期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
High-Precision and Ultraspeed Monitoring of Melt-Pool Morphology in Laser-Directed Energy Deposition Using Deep Learning
1
作者 Jiayu Yang Guan Liu +4 位作者 Wei Zhu Yingjie Zhang Wenbin Zhou Defu Liu Yongcheng Lin 《Additive Manufacturing Frontiers》 2025年第2期81-89,共9页
Laser-directed energy deposition(L-DED)is an advanced additive manufacturing technology primarily adopted in metal three-dimensional printing systems.The L-DED process is characterized by various defects,thus necessit... Laser-directed energy deposition(L-DED)is an advanced additive manufacturing technology primarily adopted in metal three-dimensional printing systems.The L-DED process is characterized by various defects,thus necessitating the extensive use of in-situ monitoring to enable real-time adjustments of process parameters by detecting molten-pool features.To address the challenge of accurately extracting the molten-pool morphology from an undetached spatter,an innovative monitoring method based on the U-Net(U-shaped network)is proposed herein.A lightweight architecture accelerates the processing speed,whereas an enhanced loss function incorporating weight maps augments the segmentation precision.The model performance is evaluated by comparing its segmentation accuracy and processing speed with those of the conventional U-Net,using the mean intersection over union(MIoU)as the segmentation metric.The improved model demonstrates superior segmentation accuracy at the interface between the molten pool and spatter,with a peak MIoU of 0.9798 achieved on the test set.Furthermore,this model processes each image in an extremely short time of 17.9 ms.Using this segmentation algorithm,the error in extracting the molten-pool width from single-track experiments is within 0.1 mm.The proposed method for monitoring the molten-pool morphology is suitable for deployment in online monitoring systems,thus providing a foundation for subsequent process-parameter regulation. 展开更多
关键词 Laser-directed energy deposition Molten-pool morphology Semantic segmentation Mean intersection over union(MIoU)
在线阅读 下载PDF
A Novel Foreign Object Detection Method in Transmission Lines Based on Improved YOLOv8n 被引量:1
2
作者 Yakui Liu Xing Jiang +4 位作者 Ruikang Xu Yihao Cui Chenhui Yu Jingqi Yang Jishuai Zhou 《Computers, Materials & Continua》 SCIE EI 2024年第4期1263-1279,共17页
The rapid pace of urban development has resulted in the widespread presence of construction equipment andincreasingly complex conditions in transmission corridors. These conditions pose a serious threat to the safeope... The rapid pace of urban development has resulted in the widespread presence of construction equipment andincreasingly complex conditions in transmission corridors. These conditions pose a serious threat to the safeoperation of the power grid.Machine vision technology, particularly object recognition technology, has beenwidelyemployed to identify foreign objects in transmission line images. Despite its wide application, the technique faceslimitations due to the complex environmental background and other auxiliary factors. To address these challenges,this study introduces an improved YOLOv8n. The traditional stepwise convolution and pooling layers are replacedwith a spatial-depth convolution (SPD-Conv) module, aiming to improve the algorithm’s efficacy in recognizinglow-resolution and small-size objects. The algorithm’s feature extraction network is improved by using a LargeSelective Kernel (LSK) attention mechanism, which enhances the ability to extract relevant features. Additionally,the SIoU Loss function is used instead of the Complete Intersection over Union (CIoU) Loss to facilitate fasterconvergence of the algorithm. Through experimental verification, the improved YOLOv8n model achieves adetection accuracy of 88.8% on the test set. The recognition accuracy of cranes is improved by 2.9%, which isa significant enhancement compared to the unimproved algorithm. This improvement effectively enhances theaccuracy of recognizing foreign objects on transmission lines and proves the effectiveness of the new algorithm. 展开更多
关键词 YOLOv8n data enhancement attention mechanism SPD-Conv Smoothed intersection over union(SIoU)Loss
在线阅读 下载PDF
基于YOLOv8改进的脑癌检测算法
3
作者 王喆 赵慧俊 +2 位作者 谭超 李骏 申冲 《计算机科学》 CSCD 北大核心 2024年第S02期444-450,共7页
自动检测脑部肿瘤在磁共振成像中的位置是一个复杂、繁重的任务,需要耗费大量时间和资源。传统识别方案经常出现误解、遗漏和误导的情况,从而影响患者的治疗进度,对患者的生命安全产生影响。为了进一步提高鉴定的效果,引入了4项关键改... 自动检测脑部肿瘤在磁共振成像中的位置是一个复杂、繁重的任务,需要耗费大量时间和资源。传统识别方案经常出现误解、遗漏和误导的情况,从而影响患者的治疗进度,对患者的生命安全产生影响。为了进一步提高鉴定的效果,引入了4项关键改进措施。首先,采用了高效的多尺度注意力EMA(Efficient Multi-scale Attention),这种方法既可以对全局信息进行编码,也可以对信息进行重新校准,同时通过并行的分支输出特征进行跨维度的交互,使信息进一步聚合。其次,引入了BiFPN(Bidirectional Feature Pyramid Network)模块,并对其结构进行改进,以便缩短每一次检测所需要的时间,同时提升图像识别效果。然后采用MDPIoU损失函数和Mish激活函数进行改进,进一步提高检测的准确度。最后进行仿真实验,实验结果表明,改进的YOLOv8算法在脑癌检测中的精确率、召回率、平均精度均值均有提升,其中Precision提高了4.48%,Recall提高了2.64%,mAP@0.5提高了2.6%,mAP@0.5:0.9提高了7.0%。 展开更多
关键词 YOLOv8 脑癌 Efficient Multi-Scale Attention模块 Bidirectional Feature Pyramid Network结构 Missed Softplus with Identity Shortcut激活函数 Minimum Point Distance intersection over union损失函数
在线阅读 下载PDF
Catenary dropper fault identification based on improved FCOS algorithm 被引量:1
4
作者 GU Guimei WEN Bokang +1 位作者 JIA Yaohua ZHANG Cunjun 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2024年第4期571-578,共8页
The contact network dropper works in a harsh environment,and suffers from the impact effect of pantographs during running of trains,which may lead to faults such as slack and broken of the dropper wire and broken of t... The contact network dropper works in a harsh environment,and suffers from the impact effect of pantographs during running of trains,which may lead to faults such as slack and broken of the dropper wire and broken of the current-carrying ring.Due to the low intelligence and poor accuracy of the dropper fault detection network,an improved fully convolutional one-stage(FCOS)object detection network was proposed to improve the detection capability of the dropper condition.Firstly,by adjusting the parameterαin the network focus loss function,the problem of positive and negative sample imbalance in the network training process was eliminated.Secondly,the generalized intersection over union(GIoU)calculation was introduced to enhance the network’s ability to recognize the relative spatial positions of the prediction box and the bounding box during the regression calculation.Finally,the improved network was used to detect the status of dropper pictures.The detection speed was 150 sheets per millisecond,and the MAP of different status detection was 0.9512.Through the simulation comparison with other object detection networks,it was proved that the improved FCOS network had advantages in both detection time and accuracy,and could identify the state of dropper accurately. 展开更多
关键词 catenary dropper fully convolutional one-stage(FCOS)network defect identification generalized intersection over union(GIoU) focal loss
在线阅读 下载PDF
Detection Algorithm of Laboratory Personnel Irregularities Based on Improved YOLOv7
5
作者 Yongliang Yang Linghua Xu +2 位作者 Maolin Luo Xiao Wang Min Cao 《Computers, Materials & Continua》 SCIE EI 2024年第2期2741-2765,共25页
Due to the complex environment of the university laboratory,personnel flow intensive,personnel irregular behavior is easy to cause security risks.Monitoring using mainstream detection algorithms suffers from low detec... Due to the complex environment of the university laboratory,personnel flow intensive,personnel irregular behavior is easy to cause security risks.Monitoring using mainstream detection algorithms suffers from low detection accuracy and slow speed.Therefore,the current management of personnel behavior mainly relies on institutional constraints,education and training,on-site supervision,etc.,which is time-consuming and ineffective.Given the above situation,this paper proposes an improved You Only Look Once version 7(YOLOv7)to achieve the purpose of quickly detecting irregular behaviors of laboratory personnel while ensuring high detection accuracy.First,to better capture the shape features of the target,deformable convolutional networks(DCN)is used in the backbone part of the model to replace the traditional convolution to improve the detection accuracy and speed.Second,to enhance the extraction of important features and suppress useless features,this paper proposes a new convolutional block attention module_efficient channel attention(CBAM_E)for embedding the neck network to improve the model’s ability to extract features from complex scenes.Finally,to reduce the influence of angle factor and bounding box regression accuracy,this paper proposes a newα-SCYLLA intersection over union(α-SIoU)instead of the complete intersection over union(CIoU),which improves the regression accuracy while increasing the convergence speed.Comparison experiments on public and homemade datasets show that the improved algorithm outperforms the original algorithm in all evaluation indexes,with an increase of 2.92%in the precision rate,4.14%in the recall rate,0.0356 in the weighted harmonic mean,3.60%in the mAP@0.5 value,and a reduction in the number of parameters and complexity.Compared with the mainstream algorithm,the improved algorithm has higher detection accuracy,faster convergence speed,and better actual recognition effect,indicating the effectiveness of the improved algorithm in this paper and its potential for practical application in laboratory scenarios. 展开更多
关键词 University laboratory personnel behavior YOLOv7 deformable convolutional networks attention module intersection over union
在线阅读 下载PDF
基于机器视觉的指针式仪表检测 被引量:12
6
作者 赵辉 姜立锋 +1 位作者 王红君 岳有军 《科学技术与工程》 北大核心 2021年第34期14665-14672,共8页
提出了一种基于机器视觉的变电站指针式仪表检测算法。该算法基于YOLO v3神经网络,引入Res2Net残差模块以及采用特征层融合的方式,采用更少的模块和网络层数获取更高的特征提取效率,通过增加空间池化金字塔(spatial pyramid pooling,SPP... 提出了一种基于机器视觉的变电站指针式仪表检测算法。该算法基于YOLO v3神经网络,引入Res2Net残差模块以及采用特征层融合的方式,采用更少的模块和网络层数获取更高的特征提取效率,通过增加空间池化金字塔(spatial pyramid pooling,SPP)模块融合多重感受野,使用GIoU(generalized intersection over union)损失函数代替原有的损失函数。此外,针对数据集的不同,采取k-means++聚类算法重新选择锚点框的尺寸。实验结果证明,在保证精度的前提下,相对于Faster R-CNN和原始的YOLO v3网络,速度分别提升了73.7%和45.8%。 展开更多
关键词 YOLO v3 Res2Net 空间池化金字塔(SPP) GIou(generalized intersection over union) k-means++ 速度 检测识别
在线阅读 下载PDF
基于改进YOLOv3的电容器外观缺陷检测 被引量:6
7
作者 魏相站 赵麒 周骅 《光电子.激光》 CAS CSCD 北大核心 2021年第12期1278-1284,共7页
针对部署于有限算力平台的YOLOv3(you only look once v3)算法对电容器外观缺陷存在检测速度较慢的问题,提出了基于YOLOv3算法改进的轻量化算法MQYOLOv3。首先采用轻量化网络MobileNet v2作为特征提取模块,通过利用深度可分离式卷积替... 针对部署于有限算力平台的YOLOv3(you only look once v3)算法对电容器外观缺陷存在检测速度较慢的问题,提出了基于YOLOv3算法改进的轻量化算法MQYOLOv3。首先采用轻量化网络MobileNet v2作为特征提取模块,通过利用深度可分离式卷积替换一般卷积操作,使得模型的参数量大幅度降低进而提高模型的检测速度,同时也带来了检测精度的降低;然后在网络结构中嵌入空间金字塔池化结构实现局部特征与全局特征的融合、引入距离交并比(distance intersection over union,DIoU)损失函数优化交并比(intersection over union,IoU)损失函数以及使用Mish激活函数优化Leaky ReLU激活函数来提高模型的检测精度。本文采用自制的电容器外观缺陷数据集进行实验,轻量化MQYOLOv3算法的平均精度均值(mean average precision,mAP)为87.96%,较优化前降低了1.16%,检测速度从1.5 FPS提升到7.7 FPS。实验表明,本文设计的轻量化MQYOLOv3算法在保证检测精度的同时,提高了检测速度。 展开更多
关键词 YOLOv3(you only look once v3) 空间金字塔池化 Mish激活函数 距离交并比(distance intersection over union DIoU)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部