Located at the northwest continental slope of the South China Sea, the Qiongdongnan Basin bears valley-shaped bathymetry deepening toward east. It is separated from the Yinggehai Basin through NW-trending Indo-China-R...Located at the northwest continental slope of the South China Sea, the Qiongdongnan Basin bears valley-shaped bathymetry deepening toward east. It is separated from the Yinggehai Basin through NW-trending Indo-China-Red River shear zone, and connected with NW subsea basin through the Xisha Trough. Along with the rapid progress of the deepwater exploration, large amounts of high resolution geophysical and geological data were accumulated. Scientific researches about deepwater basins kept revealing brand new tectonic and sedimentary discoveries. In order to summarize the structural features and main controlling factors of the deepwater Qiongdongnan Basin, a series of researches on basin architecture, fault activities, tectonic deformation and evolution were carried out. In reference to analogue modeling experiments, a tectonic situation and a basin formation mechanism were discussed. The researches indicate that:the northern boundary of the Qiongdongnan Basin is strongly controlled by No. 2 fault. The overlapping control of two stress fields from the east and the west made the central depression zone extremely thinned. Combined with the changed stress field, the segmentation of a preexisting weakness zone made the sags in the east experiencing different rifting histories from the west ones. The NE-trending west segment of the Qiongdongnan Basin experienced strong rifting during Eocene, while the roughly EW-trending sags in the east segment show strong rifting during late Eocene and early Oligocene. Local structures such as NW-trending basal fault and inherited uplifts controlled the lateral segmentation. So first order factors such as regional stress field and preexisting weakness zone controlled the basin zonation, while the second order factors determined the segmentation from east to west.展开更多
For ecological restoration and reconstruction of the degraded area, it is an important premise to correctly understand the degradation factors of the ecosystem in the arid-hot valleys. The factors including vegetation...For ecological restoration and reconstruction of the degraded area, it is an important premise to correctly understand the degradation factors of the ecosystem in the arid-hot valleys. The factors including vegetation degradation, land degradation, arid climate, policy failure, forest fire, rapid population growth, excessive deforestation, overgrazing, steep slope reclamation, economic poverty, engineering construction, lithology, slope, low cultural level, geological hazards, biological disaster, soil properties etc, were selected to study the Yuanmou arid-hot valleys. Based on the interpretative structural model (ISM), it has found out that the degradation factors of the Yuanmou arid-hot valleys were not at the same level but in a multilevel hierarchical system with internal relations, which pointed out that the degradation mode of the arid-hot valleys was "straight (appearance)-penetrating-background". Such researches have important directive significance for the restoration and reconstruction of the arid-hot valleys ecosystem.展开更多
Nonlinear characteristic fault detection and diagnosis method based on higher-order statistical(HOS) is an effective data-driven method, but the calculation costs much for a large-scale process control system. An HOS-...Nonlinear characteristic fault detection and diagnosis method based on higher-order statistical(HOS) is an effective data-driven method, but the calculation costs much for a large-scale process control system. An HOS-ISM fault diagnosis framework combining interpretative structural model(ISM) and HOS is proposed:(1) the adjacency matrix is determined by partial correlation coefficient;(2) the modified adjacency matrix is defined by directed graph with prior knowledge of process piping and instrument diagram;(3) interpretative structural for large-scale process control system is built by this ISM method; and(4) non-Gaussianity index, nonlinearity index, and total nonlinearity index are calculated dynamically based on interpretative structural to effectively eliminate uncertainty of the nonlinear characteristic diagnostic method with reasonable sampling period and data window. The proposed HOS-ISM fault diagnosis framework is verified by the Tennessee Eastman process and presents improvement for highly non-linear characteristic for selected fault cases.展开更多
基金The Major National Science and Technology Programs of China under contract No.2011ZX05025-003-005the Joint Program of the National Science Foundation and Guangdong Province under contract No.U1301233
文摘Located at the northwest continental slope of the South China Sea, the Qiongdongnan Basin bears valley-shaped bathymetry deepening toward east. It is separated from the Yinggehai Basin through NW-trending Indo-China-Red River shear zone, and connected with NW subsea basin through the Xisha Trough. Along with the rapid progress of the deepwater exploration, large amounts of high resolution geophysical and geological data were accumulated. Scientific researches about deepwater basins kept revealing brand new tectonic and sedimentary discoveries. In order to summarize the structural features and main controlling factors of the deepwater Qiongdongnan Basin, a series of researches on basin architecture, fault activities, tectonic deformation and evolution were carried out. In reference to analogue modeling experiments, a tectonic situation and a basin formation mechanism were discussed. The researches indicate that:the northern boundary of the Qiongdongnan Basin is strongly controlled by No. 2 fault. The overlapping control of two stress fields from the east and the west made the central depression zone extremely thinned. Combined with the changed stress field, the segmentation of a preexisting weakness zone made the sags in the east experiencing different rifting histories from the west ones. The NE-trending west segment of the Qiongdongnan Basin experienced strong rifting during Eocene, while the roughly EW-trending sags in the east segment show strong rifting during late Eocene and early Oligocene. Local structures such as NW-trending basal fault and inherited uplifts controlled the lateral segmentation. So first order factors such as regional stress field and preexisting weakness zone controlled the basin zonation, while the second order factors determined the segmentation from east to west.
文摘目的洪水是影响尾矿库安全的重要因素,明晰洪水对尾矿库的风险传导路径有利于帮助识别关键风险因素,优化防控措施。方法结合文献计量法和专家决策筛选出尾矿库洪水风险的重要影响指标,利用解释结构模型(interpretative structural modeling,ISM)对指标层次进行划分,最后基于事故树分析(fault tree analysis,FTA)解析灾害的演化路径,并提出相应预防措施。结果结果表明:(1)基于文献计量法总共筛选出24个尾矿库洪水风险影响因素,结合平均权重值与专家经验确定10个相对重要的尾矿库洪水风险影响因素;(2)基于ISM计算得出10个影响因素和洪水风险间的相互影响关系,确定尾矿库洪水灾害的直接、间接和最根本影响因素;(3)结合ISM和事故案例,建立尾矿库洪水灾害事故树,通过布尔代数运算得出18种致灾路径和9种预防事故的路径;(4)分析事故树的结构重要度后发现对尾矿库洪水风险影响最大的事件是排洪能力不足、洪峰流量大和初始浸润线埋深浅。结论提出的文献计量法、ISM与FTA相结合的方法不仅实现了客观指标筛选与系统建模的融合,而且为尾矿库防洪实现从“被动应对”向“主动阻断”的转变提供了理论支撑。
基金the National Basic Research Program of China (973 Program) ( 2007CB407206)the National Key Technologies Research and Develop-ment Program in the Eleventh Five-Year Plan of China (2006BAC01A11)
文摘For ecological restoration and reconstruction of the degraded area, it is an important premise to correctly understand the degradation factors of the ecosystem in the arid-hot valleys. The factors including vegetation degradation, land degradation, arid climate, policy failure, forest fire, rapid population growth, excessive deforestation, overgrazing, steep slope reclamation, economic poverty, engineering construction, lithology, slope, low cultural level, geological hazards, biological disaster, soil properties etc, were selected to study the Yuanmou arid-hot valleys. Based on the interpretative structural model (ISM), it has found out that the degradation factors of the Yuanmou arid-hot valleys were not at the same level but in a multilevel hierarchical system with internal relations, which pointed out that the degradation mode of the arid-hot valleys was "straight (appearance)-penetrating-background". Such researches have important directive significance for the restoration and reconstruction of the arid-hot valleys ecosystem.
基金Supported by the National Natural Science Foundation of China(61374166)the Doctoral Fund of Ministry of Education of China(20120010110010)the Natural Science Fund of Ningbo(2012A610001)
文摘Nonlinear characteristic fault detection and diagnosis method based on higher-order statistical(HOS) is an effective data-driven method, but the calculation costs much for a large-scale process control system. An HOS-ISM fault diagnosis framework combining interpretative structural model(ISM) and HOS is proposed:(1) the adjacency matrix is determined by partial correlation coefficient;(2) the modified adjacency matrix is defined by directed graph with prior knowledge of process piping and instrument diagram;(3) interpretative structural for large-scale process control system is built by this ISM method; and(4) non-Gaussianity index, nonlinearity index, and total nonlinearity index are calculated dynamically based on interpretative structural to effectively eliminate uncertainty of the nonlinear characteristic diagnostic method with reasonable sampling period and data window. The proposed HOS-ISM fault diagnosis framework is verified by the Tennessee Eastman process and presents improvement for highly non-linear characteristic for selected fault cases.