期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
右删失数据下部分时间相依协变量的加性Interquantile回归
1
作者 刘沛 徐萍 +1 位作者 肖男男 王纯杰 《吉林大学学报(理学版)》 北大核心 2025年第5期1302-1312,共11页
利用Interquantile回归模型具有灵活、稳健、适用范围广的特征,对响应变量存在右删失、协变量存在时间相依关系以及部分非线性结构的数据,建立加性Interquantile回归模型,以避免传统分位数回归模型单独对相邻分位数估计时出现的不稳定问... 利用Interquantile回归模型具有灵活、稳健、适用范围广的特征,对响应变量存在右删失、协变量存在时间相依关系以及部分非线性结构的数据,建立加性Interquantile回归模型,以避免传统分位数回归模型单独对相邻分位数估计时出现的不稳定问题,并通过加权秩估计过程结合差分进化算法估计相邻分位数区间的未知参数.模拟研究结果表明了该方法在有限样本下的优良性能,并将其应用到美国斯坦福心脏移植数据中. 展开更多
关键词 interquantile回归 右删失响应 时间相依协变量 部分非线性结构
在线阅读 下载PDF
Interquantile shrinkage and variable selection for longitudinal data in regression models
2
作者 Chuang Wan Wei Zhong +1 位作者 Chenjing Li Xinyuan Song 《Science China Mathematics》 2025年第7期1701-1726,共26页
We develop an interquantile shrinkage estimation method to examine the underlying commonality structure of regression coefficients across various quantile levels for longitudinal data in a data-driven manner.This meth... We develop an interquantile shrinkage estimation method to examine the underlying commonality structure of regression coefficients across various quantile levels for longitudinal data in a data-driven manner.This method provides a deeper insight into the relationship between the response and covariates,leading to enhanced estimation efficiency and model interpretability.We propose a fused penalized generalized estimation equation(GEE)estimator with a non-crossing constraint,which automatically promotes constancy in estimates across neighboring quantiles.By accounting for within-subject correlation in longitudinal data,the GEE estimator improves estimation efficiency.We employ a nested alternating direction method of multiplier(ADMM)algorithm to minimize the regularized objective function.The asymptotic properties of the penalized estimators are established.Furthermore,in the presence of irrelevant predictors,we develop a doubly penalized GEE estimator to simultaneously select active variables and identify commonality across quantiles.Numerical studies demonstrate the superior performance of our proposed methods in terms of estimation efficiency.We illustrate the application of our methodologies by analyzing a longitudinal wage dataset. 展开更多
关键词 fused penalty GEE interquantile shrinkage longitudinal data SPARSITY
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部