期刊文献+
共找到74篇文章
< 1 2 4 >
每页显示 20 50 100
Artificial intelligence in natural products research 被引量:1
1
作者 Xiao Yuan Xiaobo Yang +3 位作者 Qiyuan Pan Cheng Luo Xin Luan Hao Zhang 《Chinese Journal of Natural Medicines》 2025年第11期1342-1357,共16页
Artificial intelligence(AI)has emerged as a transformative technology in accelerating drug discovery and development within natural medicines research.Natural medicines,characterized by their complex chemical composit... Artificial intelligence(AI)has emerged as a transformative technology in accelerating drug discovery and development within natural medicines research.Natural medicines,characterized by their complex chemical compositions and multifaceted pharmacological mechanisms,demonstrate widespread application in treating diverse diseases.However,research and development face significant challenges,including component complexity,extraction difficulties,and efficacy validation.AI technology,particularly through deep learning(DL)and machine learning(ML)approaches,enables efficient analysis of extensive datasets,facilitating drug screening,component analysis,and pharmacological mechanism elucidation.The implementation of AI technology demonstrates considerable potential in virtual screening,compound optimization,and synthetic pathway design,thereby enhancing natural medicines’bioavailability and safety profiles.Nevertheless,current applications encounter limitations regarding data quality,model interpretability,and ethical considerations.As AI technologies continue to evolve,natural medicines research and development will achieve greater efficiency and precision,advancing both personalized medicine and contemporary drug development approaches. 展开更多
关键词 Natural products Artificial intelligence Deep learning Drug discovery Model interpretability
原文传递
Artificial intelligence high-throughput prediction building dataset to enhance the interpretability of hybrid halide perovskite bandgap
2
作者 Wenning Chen Jungchul Yun +6 位作者 Doyun Im Sijia Li Kelvian T.Mularso Jihun Nam Bonghyun Jo Sangwook Lee Hyun Suk Jung 《Journal of Energy Chemistry》 2025年第10期649-661,共13页
The bandgap is a key parameter for understanding and designing hybrid perovskite material properties,as well as developing photovoltaic devices.Traditional bandgap calculation methods like ultravioletvisible spectrosc... The bandgap is a key parameter for understanding and designing hybrid perovskite material properties,as well as developing photovoltaic devices.Traditional bandgap calculation methods like ultravioletvisible spectroscopy and first-principles calculations are time-and power-consuming,not to mention capturing bandgap change mechanisms for hybrid perovskite materials across a wide range of unknown space.In the present work,an artificial intelligence ensemble comprising two classifiers(with F1 scores of 0.9125 and 0.925)and a regressor(with mean squared error of 0.0014 eV)is constructed to achieve high-precision prediction of the bandgap.The bandgap perovskite dataset is established through highthroughput prediction of bandgaps by the ensemble.Based on the self-built dataset,partial dependence analysis(PDA)is developed to interpret the bandgap influential mechanism.Meanwhile,an interpretable mathematical model with an R^(2)of 0.8417 is generated using the genetic programming symbolic regression(GPSR)technique.The constructed PDA maps agree well with the Shapley Additive exPlanations,the GPSR model,and experiment verification.Through PDA,we reveal the boundary effect,the bowing effect,and their evolution trends with key descriptors. 展开更多
关键词 Artificial intelligence HIGH-THROUGHPUT Perovskite bandgap Partial dependence analysis Model interpretability
在线阅读 下载PDF
Integrated AutoML-based framework for optimizing shale gas production: A case study of the Fuling shale gas field
3
作者 Tianrui Ye Jin Meng +3 位作者 Yitian Xiao Yaqiu Lu Aiwei Zheng Bang Liang 《Energy Geoscience》 2025年第1期209-221,共13页
This study introduces a comprehensive and automated framework that leverages data-driven method-ologies to address various challenges in shale gas development and production.Specifically,it harnesses the power of Auto... This study introduces a comprehensive and automated framework that leverages data-driven method-ologies to address various challenges in shale gas development and production.Specifically,it harnesses the power of Automated Machine Learning(AutoML)to construct an ensemble model to predict the estimated ultimate recovery(EUR)of shale gas wells.To demystify the“black-box”nature of the ensemble model,KernelSHAP,a kernel-based approach to compute Shapley values,is utilized for elucidating the influential factors that affect shale gas production at both global and local scales.Furthermore,a bi-objective optimization algorithm named NSGA-Ⅱ is seamlessly incorporated to opti-mize hydraulic fracturing designs for production boost and cost control.This innovative framework addresses critical limitations often encountered in applying machine learning(ML)to shale gas pro-duction:the challenge of achieving sufficient model accuracy with limited samples,the multidisciplinary expertise required for developing robust ML models,and the need for interpretability in“black-box”models.Validation with field data from the Fuling shale gas field in the Sichuan Basin substantiates the framework's efficacy in enhancing the precision and applicability of data-driven techniques.The test accuracy of the ensemble ML model reached 83%compared to a maximum of 72%of single ML models.The contribution of each geological and engineering factor to the overall production was quantitatively evaluated.Fracturing design optimization raised EUR by 7%-34%under different production and cost tradeoff scenarios.The results empower domain experts to conduct more precise and objective data-driven analyses and optimizations for shale gas production with minimal expertise in data science. 展开更多
关键词 Machine learning Model interpretation Bi-objective optimization Shale gas Key factor analysis Fracturing optimization
在线阅读 下载PDF
AutoML for calorific value prediction using a large database from the coal gasification practices in China
4
作者 Yuchao Guo Xia Liu +9 位作者 Yunfei Gao Xiaoyu Wang Lu Ding Weitong Pan Cheng Hua Yulian He Xueli Chen Zhenghua Dai Guangsuo Yu Fuchen Wang 《International Journal of Coal Science & Technology》 2025年第4期230-246,共17页
Calorific value is one of the most important properties of coal.Machine learning(ML)can be used in the prediction of calorific value to reduce experimental costs.China is one of the world’s largest coal production co... Calorific value is one of the most important properties of coal.Machine learning(ML)can be used in the prediction of calorific value to reduce experimental costs.China is one of the world’s largest coal production countries and coal occupies an important position in its national energy structure.However,ML models with a large database for the overall regions of China are still missing.Based on the extensive coal gasification practices in East China University of Science and Technology,we have built ML models with a large database for overall regions of China.An AutoML model was proposed and achieved a minimum MSE of 1.021.SHAP method was used to increase the model interpretability,and model validity was proved with literature data and additional in-house experiments.The model adaptability was discussed based on the databases of China and USA,showing that geography-specific ML models are essential.This study integrated a large coal database and AutoML method for accurate calorific value prediction and could offer key tools for Chinese coal industry. 展开更多
关键词 Coal calorific value Big data Automated machine learning Model interpretability Model adaptability
在线阅读 下载PDF
Investigations on Multiclass Classification Model-Based Optimized Weights Spectrum for Rotating Machinery Condition Monitoring
5
作者 Bingchang Hou Yu Wang Dong Wang 《Journal of Dynamics, Monitoring and Diagnostics》 2025年第3期194-202,共9页
Machinery condition monitoring is beneficial to equipment maintenance and has been receiving much attention from academia and industry.Machine learning,especially deep learning,has become popular for machinery conditi... Machinery condition monitoring is beneficial to equipment maintenance and has been receiving much attention from academia and industry.Machine learning,especially deep learning,has become popular for machinery condition monitoring because that can fully use available data and computational power.Since significant accidents might be caused if wrong fault alarms are given for machine condition monitoring,interpretable machine learning models,integrate signal processing knowledge to enhance trustworthiness of models,are gradually becoming a research hotspot.A previous spectrum-based and interpretable optimized weights method has been proposed to indicate faulty and fundamental frequencies when the analyzed data only contains a healthy type and a fault type.Considering that multiclass fault types are naturally met in practice,this work aims to explore the interpretable optimized weights method for multiclass fault type scenarios.Therefore,a new multiclass optimized weights spectrum(OWS)is proposed and further studied theoretically and numerically.It is found that the multiclass OWS is capable of capturing the characteristic components associated with different conditions and clearly indicating specific fault characteristic frequencies(FCFs)corresponding to each fault condition.This work can provide new insights into spectrum-based fault classification models,and the new multiclass OWS also shows great potential for practical applications. 展开更多
关键词 machinery condition monitoring optimized weights spectrum spectrum analysis softmax classifier interpretable machine learning model
在线阅读 下载PDF
Advanced Machine Learning and Gene Expression Programming Techniques for Predicting CO_(2)-Induced Alterations in Coal Strength
6
作者 Zijian Liu Yong Shi +3 位作者 ChuanqiLi Xiliang Zhang Jian Zhou Manoj Khandelwal 《Computer Modeling in Engineering & Sciences》 2025年第4期153-183,共31页
Given the growing concern over global warming and the critical role of carbon dioxide(CO_(2))in this phenomenon,the study of CO_(2)-induced alterations in coal strength has garnered significant attention due to its im... Given the growing concern over global warming and the critical role of carbon dioxide(CO_(2))in this phenomenon,the study of CO_(2)-induced alterations in coal strength has garnered significant attention due to its implications for carbon sequestration.A large number of experiments have proved that CO_(2) interaction time(T),saturation pressure(P)and other parameters have significant effects on coal strength.However,accurate evaluation of CO_(2)-induced alterations in coal strength is still a difficult problem,so it is particularly important to establish accurate and efficient prediction models.This study explored the application of advancedmachine learning(ML)algorithms and Gene Expression Programming(GEP)techniques to predict CO_(2)-induced alterations in coal strength.Sixmodels were developed,including three metaheuristic-optimized XGBoost models(GWO-XGBoost,SSA-XGBoost,PO-XGBoost)and three GEP models(GEP-1,GEP-2,GEP-3).Comprehensive evaluations using multiple metrics revealed that all models demonstrated high predictive accuracy,with the SSA-XGBoost model achieving the best performance(R2—Coefficient of determination=0.99396,RMSE—Root Mean Square Error=0.62102,MAE—Mean Absolute Error=0.36164,MAPE—Mean Absolute Percentage Error=4.8101%,RPD—Residual Predictive Deviation=13.4741).Model interpretability analyses using SHAP(Shapley Additive exPlanations),ICE(Individual Conditional Expectation),and PDP(Partial Dependence Plot)techniques highlighted the dominant role of fixed carbon content(FC)and significant interactions between FC and CO_(2) saturation pressure(P).Theresults demonstrated that the proposedmodels effectively address the challenges of CO_(2)-induced strength prediction,providing valuable insights for geological storage safety and environmental applications. 展开更多
关键词 CO_(2)-induced coal strength meta-heuristic optimization algorithms XGBoost gene expression programming model interpretability
在线阅读 下载PDF
A novel method for predicting formation pore pressure ahead of the drill bit by embedding petrophysical theory into machine learning based on seismic and logging-while-drilling data
7
作者 Xu-Yue Chen Cheng-Kai Weng +3 位作者 Lin Tao Jin Yang De-Li Gao Jun Li 《Petroleum Science》 2025年第7期2868-2883,共16页
Formation pore pressure is the foundation of well plan,and it is related to the safety and efficiency of drilling operations in oil and gas development.However,the traditional method for predicting formation pore pres... Formation pore pressure is the foundation of well plan,and it is related to the safety and efficiency of drilling operations in oil and gas development.However,the traditional method for predicting formation pore pressure involves applying post-drilling measurement data from nearby wells to the target well,which may not accurately reflect the formation pore pressure of the target well.In this paper,a novel method for predicting formation pore pressure ahead of the drill bit by embedding petrophysical theory into machine learning based on seismic and logging-while-drilling(LWD)data was proposed.Gated recurrent unit(GRU)and long short-term memory(LSTM)models were developed and validated using data from three wells in the Bohai Oilfield,and the Shapley additive explanations(SHAP)were utilized to visualize and interpret the models proposed in this study,thereby providing valuable insights into the relative importance and impact of input features.The results show that among the eight models trained in this study,almost all model prediction errors converge to 0.05 g/cm^(3),with the largest root mean square error(RMSE)being 0.03072 and the smallest RMSE being 0.008964.Moreover,continuously updating the model with the increasing training data during drilling operations can further improve accuracy.Compared to other approaches,this study accurately and precisely depicts formation pore pressure,while SHAP analysis guides effective model refinement and feature engineering strategies.This work underscores the potential of integrating advanced machine learning techniques with domain-specific knowledge to enhance predictive accuracy for petroleum engineering applications. 展开更多
关键词 Formation pore pressure Prediction ahead of the drill bit Seismic and logging-while-drilling data Machine learning Model interpretation
原文传递
Exploring the Interpretability of Forecasting Models for Energy Balancing Market
8
作者 Oskar VÅLE Shiliang ZHANG +1 位作者 Sabita MAHARJAN Gro KlÆBOE 《Artificial Intelligence Science and Engineering》 2025年第4期295-306,共12页
The balancing market in the energy sector plays a critical role in physically and financially balancing the supply and demand.Modeling dynamics in the balancing market can provide valuable insights and prognosis for p... The balancing market in the energy sector plays a critical role in physically and financially balancing the supply and demand.Modeling dynamics in the balancing market can provide valuable insights and prognosis for power grid stability and secure energy supply.While complex machine learning models can achieve high accuracy,their“blackbox”nature severely limits the model interpretability.In this paper,we explore the trade-off between model accuracy and interpretability for the energy balancing market.Particularly,we take the example of forecasting manual frequency restoration reserve(mFRR)activation price in the balancing market using real market data from different energy price zones.We explore the interpretability of mFRR forecasting using two models:extreme gradient boosting(XGBoost)machine and explainable boosting machine(EBM).We also integrate the two models,and we benchmark all the models against a baseline naive model.Our results show that EBM provides forecasting accuracy comparable to XGBoost while yielding a considerable level of interpretability.Our analysis also underscores the challenge of accurately predicting the mFRR price for the instances when the activation price deviates significantly from the spot price.Importantly,EBM's interpretability features reveal insights into non-linear mFRR price drivers and regional market dynamics.Our study demonstrates that EBM is a viable and valuable interpretable alternative to complex black-box AI models in the forecast for the balancing market. 展开更多
关键词 explainable AI model interpretability energy balancing market mFRR activation price forecasting
在线阅读 下载PDF
A hybrid approach for evaluating CPT-based seismic soil liquefaction potential using Bayesian belief networks 被引量:6
9
作者 MAHMOOD Ahmad TANG Xiao-wei +2 位作者 QIU Jiang-nan GU Wen-jing FEEZAN Ahmad 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第2期500-516,共17页
Discernment of seismic soil liquefaction is a complex and non-linear procedure that is affected by diversified factors of uncertainties and complexity.The Bayesian belief network(BBN)is an effective tool to present a ... Discernment of seismic soil liquefaction is a complex and non-linear procedure that is affected by diversified factors of uncertainties and complexity.The Bayesian belief network(BBN)is an effective tool to present a suitable framework to handle insights into such uncertainties and cause–effect relationships.The intention of this study is to use a hybrid approach methodology for the development of BBN model based on cone penetration test(CPT)case history records to evaluate seismic soil liquefaction potential.In this hybrid approach,naive model is developed initially only by an interpretive structural modeling(ISM)technique using domain knowledge(DK).Subsequently,some useful information about the naive model are embedded as DK in the K2 algorithm to develop a BBN-K2 and DK model.The results of the BBN models are compared and validated with the available artificial neural network(ANN)and C4.5 decision tree(DT)models and found that the BBN model developed by hybrid approach showed compatible and promising results for liquefaction potential assessment.The BBN model developed by hybrid approach provides a viable tool for geotechnical engineers to assess sites conditions susceptible to seismic soil liquefaction.This study also presents sensitivity analysis of the BBN model based on hybrid approach and the most probable explanation of liquefied sites,owing to know the most likely scenario of the liquefaction phenomenon. 展开更多
关键词 Bayesian belief network cone penetration test seismic soil liquefaction interpretive structural modeling structural learning
在线阅读 下载PDF
Organic matter occurrence and pore-forming mechanisms in lacustrine shales in China 被引量:4
10
作者 Li-Chun Kuang Lian-Hua Hou +6 位作者 Song-Tao Wu Jing-Wei Cui Hua Tian Li-Jun Zhang Zhong-Ying Zhao Xia Luo Xiao-Hua Jiang 《Petroleum Science》 SCIE CAS CSCD 2022年第4期1460-1472,共13页
The evolution of pore structure in shales is affected by both the thermal evolution of organic matter(OM)and by inorganic diagenesis,resulting in a wide variety of pore structures.This paper examines the OM distributi... The evolution of pore structure in shales is affected by both the thermal evolution of organic matter(OM)and by inorganic diagenesis,resulting in a wide variety of pore structures.This paper examines the OM distribution in lacustrine shales and its influence on pore structure,and describes the process of porosity development.The principal findings are:(i)Three distribution patterns of OM in lacustrine shales are distinguished;laminated continuous distribution,clumped distribution,and stellate scattered distribution.The differences in total organic carbon(TOC)content,free hydrocarbon content(S_(1)),and OM porosity among these distribution patterns are discussed.(ii)Porosity is negatively correlated with TOC and plagioclase content and positively correlated with quartz,dolomite,and clay mineral content.(iii)Pore evolution in lacustrine shales is characterized by a sequence of decreasing-increasing-decreasing porosity,followed by continuously increasing porosity until a relatively stable condition is reached.(iv)A new model for evaluating porosity in lacustrine shales is proposed.Using this model,the organic and inorganic porosity of shales in the Permian Lucaogou Formation are calculated to be 2.5%-5%and 1%-6.3%,respectively,which correlate closely with measured data.These findings may provide a scientific basis and technical support for the sweet spotting in lacustrine shales in China. 展开更多
关键词 Shale oil Unconventional oil and gas Organic matter Pore evolution Log interpretation model
原文传递
Deep Learning-Driven Data Curation and Model Interpretation for Smart Manufacturing 被引量:7
11
作者 Jianjing Zhang Robert X.Gao 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2021年第3期52-72,共21页
Characterized by self-monitoring and agile adaptation to fast changing dynamics in complex production environments,smart manufacturing as envisioned under Industry 4.0 aims to improve the throughput and reliability of... Characterized by self-monitoring and agile adaptation to fast changing dynamics in complex production environments,smart manufacturing as envisioned under Industry 4.0 aims to improve the throughput and reliability of production beyond the state-of-the-art.While the widespread application of deep learning(DL)has opened up new opportunities to accomplish the goal,data quality and model interpretability have continued to present a roadblock for the widespread acceptance of DL for real-world applications.This has motivated research on two fronts:data curation,which aims to provide quality data as input for meaningful DL-based analysis,and model interpretation,which intends to reveal the physical reasoning underlying DL model outputs and promote trust from the users.This paper summarizes several key techniques in data curation where breakthroughs in data denoising,outlier detection,imputation,balancing,and semantic annotation have demonstrated the effectiveness in information extraction from noisy,incomplete,insufficient,and/or unannotated data.Also highlighted are model interpretation methods that address the“black-box”nature of DL towards model transparency. 展开更多
关键词 Deep learning Data curation Model interpretation
在线阅读 下载PDF
Data-driven glass-forming ability criterion for bulk amorphous metals with data augmentation 被引量:4
12
作者 Jie Xiong Tong-Yi Zhang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第26期99-104,共6页
A data augmentation technique is employed in the current work on a training dataset of 610 bulk metallic glasses(BMGs),which are randomly selected from 762 collected data.An ensemble machine learning(ML)model is devel... A data augmentation technique is employed in the current work on a training dataset of 610 bulk metallic glasses(BMGs),which are randomly selected from 762 collected data.An ensemble machine learning(ML)model is developed on augmented training dataset and tested by the rest 152 data.The result shows that ML model has the ability to predict the maximal diameter Dmaxof BMGs more accurate than all reported ML models.In addition,the novel ML model gives the glass forming ability(GFA)rules:average atomic radius ranging from 140 pm to 165 pm,the value of TT/(T-T)(T-T)being higher than 2.5,the entropy of mixing being higher than 10 J/K/mol,and the enthalpy of mixing ranging from-32 k J/mol to-26 k J/mol.ML model is interpretative,thereby deepening the understanding of GFA. 展开更多
关键词 Materials informatics Glass-forming ability Data augmentation Model interpretation Meta-ensemble model
原文传递
Analysis of Ecosystem Degradation Factors in Yuanmou Arid-Hot Valleys Based on Interpretative Structural Model 被引量:2
13
作者 ZHANG Bin LIU Gangcai +2 位作者 AI Nanshan SHI Kai SHU Chengqiang 《Wuhan University Journal of Natural Sciences》 CAS 2008年第3期279-284,共6页
For ecological restoration and reconstruction of the degraded area, it is an important premise to correctly understand the degradation factors of the ecosystem in the arid-hot valleys. The factors including vegetation... For ecological restoration and reconstruction of the degraded area, it is an important premise to correctly understand the degradation factors of the ecosystem in the arid-hot valleys. The factors including vegetation degradation, land degradation, arid climate, policy failure, forest fire, rapid population growth, excessive deforestation, overgrazing, steep slope reclamation, economic poverty, engineering construction, lithology, slope, low cultural level, geological hazards, biological disaster, soil properties etc, were selected to study the Yuanmou arid-hot valleys. Based on the interpretative structural model (ISM), it has found out that the degradation factors of the Yuanmou arid-hot valleys were not at the same level but in a multilevel hierarchical system with internal relations, which pointed out that the degradation mode of the arid-hot valleys was "straight (appearance)-penetrating-background". Such researches have important directive significance for the restoration and reconstruction of the arid-hot valleys ecosystem. 展开更多
关键词 interpretative structural model ECOSYSTEM degradation factors the arid-hot valleys
在线阅读 下载PDF
Analysis of Feature Importance and Interpretation for Malware Classification 被引量:2
14
作者 Dong-Wook Kim Gun-Yoon Shin Myung-Mook Han 《Computers, Materials & Continua》 SCIE EI 2020年第12期1891-1904,共14页
This study was conducted to enable prompt classification of malware,which was becoming increasingly sophisticated.To do this,we analyzed the important features of malware and the relative importance of selected featur... This study was conducted to enable prompt classification of malware,which was becoming increasingly sophisticated.To do this,we analyzed the important features of malware and the relative importance of selected features according to a learning model to assess how those important features were identified.Initially,the analysis features were extracted using Cuckoo Sandbox,an open-source malware analysis tool,then the features were divided into five categories using the extracted information.The 804 extracted features were reduced by 70%after selecting only the most suitable ones for malware classification using a learning model-based feature selection method called the recursive feature elimination.Next,these important features were analyzed.The level of contribution from each one was assessed by the Random Forest classifier method.The results showed that System call features were mostly allocated.At the end,it was possible to accurately identify the malware type using only 36 to 76 features for each of the four types of malware with the most analysis samples available.These were the Trojan,Adware,Downloader,and Backdoor malware. 展开更多
关键词 Recursive feature elimination model interpretability feature importance malware classification
在线阅读 下载PDF
Experimental study of gas-water elongated bubble flow during production logging 被引量:1
15
作者 Lu Jing Wu Xiling 《Petroleum Science》 SCIE CAS CSCD 2011年第2期157-162,共6页
In order to improve the interpretation of production log data on gas-water elongated bubble (EB) flow in horizontal wells, a multi-phase flow simulation device was set up to conduct a series of measurement experimen... In order to improve the interpretation of production log data on gas-water elongated bubble (EB) flow in horizontal wells, a multi-phase flow simulation device was set up to conduct a series of measurement experiments using air and tap water as test media, which were measured using a real production logging tool (PLT) string at different deviations and in different mixed flow states. By understanding the characteristics and mechanisms of gas-water EB flow in transparent experimental boreholes during production logging, combined with an analysis of the production log response characteristics and experimental production logging flow pattern maps, a method for flow pattern identification relying on log responses and a drift-flux model were proposed for gas-water EB flow. This model, built upon experimental data of EB flow, reveals physical mechanisms of gas-water EB flow during measurement processing. The coefficients it contains are the specific values under experimental conditions and with the PLT string used in our experiments. These coefficients also reveal the interference with original downhole flow patterns by the PLT string. Due to the representativeness that our simulated flow experiments and PLT string possess, the model coefficients can be applied as empirical values of logging interpretation model parameters directly to real production logging data interpretation, when the measurement circumstances and PLT strings are similar. 展开更多
关键词 Horizontal wells elongated bubble flow flow patterns identification drift-flux model logging interpretation model
原文传递
Simulation logging experiment and interpretation model of array production logging measurements in a horizontal well 被引量:1
16
作者 Song Hong-Wei Guo Hai-Min +1 位作者 Shi Xin-Lei Shi Hang-Yu 《Applied Geophysics》 SCIE CSCD 2021年第2期171-184,272,273,共16页
The distributions of local velocity and local phase holdup along the radial direction of pipes are complicated because of gravity differentiation,and the distribution of fluid velocity fi eld changes along the gravity... The distributions of local velocity and local phase holdup along the radial direction of pipes are complicated because of gravity differentiation,and the distribution of fluid velocity fi eld changes along the gravity direction in horizontal wells.Therefore,measuring the mixture flow and water holdup is difficult,resulting in poor interpretation accuracy of the production logging output profile.In this paper,oil–water two-phase flow dynamic simulation logging experiments in horizontal oil–water two-phase fl ow simulation wells were conducted using the Multiple Array Production Suite,which comprises a capacitance array tool(CAT)and a spinner array tool(SAT),and then the response characteristics of SAT and CAT in diff erent fl ow rates and water cut production conditions were studied.According to the response characteristics of CAT in diff erent water holdup ranges,interpolation imaging along the wellbore section determines the water holdup distribution,and then,the oil–water two-phase velocity fi eld in the fl ow section was reconstructed on the basis of the fl ow section water holdup distribution and the logging value of SAT and combined with the rheological equation of viscous fl uid,and the calculation method of the oil–water partial phase fl ow rate in the fl ow section was proposed.This new approach was applied in the experiment data calculations,and the results are basically consistent with the experimental data.The total fl ow rate and water holdup from the calculation are in agreement with the set values in the experiment,suggesting that the method has high accuracy. 展开更多
关键词 horizontal well oil–water two-phase array production logging tool interpretation model dynamic simulation logging experiment
在线阅读 下载PDF
Systematic rationalization approach for multivariate correlated alarms based on interpretive structural modeling and Likert scale 被引量:5
17
作者 高慧慧 徐圆 +2 位作者 顾祥柏 林晓勇 朱群雄 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2015年第12期1987-1996,共10页
Alarm flood is one of the main problems in the alarm systems of industrial process. Alarm root-cause analysis and alarm prioritization are good for alarm flood reduction. This paper proposes a systematic rationalizati... Alarm flood is one of the main problems in the alarm systems of industrial process. Alarm root-cause analysis and alarm prioritization are good for alarm flood reduction. This paper proposes a systematic rationalization method for multivariate correlated alarms to realize the root cause analysis and alarm prioritization. An information fusion based interpretive structural model is constructed according to the data-driven partial correlation coefficient calculation and process knowledge modification. This hierarchical multi-layer model is helpful in abnormality propagation path identification and root-cause analysis. Revised Likert scale method is adopted to determine the alarm priority and reduce the blindness of alarm handling. As a case study, the Tennessee Eastman process is utilized to show the effectiveness and validity of proposed approach. Alarm system performance comparison shows that our rationalization methodology can reduce the alarm flood to some extent and improve the performance. 展开更多
关键词 Alarm rationalization Root-cause analysis Alarm priority Interpretive structural modeling Likert scale Tennessee Eastman process
在线阅读 下载PDF
Fault detection of large-scale process control system with higher-order statistical and interpretative structural model 被引量:1
18
作者 耿志强 杨科 +1 位作者 韩永明 顾祥柏 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2015年第1期146-153,共8页
Nonlinear characteristic fault detection and diagnosis method based on higher-order statistical(HOS) is an effective data-driven method, but the calculation costs much for a large-scale process control system. An HOS-... Nonlinear characteristic fault detection and diagnosis method based on higher-order statistical(HOS) is an effective data-driven method, but the calculation costs much for a large-scale process control system. An HOS-ISM fault diagnosis framework combining interpretative structural model(ISM) and HOS is proposed:(1) the adjacency matrix is determined by partial correlation coefficient;(2) the modified adjacency matrix is defined by directed graph with prior knowledge of process piping and instrument diagram;(3) interpretative structural for large-scale process control system is built by this ISM method; and(4) non-Gaussianity index, nonlinearity index, and total nonlinearity index are calculated dynamically based on interpretative structural to effectively eliminate uncertainty of the nonlinear characteristic diagnostic method with reasonable sampling period and data window. The proposed HOS-ISM fault diagnosis framework is verified by the Tennessee Eastman process and presents improvement for highly non-linear characteristic for selected fault cases. 展开更多
关键词 High order statistics Nonlinear characteristics diagnosis Interpretative structural model TE process
在线阅读 下载PDF
Trusted Encrypted Traffic Intrusion Detection Method Based on Federated Learning and Autoencoder 被引量:1
19
作者 Wang Zixuan Miao Cheng +3 位作者 Xu Yuhua Li Zeyi Sun Zhixin Wang Pan 《China Communications》 SCIE CSCD 2024年第8期211-235,共25页
With the rapid development of the Internet,network security and data privacy are increasingly valued.Although classical Network Intrusion Detection System(NIDS)based on Deep Learning(DL)models can provide good detecti... With the rapid development of the Internet,network security and data privacy are increasingly valued.Although classical Network Intrusion Detection System(NIDS)based on Deep Learning(DL)models can provide good detection accuracy,but collecting samples for centralized training brings the huge risk of data privacy leakage.Furthermore,the training of supervised deep learning models requires a large number of labeled samples,which is usually cumbersome.The“black-box”problem also makes the DL models of NIDS untrustworthy.In this paper,we propose a trusted Federated Learning(FL)Traffic IDS method called FL-TIDS to address the above-mentioned problems.In FL-TIDS,we design an unsupervised intrusion detection model based on autoencoders that alleviates the reliance on marked samples.At the same time,we use FL for model training to protect data privacy.In addition,we design an improved SHAP interpretable method based on chi-square test to perform interpretable analysis of the trained model.We conducted several experiments to evaluate the proposed FL-TIDS.We first determine experimentally the structure and the number of neurons of the unsupervised AE model.Secondly,we evaluated the proposed method using the UNSW-NB15 and CICIDS2017 datasets.The exper-imental results show that the unsupervised AE model has better performance than the other 7 intrusion detection models in terms of precision,recall and f1-score.Then,federated learning is used to train the intrusion detection model.The experimental results indicate that the model is more accurate than the local learning model.Finally,we use an improved SHAP explainability method based on Chi-square test to analyze the explainability.The analysis results show that the identification characteristics of the model are consistent with the attack characteristics,and the model is reliable. 展开更多
关键词 autoencoder federated learning intrusion detection model interpretation unsupervised learning
在线阅读 下载PDF
Analysis on the Structure of Influencing Factors of Sustainable Supply Chain Implementation of Water Diversion Project 被引量:3
20
作者 Meng Liu Liwei Yang Tongsheng Liu 《Journal of Geoscience and Environment Protection》 2021年第8期140-150,共11页
The systematic analysis of the hierarchical relationship among the factors affecting the sustainable supply chain implementation of water diversion projects has theoretical value and practical significance for the sus... The systematic analysis of the hierarchical relationship among the factors affecting the sustainable supply chain implementation of water diversion projects has theoretical value and practical significance for the sustainable development of large-scale water diversion projects. Through the investigation of relevant literature, books, web pages, materials, and discussions with relevant experts and scholars, a total of 23 factors influencing the sustainable supply chain implementation of water diversion projects were identified. Then using ISM (Interpretative Structural Modeling Method) to analyze the causality of each factor, a multi-level hierarchical structure model was obtained. The results showed that: 1) The surface-level influencing factors of the sustaina<span>ble supply chain implementation of the water diversion project mainly i</span>ncluded 8 factors such as water-saving awareness and water-saving intensity in the diversion area, water quality, water pollution and other disasters, effective incentive mechanisms, etc., and surface-level influencing factors were directly related to the sustainable supply chain implementation of water diversio<span>n projects. 2) The indirect influencing factors of the sustainable supply chai</span>n of water diversion projects included 12 factors such as the water quality and quantity guarantee rate of the supply chain, the government’s enforcement of laws and regulations, water distribution, ecological compensation, and compensatio<span>n mechanisms for residents in the water source area. Indirect influencing</span> factor scan acts directly on the direct influencing factors, and int<span>ervening in the factors that can be controlled by humans is one of the important ways to improve the sustainable operation of water diversion proj</span><span>e</span><span>cts. 3) T</span><span>he fundamental influencing factors for the sustainable supply chain implementation of water diversion projects included three f</span>actors: Resettlement policy, government financial support, and sound laws and regulations. Deep influencing factors had multi-channel influence and controllability, and intervening in them was the main means to improve the sustainable operation of water diversion projects. 展开更多
关键词 Water Diversion Project Sustainable Supply Chain Interpretative Structural Modelling Method Hierarchical Structure Model
在线阅读 下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部