The ultrafast dynamics through conical intersections in 2,6-dimethylpyridine has been studied by femtosecond time-resolved photoelectron imaging coupled with time-resolved mass spectroscopy. Upon absorption of 266 nm ...The ultrafast dynamics through conical intersections in 2,6-dimethylpyridine has been studied by femtosecond time-resolved photoelectron imaging coupled with time-resolved mass spectroscopy. Upon absorption of 266 nm pump laser, 2,6-dimethylpyridine is excited to the S2 state with a ππ character from So state. The time evolution of the parent ion signals consists of two exponential decays. One is a fast component on a timescale of 635 fs and the other is a slow component with a timescale of 4.37 ps. Time-dependent photo- electron angular distributions and energy-resolved photoelectron spectroscopy are extracted from time-resolved photoelectron imaging and provide the evolutive information of S2 state. In brief, the ultrafast component is a population transfer from S2 to S1 through the S2/S1 conical intersections, the slow component is attributed to simultaneous IC from the S2 state and the higher vibrational levels of S1 state to So state, which involves the coupling of S2/S0 and S1/So conical intersections. Additionally, the observed ultrafast S2--+S1 transition occurs only with an 18% branching ratio.展开更多
The M7.9 Nepal earthquake of 25 April2015 had over 8, 500 fatalities and was the most destructive earthquake in Nepal since the Bihar-Nepal earthquake in 1934.In this study, we imaged the rupture process of this Nepal...The M7.9 Nepal earthquake of 25 April2015 had over 8, 500 fatalities and was the most destructive earthquake in Nepal since the Bihar-Nepal earthquake in 1934.In this study, we imaged the rupture process of this Nepal event by back-projecting the teleseismic P-wave energy recorded at the three regional networks in Alaska, Australia and Europe. The back-projection images of the three subarrays revealed that the Nepal earthquake propagated along the strike in a southeast direction over a distance of ~ 160–170 km with the duration of ~ 50–55 s. The rupture process was found to be a simple, unilateral event with a near constant velocity of 3.3 km/s.The beam power was mainly distributed in the geographic region just north of Kathmandu and the peak intensity for the source time function curve occurred at about 30 s. The earthquake was destructive due to its occurrence at shallow depth(~ 12–15 km) and the fact that the capital lies in a basin of soft sediment. Additionally, the resonance effect for the longer period waves that occurred in the Kathmandu valley led to destructive aggravation, impacting mainly the taller buildings.展开更多
In this paper,an unsupervised change detection technique for remote sensing images acquired on the same geographical area but at different time instances is proposed by conducting Covariance Intersection(CI) to perfor...In this paper,an unsupervised change detection technique for remote sensing images acquired on the same geographical area but at different time instances is proposed by conducting Covariance Intersection(CI) to perform unsupervised fusion of the final fuzzy partition matrices from the Fuzzy C-Means(FCM) clustering for the feature space by applying compressed sampling to the given remote sensing images.The proposed approach exploits a CI-based data fusion of the membership function matrices,which are obtained by taking the Fuzzy C-Means(FCM) clustering of the frequency-domain feature vectors and spatial-domain feature vectors,aimed at enhancing the unsupervised change detection performance.Compressed sampling is performed to realize the image local feature sampling,which is a signal acquisition framework based on the revelation that a small collection of linear projections of a sparse signal contains enough information for stable recovery.The experimental results demonstrate that the proposed algorithm has a good change detection results and also performs quite well on denoising purpose.展开更多
We study the influence of limited-view scanning on the depth imaging of photoacoustic tomography. The situation, in which absorbers are located at different depths with respect to the limited-view scanning trajectory,...We study the influence of limited-view scanning on the depth imaging of photoacoustic tomography. The situation, in which absorbers are located at different depths with respect to the limited-view scanning trajectory, is called depth imaging and is investigated in this paper. The results show that limited-view scanning causes the reconstructed intensity of deep absorbers to be weaker than that of shallow ones and that deep absorbers will be invisible if the scanning range is too small. The concept of effective scanning angle is proposed to analyse that phenomenon. We find that an effective scanning angle can well predict the relationship between scanning angle and the intensity ratio of absorbers. In addition, limited-view scanning is employed to improve image quality.展开更多
Inverse synthetic aperture radar(ISAR)imaging of near-field targets is potentially useful in some specific applications,which makes it very important to efficiently produce highquality image of the near-field target.I...Inverse synthetic aperture radar(ISAR)imaging of near-field targets is potentially useful in some specific applications,which makes it very important to efficiently produce highquality image of the near-field target.In this paper,the simplified target model with uniform linear motion is applied to the near-field target imaging,which overcomes the complexity of the traditional near-field imaging algorithm.According to this signal model,the method based on coordinate conversion and image interpolation combined with the range-Doppler(R-D)algorithm is proposed to correct the near-field distortion problem.Compared with the back-projection(BP)algorithm,the proposed method produces better focused ISAR images of the near-field target,and decreases the computation complexity significantly.Experimental results of the simulated data have demonstrated the effectiveness and robustness of the proposed method.展开更多
In the field of 3D model matching and retrieval,an effective method for feature extraction is spherical harmonic or its mutations,and is acted on the spherical images.But the obtainment of spherical images from 3D mod...In the field of 3D model matching and retrieval,an effective method for feature extraction is spherical harmonic or its mutations,and is acted on the spherical images.But the obtainment of spherical images from 3D models is very time-consuming,which greatly restrains the responding speed of such systems.In this paper, we propose a quantitative evaluation of the whole process and give a detailed two-sided analysis based on the comparative size between pixels and voxels.The experiments show that the resultant optimized parameters are fit for the practical application and exhibit a satisfactory performance.展开更多
Most of the existing non-line-of-sight(NLOS)localization methods depend on the layout information of the scene which is difficult to be obtained in advance in the practical application scenarios.To solve the problem,a...Most of the existing non-line-of-sight(NLOS)localization methods depend on the layout information of the scene which is difficult to be obtained in advance in the practical application scenarios.To solve the problem,an NLOS target localization method in unknown L-shaped corridor based ultra-wideband(UWB)multiple-input multiple-output(MIMO)radar is proposed in this paper.Firstly,the multipath propagation model of Lshaped corridor is established.Then,the localization process is analyzed by the propagation characteristics of diffraction and reflection.Specifically,two different back-projection imaging processes are performed on the radar echo,and the positions of focus regions in the two images are extracted to generate candidate targets.Furthermore,the distances of propagation paths corresponding to each candidate target are calculated,and then the similarity between each candidate target and the target is evaluated by employing two matching factors.The locations of the targets and the width of the corridor are determined based on the matching rules.Finally,two experiments are carried out to demonstrate that the method can effectively obtain the target positions and unknown scene information even when partial paths are lost.展开更多
This paper introduces the principles of using color histogram to match images in CBIR. And a prototype CBIR system is designed with color matching function. A new method using 2-dimensional color histogram based on hu...This paper introduces the principles of using color histogram to match images in CBIR. And a prototype CBIR system is designed with color matching function. A new method using 2-dimensional color histogram based on hue and saturation to extract and represent color information of an image is presented. We also improve the Euclidean-distance algorithm by adding Center of Color to it. The experiment shows modifications made to Euclidean-distance signif-icantly elevate the quality and efficiency of retrieval.展开更多
Data collected in two-dimensional projections give planar images of object at each projection angle. To obtain information along the depth of the object, tomographic images are reconstructed using these projections. T...Data collected in two-dimensional projections give planar images of object at each projection angle. To obtain information along the depth of the object, tomographic images are reconstructed using these projections. There are basically two approaches to solve the problem of reconstruction: analytical and iterative, each one presenting its own advantages and limitations. This paper provides a detailed introduction and comparison to four analytical image reconstruction methods including Fourier transformation, simple back-projection, back-projection filtering and filtered back-projection.展开更多
脊柱侧弯是影响人类健康的疾病之一,Cobb角的准确计算是临床上确定脊柱侧弯分型和制定诊疗方案的关键。针对人工测量Cobb角存在耗时长、不够准确、效率低下等问题,本文设计了一种基于改进U-Net的脊柱侧弯Cobb角自动测量方法。由经验丰...脊柱侧弯是影响人类健康的疾病之一,Cobb角的准确计算是临床上确定脊柱侧弯分型和制定诊疗方案的关键。针对人工测量Cobb角存在耗时长、不够准确、效率低下等问题,本文设计了一种基于改进U-Net的脊柱侧弯Cobb角自动测量方法。由经验丰富的脊柱外科医生使用LabelMe工具对200例脊柱侧弯患者的X线片数据集进行标注。采用ResNet50作为主干网络改进基本的语义分割模型U-Net,并与另外2个语义分割模型DeeplabV3和PSPNet在脊柱侧弯X线片数据集上分别进行训练。实验结果表明,改进的U-Net模型的平均交并比(mean intersection over union,MIOU)值达到了94.72%,分别比PSPNet和DeeplabV3模型的MIOU值提升了5.36%和2.30%。最后,基于改进的U-Net模型设计了脊柱侧弯Cobb角的自动测量算法,并开发了可视化的自动测量软件。经过实际测试,发现在常规的电脑上输入一张患者的X线片,只需6.3 s即可自动计算Cobb角大小,其速度远快于医生手动测量,显著提高了医生的工作效率,表明本文设计的脊柱侧弯Cobb角自动测量方法是有效的。展开更多
On December 18, 2023, the M_(S)6.2 Jishishan earthquake occurred in the northeastern region of the QinghaiXizang Plateau, causing heavy casualties and property damage in Gansu and Qinghai Provinces. In this study,we i...On December 18, 2023, the M_(S)6.2 Jishishan earthquake occurred in the northeastern region of the QinghaiXizang Plateau, causing heavy casualties and property damage in Gansu and Qinghai Provinces. In this study,we integrate space imaging geodesy, finite fault inversion, and back-projection methods to decipher its rupture property, including fault geometry, coseismic slip distribution, rupture direction, and propagation speed. The results reveal that the seismogenic fault dips to the southwest at an angle of 29°. The major slip asperity is dominated by reverse slip and is concentrated within a depth range of 7–16 km, which explains the significant uplift near the epicenter observed by both the Sentinel-1 ascending and descending In SAR data. Moreover, the teleseismic array waveforms indicate a northwest propagating rupture with an overall slow rupture velocity of~1.91 km/s(AK array) or 1.01 km/s(AU array).展开更多
基金This work was supported by the National Natural Science Foundation of China (No.10704083),the Innovation Foundation of Chinese Academyof Sciences (No.KJCX1-YW-N30), and the Public Science and Technology Program of Shenzhen (No.SY200806260026A).
文摘The ultrafast dynamics through conical intersections in 2,6-dimethylpyridine has been studied by femtosecond time-resolved photoelectron imaging coupled with time-resolved mass spectroscopy. Upon absorption of 266 nm pump laser, 2,6-dimethylpyridine is excited to the S2 state with a ππ character from So state. The time evolution of the parent ion signals consists of two exponential decays. One is a fast component on a timescale of 635 fs and the other is a slow component with a timescale of 4.37 ps. Time-dependent photo- electron angular distributions and energy-resolved photoelectron spectroscopy are extracted from time-resolved photoelectron imaging and provide the evolutive information of S2 state. In brief, the ultrafast component is a population transfer from S2 to S1 through the S2/S1 conical intersections, the slow component is attributed to simultaneous IC from the S2 state and the higher vibrational levels of S1 state to So state, which involves the coupling of S2/S0 and S1/So conical intersections. Additionally, the observed ultrafast S2--+S1 transition occurs only with an 18% branching ratio.
基金supported by the National Natural Science Foundation of China (No.41604049)
文摘The M7.9 Nepal earthquake of 25 April2015 had over 8, 500 fatalities and was the most destructive earthquake in Nepal since the Bihar-Nepal earthquake in 1934.In this study, we imaged the rupture process of this Nepal event by back-projecting the teleseismic P-wave energy recorded at the three regional networks in Alaska, Australia and Europe. The back-projection images of the three subarrays revealed that the Nepal earthquake propagated along the strike in a southeast direction over a distance of ~ 160–170 km with the duration of ~ 50–55 s. The rupture process was found to be a simple, unilateral event with a near constant velocity of 3.3 km/s.The beam power was mainly distributed in the geographic region just north of Kathmandu and the peak intensity for the source time function curve occurred at about 30 s. The earthquake was destructive due to its occurrence at shallow depth(~ 12–15 km) and the fact that the capital lies in a basin of soft sediment. Additionally, the resonance effect for the longer period waves that occurred in the Kathmandu valley led to destructive aggravation, impacting mainly the taller buildings.
基金Supported by the National Natural Science Foundation of China(No.61071163)
文摘In this paper,an unsupervised change detection technique for remote sensing images acquired on the same geographical area but at different time instances is proposed by conducting Covariance Intersection(CI) to perform unsupervised fusion of the final fuzzy partition matrices from the Fuzzy C-Means(FCM) clustering for the feature space by applying compressed sampling to the given remote sensing images.The proposed approach exploits a CI-based data fusion of the membership function matrices,which are obtained by taking the Fuzzy C-Means(FCM) clustering of the frequency-domain feature vectors and spatial-domain feature vectors,aimed at enhancing the unsupervised change detection performance.Compressed sampling is performed to realize the image local feature sampling,which is a signal acquisition framework based on the revelation that a small collection of linear projections of a sparse signal contains enough information for stable recovery.The experimental results demonstrate that the proposed algorithm has a good change detection results and also performs quite well on denoising purpose.
基金Project supported by the National Basic Research Program of China(Grant No.2012CB921504)the National Natural Science Foundation of China(Grant Nos.10874088,10904069,and 11028408)the Natural Science Foundation of Jiangsu Province,China(Grant No.SBK201021985)
文摘We study the influence of limited-view scanning on the depth imaging of photoacoustic tomography. The situation, in which absorbers are located at different depths with respect to the limited-view scanning trajectory, is called depth imaging and is investigated in this paper. The results show that limited-view scanning causes the reconstructed intensity of deep absorbers to be weaker than that of shallow ones and that deep absorbers will be invisible if the scanning range is too small. The concept of effective scanning angle is proposed to analyse that phenomenon. We find that an effective scanning angle can well predict the relationship between scanning angle and the intensity ratio of absorbers. In addition, limited-view scanning is employed to improve image quality.
基金supported by the National Natural Science Foundation of China(61871146).
文摘Inverse synthetic aperture radar(ISAR)imaging of near-field targets is potentially useful in some specific applications,which makes it very important to efficiently produce highquality image of the near-field target.In this paper,the simplified target model with uniform linear motion is applied to the near-field target imaging,which overcomes the complexity of the traditional near-field imaging algorithm.According to this signal model,the method based on coordinate conversion and image interpolation combined with the range-Doppler(R-D)algorithm is proposed to correct the near-field distortion problem.Compared with the back-projection(BP)algorithm,the proposed method produces better focused ISAR images of the near-field target,and decreases the computation complexity significantly.Experimental results of the simulated data have demonstrated the effectiveness and robustness of the proposed method.
基金the National Natural Science Foundation of China(No.60903111)
文摘In the field of 3D model matching and retrieval,an effective method for feature extraction is spherical harmonic or its mutations,and is acted on the spherical images.But the obtainment of spherical images from 3D models is very time-consuming,which greatly restrains the responding speed of such systems.In this paper, we propose a quantitative evaluation of the whole process and give a detailed two-sided analysis based on the comparative size between pixels and voxels.The experiments show that the resultant optimized parameters are fit for the practical application and exhibit a satisfactory performance.
基金supported by National Natural Science Foundation of China(U20B2070,62001091)Sichuan Science and Technology Program(2022YFS0531).
文摘Most of the existing non-line-of-sight(NLOS)localization methods depend on the layout information of the scene which is difficult to be obtained in advance in the practical application scenarios.To solve the problem,an NLOS target localization method in unknown L-shaped corridor based ultra-wideband(UWB)multiple-input multiple-output(MIMO)radar is proposed in this paper.Firstly,the multipath propagation model of Lshaped corridor is established.Then,the localization process is analyzed by the propagation characteristics of diffraction and reflection.Specifically,two different back-projection imaging processes are performed on the radar echo,and the positions of focus regions in the two images are extracted to generate candidate targets.Furthermore,the distances of propagation paths corresponding to each candidate target are calculated,and then the similarity between each candidate target and the target is evaluated by employing two matching factors.The locations of the targets and the width of the corridor are determined based on the matching rules.Finally,two experiments are carried out to demonstrate that the method can effectively obtain the target positions and unknown scene information even when partial paths are lost.
基金Supported by the Project of Science & Technology Depart ment of Shanghai (No.055115001)
文摘This paper introduces the principles of using color histogram to match images in CBIR. And a prototype CBIR system is designed with color matching function. A new method using 2-dimensional color histogram based on hue and saturation to extract and represent color information of an image is presented. We also improve the Euclidean-distance algorithm by adding Center of Color to it. The experiment shows modifications made to Euclidean-distance signif-icantly elevate the quality and efficiency of retrieval.
文摘Data collected in two-dimensional projections give planar images of object at each projection angle. To obtain information along the depth of the object, tomographic images are reconstructed using these projections. There are basically two approaches to solve the problem of reconstruction: analytical and iterative, each one presenting its own advantages and limitations. This paper provides a detailed introduction and comparison to four analytical image reconstruction methods including Fourier transformation, simple back-projection, back-projection filtering and filtered back-projection.
文摘脊柱侧弯是影响人类健康的疾病之一,Cobb角的准确计算是临床上确定脊柱侧弯分型和制定诊疗方案的关键。针对人工测量Cobb角存在耗时长、不够准确、效率低下等问题,本文设计了一种基于改进U-Net的脊柱侧弯Cobb角自动测量方法。由经验丰富的脊柱外科医生使用LabelMe工具对200例脊柱侧弯患者的X线片数据集进行标注。采用ResNet50作为主干网络改进基本的语义分割模型U-Net,并与另外2个语义分割模型DeeplabV3和PSPNet在脊柱侧弯X线片数据集上分别进行训练。实验结果表明,改进的U-Net模型的平均交并比(mean intersection over union,MIOU)值达到了94.72%,分别比PSPNet和DeeplabV3模型的MIOU值提升了5.36%和2.30%。最后,基于改进的U-Net模型设计了脊柱侧弯Cobb角的自动测量算法,并开发了可视化的自动测量软件。经过实际测试,发现在常规的电脑上输入一张患者的X线片,只需6.3 s即可自动计算Cobb角大小,其速度远快于医生手动测量,显著提高了医生的工作效率,表明本文设计的脊柱侧弯Cobb角自动测量方法是有效的。
基金supported by the Open Fund of Hubei Luojia Laboratory(230100015)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB41000000)the Knowledge Innovation Program of Wuhan-Shuguang Project(2023010201020281).
文摘On December 18, 2023, the M_(S)6.2 Jishishan earthquake occurred in the northeastern region of the QinghaiXizang Plateau, causing heavy casualties and property damage in Gansu and Qinghai Provinces. In this study,we integrate space imaging geodesy, finite fault inversion, and back-projection methods to decipher its rupture property, including fault geometry, coseismic slip distribution, rupture direction, and propagation speed. The results reveal that the seismogenic fault dips to the southwest at an angle of 29°. The major slip asperity is dominated by reverse slip and is concentrated within a depth range of 7–16 km, which explains the significant uplift near the epicenter observed by both the Sentinel-1 ascending and descending In SAR data. Moreover, the teleseismic array waveforms indicate a northwest propagating rupture with an overall slow rupture velocity of~1.91 km/s(AK array) or 1.01 km/s(AU array).