development Program of China (2022YFF1301004)the National Natural Science Foundation of China (31830089 and 32170518)TP’s work in the East Asian-Australasian Flyway through Global Flyway Network was supported by WWF-Netherlands,the MAVA Foundation and many other benefactors
文摘China’s coastal wetlands provide breeding,migration stopover,and wintering habitats for about 230 waterbird species,which is more than a quarter of all waterbirds in the world.Large-scale and high intensity human activities have resulted in serious loss and degradation of coastal wetlands over the past half century,causing population declines in many waterbirds.Through a literature review and expert surveys,this article reviews conservation measures taken in recent decades to protect waterbirds in China’s coastal wetlands and provides recommendations for future conservation action from three aspects:policy and administration,habitat conservation and management,and multiparty participation.Over the past decades,many conservation legislation,regulations and action plans at the national level and more site-specific measures and interventions have been implemented,with notable improvement in the effectiveness in policy making and multi-stakeholder participation.Accordingly,some threats to waterbirds have been mitigated and many key sites for waterbirds have been designated as strictly protected nature reserves.However,some critical issues still remain,mostly related to habitat conservation and management,such as coastal wetland restoration,control of invasive Spartina alterniflora,control of environmental pollution,and improvement of artificial habitat quality.We highlight that protecting natural tidal wetlands and improving habitat quality are critical for the conservation of coastal waterbirds,especially those highly dependent on the intertidal wetlands.China has demonstrated strong commitment to ecological conservation and restoration for the future,in terms of both funding and policies for biodiversity and wetland ecosystems.It is important that this commitment to conserve coastal waterbirds is supported continuously by science-and evidence-based decisions and actions.
基金funded by the National Natural Science Foundation of China(Nos.41776052,41476031)the China-ASEAN maritime cooperation fund“Comparative study of Holocene Sedimentary Evolution of the Yangtze River Delta and the Red River Delta”.
文摘River deltas are the best place to study intense human–earth interactions and the resultant morphological changes and sedimentary records.The coastal evolution history of the Red River Delta(RRD)is examined by time-series analysis of multiple coastline locations.We find that spatiotemporal variation in seawall locations and vegetation lines are obviously site-specific due to intense human interference,while changes in 0 m isobaths are highly dependent on external stresses.Coastal erosion and deposition patterns are determined firstly by sediment inputs from different distributaries,and secondly by sediment redistribution with tides,waves,and longshore currents.The causes of chronic erosion along the Hai Hau coast include swift distributary channels,negligible sediment supply by the regional longshore current,and continuous sediment export by local wave-generated longshore and offshore currents.The area of intertidal flats decreased significantly due to land reclamation and decelerating coastal accretion.The area of mangrove forests decreased first due to human deforestation,and then increased gradually due to artificial plantation.Poorly designed coastal infrastructures may increase risks of coastal erosion and flooding disasters.More coastal sectors in the RRD may turn into erosion due to continuous decrease in riverine sediment discharges,deserving more attention on proper coastal protection and management.