Ceramic relief mural is a contemporary landscape art that is carefully designed based on human nature,culture,and architectural wall space,combined with social customs,visual sensibility,and art.It may also become the...Ceramic relief mural is a contemporary landscape art that is carefully designed based on human nature,culture,and architectural wall space,combined with social customs,visual sensibility,and art.It may also become the main axis of ceramic art in the future.Taiwan public ceramic relief murals(PCRM)are most distinctive with the PCRM pioneered by Pan-Hsiung Chu of Meinong Kiln in 1987.In addition to breaking through the limitations of traditional public ceramic murals,Chu leveraged local culture and sensibility.The theme of art gives PCRM its unique style and innovative value throughout the Taiwan region.This study mainly analyzes and understands the design image of public ceramic murals,taking Taiwan PCRM’s design and creation as the scope,and applies STEEP analysis,that is,the social,technological,economic,ecological,and political-legal environments are analyzed as core factors;eight main important factors in the artistic design image of ceramic murals are evaluated.Then,interpretive structural modeling(ISM)is used to establish five levels,analyze the four main problems in the main core factor area and the four main target results in the affected factor area;and analyze the problem points and target points as well as their causal relationships.It is expected to sort out the relationship between these factors,obtain the hierarchical relationship of each factor,and provide a reference basis and research methods.展开更多
Alarm flood is one of the main problems in the alarm systems of industrial process. Alarm root-cause analysis and alarm prioritization are good for alarm flood reduction. This paper proposes a systematic rationalizati...Alarm flood is one of the main problems in the alarm systems of industrial process. Alarm root-cause analysis and alarm prioritization are good for alarm flood reduction. This paper proposes a systematic rationalization method for multivariate correlated alarms to realize the root cause analysis and alarm prioritization. An information fusion based interpretive structural model is constructed according to the data-driven partial correlation coefficient calculation and process knowledge modification. This hierarchical multi-layer model is helpful in abnormality propagation path identification and root-cause analysis. Revised Likert scale method is adopted to determine the alarm priority and reduce the blindness of alarm handling. As a case study, the Tennessee Eastman process is utilized to show the effectiveness and validity of proposed approach. Alarm system performance comparison shows that our rationalization methodology can reduce the alarm flood to some extent and improve the performance.展开更多
Through the collection of related literature,we point out the six major factors influencing China's forestry enterprises' financing: insufficient national support; regulations and institutional environmental f...Through the collection of related literature,we point out the six major factors influencing China's forestry enterprises' financing: insufficient national support; regulations and institutional environmental factors; narrow channels of financing; inappropriate existing mortgagebacked approach; forestry production characteristics; forestry enterprises' defects. Then,we use interpretive structural modeling( ISM) from System Engineering to analyze the structure of the six factors and set up ladder-type structure. We put three factors including forestry production characteristics,shortcomings of forestry enterprises and regulatory,institutional and environmental factors as basic factors and put other three factors as important factors. From the perspective of the government and enterprises,we put forward some personal advices and ideas based on the basic factors and important factors to ease the financing difficulties of forestry enterprises.展开更多
The possible risk factors during SAP Business One implementation were studied with depth interview. The results are then adjusted by experts. 20 categories of risk factors that are totally 49 factors were found. Based...The possible risk factors during SAP Business One implementation were studied with depth interview. The results are then adjusted by experts. 20 categories of risk factors that are totally 49 factors were found. Based on the risk factors during the SAP Business One implementation, questionnaire was used to study the key risk factors of SAP Business One implementation. Results illustrate ten key risk factors, these are risk of senior managers leadership, risk of project management, risk of process improvement, risk of implementation team organization, risk of process analysis, risk of based data, risk of personnel coordination, risk of change management, risk of secondary development, and risk of data import. Focus on the key risks of SAP Business One implementation, the interpretative structural modeling approach is used to study the relationship between these factors and establish a seven-level hierarchical structure. The study illustrates that the structure is olive-like, in which the risk of data import is on the top, and the risk of senior managers is on the bottom. They are the most important risk factors.展开更多
The interpretive theory of translation(ITT) is a school of theory originated in the late 1960 s in France,focusing on the discussion of the theory and teaching of interpreting and non-literary translation. ITT believe...The interpretive theory of translation(ITT) is a school of theory originated in the late 1960 s in France,focusing on the discussion of the theory and teaching of interpreting and non-literary translation. ITT believes that what the translator should convey is not the meaning of linguistic notation,but the non-verbal sense. In this paper,the author is going to briefly introduce ITT and analyze several examples to show different situations where ITT is either useful or unsuitable.展开更多
Interpretive theory brings forward three phases of interpretation: understanding, deverberlization and re-expression. It needs linguistic knowledge and non-linguistic knowledge. This essay discusses application of int...Interpretive theory brings forward three phases of interpretation: understanding, deverberlization and re-expression. It needs linguistic knowledge and non-linguistic knowledge. This essay discusses application of interpretive theory to business interpretation from the perspective of theory and practice.展开更多
This paper aims to explore teaching of interpreting nowadays by starting from the interpretive theory and its characteristics. The author believes that the theory is mainly based on the study of interpretation practic...This paper aims to explore teaching of interpreting nowadays by starting from the interpretive theory and its characteristics. The author believes that the theory is mainly based on the study of interpretation practice, whose core content, namely,"deverbalization"has made great strides and breakthroughs in the theory of translation; when we examine translation, or rather interpretation once again from the bi-perspective of language and culture, we will have come across new thoughts in terms of translation as well as teaching of interpreting.展开更多
This paper outlines a diagnostic approach to quantify the maintainability of a Commercial off-the-Shelf (COTS)-based system by analyzing the complexity of the deployment of the system components. Interpretive Struct...This paper outlines a diagnostic approach to quantify the maintainability of a Commercial off-the-Shelf (COTS)-based system by analyzing the complexity of the deployment of the system components. Interpretive Structural Modeling (ISM) is used to demonstrate how ISM supports in identifying and understanding interdependencies among COTS components and how they affect the complexity of the maintenance of the COTS Based System (CBS). Through ISM analysis we have determined which components in the CBS contribute most significantly to the complexity of the system. With the ISM, architects, system integrators, and system maintainers can isolate the COTS products that cause the most complexity, and therefore cause the most effort to maintain, and take precautions to only change those products when necessary or during major maintenance efforts. The analysis also clearly shows the components that can be easily replaced or upgraded with very little impact on the rest of the system.展开更多
Interpretive structural modeling(ISM)is an interactive process in which a malformed(bad structured)problem is structured into a comprehensive systematic model.Yet,despite many advantages that ISM provides,this method ...Interpretive structural modeling(ISM)is an interactive process in which a malformed(bad structured)problem is structured into a comprehensive systematic model.Yet,despite many advantages that ISM provides,this method has some shortcomings,the most important one of which is its reliance on participants’intuition and judgment.This problem undermines the validity of ISM.To solve this problem and further enhance the ISM method,the present study proposes a method called equation structural modeling(ESM),which draws on the capacities of structural equation modeling(SEM).As such,ESM provides a statistically verifiable framework and provides a graphical,hierarchical and intuitive model.展开更多
Environmentalmonitoring systems based on remote sensing technology have a wider monitoringrange and longer timeliness, which makes them widely used in the detection andmanagement of pollution sources. However, haze we...Environmentalmonitoring systems based on remote sensing technology have a wider monitoringrange and longer timeliness, which makes them widely used in the detection andmanagement of pollution sources. However, haze weather conditions degrade image qualityand reduce the precision of environmental monitoring systems. To address this problem,this research proposes a remote sensing image dehazingmethod based on the atmosphericscattering model and a dark channel prior constrained network. The method consists ofa dehazing network, a dark channel information injection network (DCIIN), and a transmissionmap network. Within the dehazing network, the branch fusion module optimizesfeature weights to enhance the dehazing effect. By leveraging dark channel information,the DCIIN enables high-quality estimation of the atmospheric veil. To ensure the outputof the deep learning model aligns with physical laws, we reconstruct the haze image usingthe prediction results from the three networks. Subsequently, we apply the traditionalloss function and dark channel loss function between the reconstructed haze image and theoriginal haze image. This approach enhances interpretability and reliabilitywhile maintainingadherence to physical principles. Furthermore, the network is trained on a synthesizednon-homogeneous haze remote sensing dataset using dark channel information from cloudmaps. The experimental results show that the proposed network can achieve better imagedehazing on both synthetic and real remote sensing images with non-homogeneous hazedistribution. This research provides a new idea for solving the problem of decreased accuracyof environmental monitoring systems under haze weather conditions and has strongpracticability.展开更多
BACKGROUND To investigate the preoperative factors influencing textbook outcomes(TO)in Intrahepatic cholangiocarcinoma(ICC)patients and evaluate the feasibility of an interpretable machine learning model for preoperat...BACKGROUND To investigate the preoperative factors influencing textbook outcomes(TO)in Intrahepatic cholangiocarcinoma(ICC)patients and evaluate the feasibility of an interpretable machine learning model for preoperative prediction of TO,we developed a machine learning model for preoperative prediction of TO and used the SHapley Additive exPlanations(SHAP)technique to illustrate the prediction process.AIM To analyze the factors influencing textbook outcomes before surgery and to establish interpretable machine learning models for preoperative prediction.METHODS A total of 376 patients diagnosed with ICC were retrospectively collected from four major medical institutions in China,covering the period from 2011 to 2017.Logistic regression analysis was conducted to identify preoperative variables associated with achieving TO.Based on these variables,an EXtreme Gradient Boosting(XGBoost)machine learning prediction model was constructed using the XGBoost package.The SHAP(package:Shapviz)algorithm was employed to visualize each variable's contribution to the model's predictions.Kaplan-Meier survival analysis was performed to compare the prognostic differences between the TO-achieving and non-TO-achieving groups.RESULTS Among 376 patients,287 were included in the training group and 89 in the validation group.Logistic regression identified the following preoperative variables influencing TO:Child-Pugh classification,Eastern Cooperative Oncology Group(ECOG)score,hepatitis B,and tumor size.The XGBoost prediction model demonstrated high accuracy in internal validation(AUC=0.8825)and external validation(AUC=0.8346).Survival analysis revealed that the disease-free survival rates for patients achieving TO at 1,2,and 3 years were 64.2%,56.8%,and 43.4%,respectively.CONCLUSION Child-Pugh classification,ECOG score,hepatitis B,and tumor size are preoperative predictors of TO.In both the training group and the validation group,the machine learning model had certain effectiveness in predicting TO before surgery.The SHAP algorithm provided intuitive visualization of the machine learning prediction process,enhancing its interpretability.展开更多
The application of machine learning in alloy design is increasingly widespread,yet traditional models still face challenges when dealing with limited datasets and complex nonlinear relationships.This work proposes an ...The application of machine learning in alloy design is increasingly widespread,yet traditional models still face challenges when dealing with limited datasets and complex nonlinear relationships.This work proposes an interpretable machine learning method based on data augmentation and reconstruction,excavating high-performance low-alloyed magnesium(Mg)alloys.The data augmentation technique expands the original dataset through Gaussian noise.The data reconstruction method reorganizes and transforms the original data to extract more representative features,significantly improving the model's generalization ability and prediction accuracy,with a coefficient of determination(R^(2))of 95.9%for the ultimate tensile strength(UTS)model and a R^(2)of 95.3%for the elongation-to-failure(EL)model.The correlation coefficient assisted screening(CCAS)method is proposed to filter low-alloyed target alloys.A new Mg-2.2Mn-0.4Zn-0.2Al-0.2Ca(MZAX2000,wt%)alloy is designed and extruded into bar at given processing parameters,achieving room-temperature strength-ductility synergy showing an excellent UTS of 395 MPa and a high EL of 17.9%.This is closely related to its hetero-structured characteristic in the as-extruded MZAX2000 alloy consisting of coarse grains(16%),fine grains(75%),and fiber regions(9%).Therefore,this work offers new insights into optimizing alloy compositions and processing parameters for attaining new high strong and ductile low-alloyed Mg alloys.展开更多
As batteries become increasingly essential for energy storage technologies,battery prognosis,and diagnosis remain central to ensure reliable operation and effective management,as well as to aid the in-depth investigat...As batteries become increasingly essential for energy storage technologies,battery prognosis,and diagnosis remain central to ensure reliable operation and effective management,as well as to aid the in-depth investigation of degradation mechanisms.However,dynamic operating conditions,cell-to-cell inconsistencies,and limited availability of labeled data have posed significant challenges to accurate and robust prognosis and diagnosis.Herein,we introduce a time-series-decomposition-based ensembled lightweight learning model(TELL-Me),which employs a synergistic dual-module framework to facilitate accurate and reliable forecasting.The feature module formulates features with physical implications and sheds light on battery aging mechanisms,while the gradient module monitors capacity degradation rates and captures aging trend.TELL-Me achieves high accuracy in end-of-life prediction using minimal historical data from a single battery without requiring offline training dataset,and demonstrates impressive generality and robustness across various operating conditions and battery types.Additionally,by correlating feature contributions with degradation mechanisms across different datasets,TELL-Me is endowed with the diagnostic ability that not only enhances prediction reliability but also provides critical insights into the design and optimization of next-generation batteries.展开更多
Topographic maps,as essential tools and sources of information for geographic research,contain precise spatial locations and rich map features,and they illustrate spatio-temporal information on the distribution and di...Topographic maps,as essential tools and sources of information for geographic research,contain precise spatial locations and rich map features,and they illustrate spatio-temporal information on the distribution and differences of various surface features.Currently,topographic maps are mainly stored in raster and vector formats.Extraction of the spatio-temporal knowledge in the maps—such as spatial distribution patterns,feature relationships,and dynamic evolution—still primarily relies on manual interpretation.However,manual interpretation is time-consuming and laborious,especially for large-scale,long-term map knowledge extraction and application.With the development of artificial intelligence technology,it is possible to improve the automation level of map knowledge interpretation.Therefore,the present study proposes an automatic interpretation method for raster topographic map knowledge based on deep learning.To address the limitations of current data-driven intelligent technology in learning map spatial relations and cognitive logic,we establish a formal description of map knowledge by mapping the relationship between map knowledge and features,thereby ensuring interpretation accuracy.Subsequently,deep learning techniques are employed to extract map features automatically,and the spatio-temporal knowledge is constructed by combining formal descriptions of geographic feature knowledge.Validation experiments demonstrate that the proposed method effectively achieves automatic interpretation of spatio-temporal knowledge of geographic features in maps,with an accuracy exceeding 80%.The findings of the present study contribute to machine understanding of spatio-temporal differences in map knowledge and advances the intelligent interpretation and utilization of cartographic information.展开更多
Deep Learning(DL)model has been widely used in the field of Synthetic Aperture Radar Automatic Target Recognition(SAR-ATR)and has achieved excellent performance.However,the black-box nature of DL models has been the f...Deep Learning(DL)model has been widely used in the field of Synthetic Aperture Radar Automatic Target Recognition(SAR-ATR)and has achieved excellent performance.However,the black-box nature of DL models has been the focus of criticism,especially in the application of SARATR,which is closely associated with the national defense and security domain.To address these issues,a new interpretable recognition model Physics-Guided BagNet(PGBN)is proposed in this article.The model adopts an interpretable convolutional neural network framework and uses time–frequency analysis to extract physical scattering features in SAR images.Based on the physical scattering features,an unsupervised segmentation method is proposed to distinguish targets from the background in SAR images.On the basis of the segmentation result,a structure is designed,which constrains the model's spatial attention to focus more on the targets themselves rather than the background,thereby making the model's decision-making more in line with physical principles.In contrast to previous interpretable research methods,this model combines interpretable structure with physical interpretability,further reducing the model's risk of error recognition.Experiments on the MSTAR dataset verify that the PGBN model exhibits excellent interpretability and recognition performance,and comparative experiments with heatmaps indicate that the physical feature guidance module presented in this article can constrain the model to focus more on the target itself rather than the background.展开更多
Based on 1,003 articles about empirical research on interpreting teaching from 2002 to 2022 retrieved from China National Knowledge Internet,this paper extracts three main research methods,uncovering common problems i...Based on 1,003 articles about empirical research on interpreting teaching from 2002 to 2022 retrieved from China National Knowledge Internet,this paper extracts three main research methods,uncovering common problems in interpreting education and practical teaching suggestions:(1)Corpus-based researches collect numerous audios to study typical mistakes made by interpreting learners,particularly pause and self-repair,and suggest interpreting teaching improve learners’ability to use language chunks and encourage students to interpret smoothly;(2)Questionnaire surveys help understand requirements for professional interpreters and how interpreting teaching meets market demands;(3)Teaching experiments last for one to two semesters,addressing issues like outdated teaching materials and modes,and show how teaching materials and modes integrate modern technology.But empirical researches need to build new corpora,professional interpreters’corpora and address problems that haven’t been adequately discussed.This paper is helpful for improving interpreting education in China and other countries and for making clear tasks to be fulfilled in empirical research on interpreting education.展开更多
The potential toxicity of ionic liquids(ILs)affects their applications;how to control the toxicity is one of the key issues in their applications.To understand its toxicity structure relationship and promote its green...The potential toxicity of ionic liquids(ILs)affects their applications;how to control the toxicity is one of the key issues in their applications.To understand its toxicity structure relationship and promote its greener application,six different machine learning algorithms,including Bagging,Adaptive Boosting(AdaBoost),Gradient Boosting(GBoost),Stacking,Voting and Categorical Boosting(CatBoost),are established to model the toxicity of ILs on four distinct datasets including Leukemia rat cell line IPC-81(IPC-81),Acetylcholinesterase(AChE),Escherichia coli(E.coli)and Vibrio fischeri.Molecular descriptors obtained from the simplified molecular input line entry system(SMILES)are used to characterize ILs.All models are assessed by the mean square error(MSE),root mean square error(RMSE),mean absolute error(MAE)and correlation coefficient(R^(2)).Additionally,an interpretation model based on SHapley Additive exPlanations(SHAP)is built to determine the positive and negative effects of each molecular feature on toxicity.With additional parameters and complexity,the Catboost model outperforms the other models,making it a more reliable model for ILs'toxicity prediction.The results of the model's interpretation indicate that the most significant positive features,SMR_VSA5,PEOE_VSA8,Kappa2,PEOE_VSA6,SMR_VSA5,PEOE_VSA6 and EState_VSA1,can increase the toxicity of ILs as their levels rise,while the most significant negative features,VSA_EState7,EState_VSA8,PEOE_VSA9 and FpDensityMorgan1,can decrease the toxicity as their levels rise.Also,an IL's toxicity will grow as its average molecular weight and number of pyridine rings increase,whereas its toxicity will decrease as its hydrogen bond acceptors increase.This finding offers a theoretical foundation for rapid screening and synthesis of environmentally-benign ILs.展开更多
Developing machine learning frameworks with predictive power,interpretability,and transferability is crucial,yet it faces challenges in the field of electrocatalysis.To achieve this,we employed rigorous feature engine...Developing machine learning frameworks with predictive power,interpretability,and transferability is crucial,yet it faces challenges in the field of electrocatalysis.To achieve this,we employed rigorous feature engineering to establish a finely tuned gradient boosting regressor(GBR)model,which adeptly captures the physical complexity from feature space to target variables.We demonstrated that environmental electron effects and atomic number significantly govern the success of the mapping process via global and local explanations.The finely tuned GBR model exhibits exceptional robustness in predicting CO adsorption energies(R_(ave)^(2)=0.937,RMSE=0.153 eV).Moreover,the model demonstrated remarkable transfer learning ability,showing excellent predictive power for OH,NO,and N_(2) adsorption.Importantly,the GBR model exhibits exceptional predictive capability across an extensive search space,thereby demonstrating profound adaptability and versatility.Our research framework significantly enhances the interpretability and transferability of machine learning in electrocatalysis,offering vital insights for further advancements.展开更多
Low-temperature hydrogenation of silicon tetrachloride(STC)is an essential step in polysilicon production.The addition of CuCl to silicon powder is currently a commonly used catalytic method and the silicon powder act...Low-temperature hydrogenation of silicon tetrachloride(STC)is an essential step in polysilicon production.The addition of CuCl to silicon powder is currently a commonly used catalytic method and the silicon powder acts as both a reactant and a catalyst.However,the reaction mechanism and the structure-activity relationship of this process have not been fully elucidated.In this work,a comprehensive study of the reaction mechanism in the presence of Si and Cu_(3)Si was carried out using density functional theory(DFT)combined with experiments,respectively.The results indicated that the ratedetermining step(RDS)in the presence of Si is the phase transition of Si atom,meanwhile,the RDS in the presence of Cu_(3)Si is the TCS-generation process.The activation barrier of the latter is smaller,highlighting that the interaction of Si with the bulk phase is the pivotal factor influencing the catalytic activity.The feasibility of transition metal doping to facilitate this step was further investigated.The Si disengage energy(E_(d))was used as a quantitative parameter to assess the catalytic activity of the catalysts,and the optimal descriptor was determined through interpretable machine learning.It was demonstrated that d-band center and electron transfer play a crucial role in regulating the level of Ed.This work reveals the mechanism and structure-activity relationship for the low-temperature hydrogenation reaction of STC,and provides a basis for the rational design of catalysts.展开更多
文摘Ceramic relief mural is a contemporary landscape art that is carefully designed based on human nature,culture,and architectural wall space,combined with social customs,visual sensibility,and art.It may also become the main axis of ceramic art in the future.Taiwan public ceramic relief murals(PCRM)are most distinctive with the PCRM pioneered by Pan-Hsiung Chu of Meinong Kiln in 1987.In addition to breaking through the limitations of traditional public ceramic murals,Chu leveraged local culture and sensibility.The theme of art gives PCRM its unique style and innovative value throughout the Taiwan region.This study mainly analyzes and understands the design image of public ceramic murals,taking Taiwan PCRM’s design and creation as the scope,and applies STEEP analysis,that is,the social,technological,economic,ecological,and political-legal environments are analyzed as core factors;eight main important factors in the artistic design image of ceramic murals are evaluated.Then,interpretive structural modeling(ISM)is used to establish five levels,analyze the four main problems in the main core factor area and the four main target results in the affected factor area;and analyze the problem points and target points as well as their causal relationships.It is expected to sort out the relationship between these factors,obtain the hierarchical relationship of each factor,and provide a reference basis and research methods.
基金Supported by the National Natural Science Foundation of China(61473026,61104131)the Fundamental Research Funds for the Central Universities(JD1413)
文摘Alarm flood is one of the main problems in the alarm systems of industrial process. Alarm root-cause analysis and alarm prioritization are good for alarm flood reduction. This paper proposes a systematic rationalization method for multivariate correlated alarms to realize the root cause analysis and alarm prioritization. An information fusion based interpretive structural model is constructed according to the data-driven partial correlation coefficient calculation and process knowledge modification. This hierarchical multi-layer model is helpful in abnormality propagation path identification and root-cause analysis. Revised Likert scale method is adopted to determine the alarm priority and reduce the blindness of alarm handling. As a case study, the Tennessee Eastman process is utilized to show the effectiveness and validity of proposed approach. Alarm system performance comparison shows that our rationalization methodology can reduce the alarm flood to some extent and improve the performance.
文摘Through the collection of related literature,we point out the six major factors influencing China's forestry enterprises' financing: insufficient national support; regulations and institutional environmental factors; narrow channels of financing; inappropriate existing mortgagebacked approach; forestry production characteristics; forestry enterprises' defects. Then,we use interpretive structural modeling( ISM) from System Engineering to analyze the structure of the six factors and set up ladder-type structure. We put three factors including forestry production characteristics,shortcomings of forestry enterprises and regulatory,institutional and environmental factors as basic factors and put other three factors as important factors. From the perspective of the government and enterprises,we put forward some personal advices and ideas based on the basic factors and important factors to ease the financing difficulties of forestry enterprises.
文摘The possible risk factors during SAP Business One implementation were studied with depth interview. The results are then adjusted by experts. 20 categories of risk factors that are totally 49 factors were found. Based on the risk factors during the SAP Business One implementation, questionnaire was used to study the key risk factors of SAP Business One implementation. Results illustrate ten key risk factors, these are risk of senior managers leadership, risk of project management, risk of process improvement, risk of implementation team organization, risk of process analysis, risk of based data, risk of personnel coordination, risk of change management, risk of secondary development, and risk of data import. Focus on the key risks of SAP Business One implementation, the interpretative structural modeling approach is used to study the relationship between these factors and establish a seven-level hierarchical structure. The study illustrates that the structure is olive-like, in which the risk of data import is on the top, and the risk of senior managers is on the bottom. They are the most important risk factors.
文摘The interpretive theory of translation(ITT) is a school of theory originated in the late 1960 s in France,focusing on the discussion of the theory and teaching of interpreting and non-literary translation. ITT believes that what the translator should convey is not the meaning of linguistic notation,but the non-verbal sense. In this paper,the author is going to briefly introduce ITT and analyze several examples to show different situations where ITT is either useful or unsuitable.
文摘Interpretive theory brings forward three phases of interpretation: understanding, deverberlization and re-expression. It needs linguistic knowledge and non-linguistic knowledge. This essay discusses application of interpretive theory to business interpretation from the perspective of theory and practice.
文摘This paper aims to explore teaching of interpreting nowadays by starting from the interpretive theory and its characteristics. The author believes that the theory is mainly based on the study of interpretation practice, whose core content, namely,"deverbalization"has made great strides and breakthroughs in the theory of translation; when we examine translation, or rather interpretation once again from the bi-perspective of language and culture, we will have come across new thoughts in terms of translation as well as teaching of interpreting.
文摘This paper outlines a diagnostic approach to quantify the maintainability of a Commercial off-the-Shelf (COTS)-based system by analyzing the complexity of the deployment of the system components. Interpretive Structural Modeling (ISM) is used to demonstrate how ISM supports in identifying and understanding interdependencies among COTS components and how they affect the complexity of the maintenance of the COTS Based System (CBS). Through ISM analysis we have determined which components in the CBS contribute most significantly to the complexity of the system. With the ISM, architects, system integrators, and system maintainers can isolate the COTS products that cause the most complexity, and therefore cause the most effort to maintain, and take precautions to only change those products when necessary or during major maintenance efforts. The analysis also clearly shows the components that can be easily replaced or upgraded with very little impact on the rest of the system.
文摘Interpretive structural modeling(ISM)is an interactive process in which a malformed(bad structured)problem is structured into a comprehensive systematic model.Yet,despite many advantages that ISM provides,this method has some shortcomings,the most important one of which is its reliance on participants’intuition and judgment.This problem undermines the validity of ISM.To solve this problem and further enhance the ISM method,the present study proposes a method called equation structural modeling(ESM),which draws on the capacities of structural equation modeling(SEM).As such,ESM provides a statistically verifiable framework and provides a graphical,hierarchical and intuitive model.
基金supported by the National Natural Science Foundation of China(No.51605054).
文摘Environmentalmonitoring systems based on remote sensing technology have a wider monitoringrange and longer timeliness, which makes them widely used in the detection andmanagement of pollution sources. However, haze weather conditions degrade image qualityand reduce the precision of environmental monitoring systems. To address this problem,this research proposes a remote sensing image dehazingmethod based on the atmosphericscattering model and a dark channel prior constrained network. The method consists ofa dehazing network, a dark channel information injection network (DCIIN), and a transmissionmap network. Within the dehazing network, the branch fusion module optimizesfeature weights to enhance the dehazing effect. By leveraging dark channel information,the DCIIN enables high-quality estimation of the atmospheric veil. To ensure the outputof the deep learning model aligns with physical laws, we reconstruct the haze image usingthe prediction results from the three networks. Subsequently, we apply the traditionalloss function and dark channel loss function between the reconstructed haze image and theoriginal haze image. This approach enhances interpretability and reliabilitywhile maintainingadherence to physical principles. Furthermore, the network is trained on a synthesizednon-homogeneous haze remote sensing dataset using dark channel information from cloudmaps. The experimental results show that the proposed network can achieve better imagedehazing on both synthetic and real remote sensing images with non-homogeneous hazedistribution. This research provides a new idea for solving the problem of decreased accuracyof environmental monitoring systems under haze weather conditions and has strongpracticability.
基金Supported by National Key Research and Development Program,No.2022YFC2407304Major Research Project for Middle-Aged and Young Scientists of Fujian Provincial Health Commission,No.2021ZQNZD013+2 种基金The National Natural Science Foundation of China,No.62275050Fujian Province Science and Technology Innovation Joint Fund Project,No.2019Y9108Major Science and Technology Projects of Fujian Province,No.2021YZ036017.
文摘BACKGROUND To investigate the preoperative factors influencing textbook outcomes(TO)in Intrahepatic cholangiocarcinoma(ICC)patients and evaluate the feasibility of an interpretable machine learning model for preoperative prediction of TO,we developed a machine learning model for preoperative prediction of TO and used the SHapley Additive exPlanations(SHAP)technique to illustrate the prediction process.AIM To analyze the factors influencing textbook outcomes before surgery and to establish interpretable machine learning models for preoperative prediction.METHODS A total of 376 patients diagnosed with ICC were retrospectively collected from four major medical institutions in China,covering the period from 2011 to 2017.Logistic regression analysis was conducted to identify preoperative variables associated with achieving TO.Based on these variables,an EXtreme Gradient Boosting(XGBoost)machine learning prediction model was constructed using the XGBoost package.The SHAP(package:Shapviz)algorithm was employed to visualize each variable's contribution to the model's predictions.Kaplan-Meier survival analysis was performed to compare the prognostic differences between the TO-achieving and non-TO-achieving groups.RESULTS Among 376 patients,287 were included in the training group and 89 in the validation group.Logistic regression identified the following preoperative variables influencing TO:Child-Pugh classification,Eastern Cooperative Oncology Group(ECOG)score,hepatitis B,and tumor size.The XGBoost prediction model demonstrated high accuracy in internal validation(AUC=0.8825)and external validation(AUC=0.8346).Survival analysis revealed that the disease-free survival rates for patients achieving TO at 1,2,and 3 years were 64.2%,56.8%,and 43.4%,respectively.CONCLUSION Child-Pugh classification,ECOG score,hepatitis B,and tumor size are preoperative predictors of TO.In both the training group and the validation group,the machine learning model had certain effectiveness in predicting TO before surgery.The SHAP algorithm provided intuitive visualization of the machine learning prediction process,enhancing its interpretability.
基金funded by the National Natural Science Foundation of China(No.52204407)the Natural Science Foundation of Jiangsu Province(No.BK20220595)+1 种基金the China Postdoctoral Science Foundation(No.2022M723689)the Industrial Collaborative Innovation Project of Shanghai(No.XTCX-KJ-2022-2-11)。
文摘The application of machine learning in alloy design is increasingly widespread,yet traditional models still face challenges when dealing with limited datasets and complex nonlinear relationships.This work proposes an interpretable machine learning method based on data augmentation and reconstruction,excavating high-performance low-alloyed magnesium(Mg)alloys.The data augmentation technique expands the original dataset through Gaussian noise.The data reconstruction method reorganizes and transforms the original data to extract more representative features,significantly improving the model's generalization ability and prediction accuracy,with a coefficient of determination(R^(2))of 95.9%for the ultimate tensile strength(UTS)model and a R^(2)of 95.3%for the elongation-to-failure(EL)model.The correlation coefficient assisted screening(CCAS)method is proposed to filter low-alloyed target alloys.A new Mg-2.2Mn-0.4Zn-0.2Al-0.2Ca(MZAX2000,wt%)alloy is designed and extruded into bar at given processing parameters,achieving room-temperature strength-ductility synergy showing an excellent UTS of 395 MPa and a high EL of 17.9%.This is closely related to its hetero-structured characteristic in the as-extruded MZAX2000 alloy consisting of coarse grains(16%),fine grains(75%),and fiber regions(9%).Therefore,this work offers new insights into optimizing alloy compositions and processing parameters for attaining new high strong and ductile low-alloyed Mg alloys.
基金supported by the National Natural Science Foundation of China(22379021 and 22479021)。
文摘As batteries become increasingly essential for energy storage technologies,battery prognosis,and diagnosis remain central to ensure reliable operation and effective management,as well as to aid the in-depth investigation of degradation mechanisms.However,dynamic operating conditions,cell-to-cell inconsistencies,and limited availability of labeled data have posed significant challenges to accurate and robust prognosis and diagnosis.Herein,we introduce a time-series-decomposition-based ensembled lightweight learning model(TELL-Me),which employs a synergistic dual-module framework to facilitate accurate and reliable forecasting.The feature module formulates features with physical implications and sheds light on battery aging mechanisms,while the gradient module monitors capacity degradation rates and captures aging trend.TELL-Me achieves high accuracy in end-of-life prediction using minimal historical data from a single battery without requiring offline training dataset,and demonstrates impressive generality and robustness across various operating conditions and battery types.Additionally,by correlating feature contributions with degradation mechanisms across different datasets,TELL-Me is endowed with the diagnostic ability that not only enhances prediction reliability but also provides critical insights into the design and optimization of next-generation batteries.
基金Deep-time Digital Earth(DDE)Big Science Program(No.GJ-C03-SGF-2025-004)National Natural Science Foundation of China(No.42394063)Sichuan Science and Technology Program(No.2025ZNSFSC0325).
文摘Topographic maps,as essential tools and sources of information for geographic research,contain precise spatial locations and rich map features,and they illustrate spatio-temporal information on the distribution and differences of various surface features.Currently,topographic maps are mainly stored in raster and vector formats.Extraction of the spatio-temporal knowledge in the maps—such as spatial distribution patterns,feature relationships,and dynamic evolution—still primarily relies on manual interpretation.However,manual interpretation is time-consuming and laborious,especially for large-scale,long-term map knowledge extraction and application.With the development of artificial intelligence technology,it is possible to improve the automation level of map knowledge interpretation.Therefore,the present study proposes an automatic interpretation method for raster topographic map knowledge based on deep learning.To address the limitations of current data-driven intelligent technology in learning map spatial relations and cognitive logic,we establish a formal description of map knowledge by mapping the relationship between map knowledge and features,thereby ensuring interpretation accuracy.Subsequently,deep learning techniques are employed to extract map features automatically,and the spatio-temporal knowledge is constructed by combining formal descriptions of geographic feature knowledge.Validation experiments demonstrate that the proposed method effectively achieves automatic interpretation of spatio-temporal knowledge of geographic features in maps,with an accuracy exceeding 80%.The findings of the present study contribute to machine understanding of spatio-temporal differences in map knowledge and advances the intelligent interpretation and utilization of cartographic information.
基金co-supported by the National Natural Science Foundation of China(No.62001507)the Youth Talent Lifting Project of the China Association for Science and Technology(No.2021-JCJQ-QT-018)+1 种基金the Program of the Youth Innovation Team of Shaanxi Universitiesthe Natural Science Basic Research Plan in Shaanxi Province of China(No.2023-JC-YB-491)。
文摘Deep Learning(DL)model has been widely used in the field of Synthetic Aperture Radar Automatic Target Recognition(SAR-ATR)and has achieved excellent performance.However,the black-box nature of DL models has been the focus of criticism,especially in the application of SARATR,which is closely associated with the national defense and security domain.To address these issues,a new interpretable recognition model Physics-Guided BagNet(PGBN)is proposed in this article.The model adopts an interpretable convolutional neural network framework and uses time–frequency analysis to extract physical scattering features in SAR images.Based on the physical scattering features,an unsupervised segmentation method is proposed to distinguish targets from the background in SAR images.On the basis of the segmentation result,a structure is designed,which constrains the model's spatial attention to focus more on the targets themselves rather than the background,thereby making the model's decision-making more in line with physical principles.In contrast to previous interpretable research methods,this model combines interpretable structure with physical interpretability,further reducing the model's risk of error recognition.Experiments on the MSTAR dataset verify that the PGBN model exhibits excellent interpretability and recognition performance,and comparative experiments with heatmaps indicate that the physical feature guidance module presented in this article can constrain the model to focus more on the target itself rather than the background.
基金USST Construction Project of English-taught Courses for International Students in 2024Key Course Construction Project in Universities of Shanghai in 2024USST Teaching Achievement Award(postgraduate)Cultivation Project in 2024。
文摘Based on 1,003 articles about empirical research on interpreting teaching from 2002 to 2022 retrieved from China National Knowledge Internet,this paper extracts three main research methods,uncovering common problems in interpreting education and practical teaching suggestions:(1)Corpus-based researches collect numerous audios to study typical mistakes made by interpreting learners,particularly pause and self-repair,and suggest interpreting teaching improve learners’ability to use language chunks and encourage students to interpret smoothly;(2)Questionnaire surveys help understand requirements for professional interpreters and how interpreting teaching meets market demands;(3)Teaching experiments last for one to two semesters,addressing issues like outdated teaching materials and modes,and show how teaching materials and modes integrate modern technology.But empirical researches need to build new corpora,professional interpreters’corpora and address problems that haven’t been adequately discussed.This paper is helpful for improving interpreting education in China and other countries and for making clear tasks to be fulfilled in empirical research on interpreting education.
基金funded by Research Platforms and Projects for Higher Education Institutions of Department of Education of Guangdong Province in 2024(2024KTSCX256)2023 Guangdong Province Higher Vocational Education Teaching Quality and Teaching Reform Project(2023JG080).
文摘The potential toxicity of ionic liquids(ILs)affects their applications;how to control the toxicity is one of the key issues in their applications.To understand its toxicity structure relationship and promote its greener application,six different machine learning algorithms,including Bagging,Adaptive Boosting(AdaBoost),Gradient Boosting(GBoost),Stacking,Voting and Categorical Boosting(CatBoost),are established to model the toxicity of ILs on four distinct datasets including Leukemia rat cell line IPC-81(IPC-81),Acetylcholinesterase(AChE),Escherichia coli(E.coli)and Vibrio fischeri.Molecular descriptors obtained from the simplified molecular input line entry system(SMILES)are used to characterize ILs.All models are assessed by the mean square error(MSE),root mean square error(RMSE),mean absolute error(MAE)and correlation coefficient(R^(2)).Additionally,an interpretation model based on SHapley Additive exPlanations(SHAP)is built to determine the positive and negative effects of each molecular feature on toxicity.With additional parameters and complexity,the Catboost model outperforms the other models,making it a more reliable model for ILs'toxicity prediction.The results of the model's interpretation indicate that the most significant positive features,SMR_VSA5,PEOE_VSA8,Kappa2,PEOE_VSA6,SMR_VSA5,PEOE_VSA6 and EState_VSA1,can increase the toxicity of ILs as their levels rise,while the most significant negative features,VSA_EState7,EState_VSA8,PEOE_VSA9 and FpDensityMorgan1,can decrease the toxicity as their levels rise.Also,an IL's toxicity will grow as its average molecular weight and number of pyridine rings increase,whereas its toxicity will decrease as its hydrogen bond acceptors increase.This finding offers a theoretical foundation for rapid screening and synthesis of environmentally-benign ILs.
基金supported by the Research Grants Council of Hong Kong(CityU 11305919 and 11308620)and NSFC/RGC Joint Research Scheme N_CityU104/19Hong Kong Research Grant Council Collaborative Research Fund:C1002-21G and C1017-22Gsupported by the Hong Kong Research Grant Council Collaborative Research Fund:C6021-19E.
文摘Developing machine learning frameworks with predictive power,interpretability,and transferability is crucial,yet it faces challenges in the field of electrocatalysis.To achieve this,we employed rigorous feature engineering to establish a finely tuned gradient boosting regressor(GBR)model,which adeptly captures the physical complexity from feature space to target variables.We demonstrated that environmental electron effects and atomic number significantly govern the success of the mapping process via global and local explanations.The finely tuned GBR model exhibits exceptional robustness in predicting CO adsorption energies(R_(ave)^(2)=0.937,RMSE=0.153 eV).Moreover,the model demonstrated remarkable transfer learning ability,showing excellent predictive power for OH,NO,and N_(2) adsorption.Importantly,the GBR model exhibits exceptional predictive capability across an extensive search space,thereby demonstrating profound adaptability and versatility.Our research framework significantly enhances the interpretability and transferability of machine learning in electrocatalysis,offering vital insights for further advancements.
基金supported by Hubei Three Gorges Laboratory Open Innovation Fund Project(SC231002)CFD Simulation to Explore the Mass and Heat Transfer Laws of Thermal Decomposition of Mixed Salt Organic Compounds Project(2021YFC 3201404).
文摘Low-temperature hydrogenation of silicon tetrachloride(STC)is an essential step in polysilicon production.The addition of CuCl to silicon powder is currently a commonly used catalytic method and the silicon powder acts as both a reactant and a catalyst.However,the reaction mechanism and the structure-activity relationship of this process have not been fully elucidated.In this work,a comprehensive study of the reaction mechanism in the presence of Si and Cu_(3)Si was carried out using density functional theory(DFT)combined with experiments,respectively.The results indicated that the ratedetermining step(RDS)in the presence of Si is the phase transition of Si atom,meanwhile,the RDS in the presence of Cu_(3)Si is the TCS-generation process.The activation barrier of the latter is smaller,highlighting that the interaction of Si with the bulk phase is the pivotal factor influencing the catalytic activity.The feasibility of transition metal doping to facilitate this step was further investigated.The Si disengage energy(E_(d))was used as a quantitative parameter to assess the catalytic activity of the catalysts,and the optimal descriptor was determined through interpretable machine learning.It was demonstrated that d-band center and electron transfer play a crucial role in regulating the level of Ed.This work reveals the mechanism and structure-activity relationship for the low-temperature hydrogenation reaction of STC,and provides a basis for the rational design of catalysts.