期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Knowledge Graph Representation Reasoning for Recommendation System 被引量:3
1
作者 Tao Li Hao Li +4 位作者 Sheng Zhong Yan Kang Yachuan Zhang Rongjing Bu Yang Hu 《Journal of New Media》 2020年第1期21-30,共10页
In view of the low interpretability of existing collaborative filtering recommendation algorithms and the difficulty of extracting information from content-based recommendation algorithms,we propose an efficient KGRS ... In view of the low interpretability of existing collaborative filtering recommendation algorithms and the difficulty of extracting information from content-based recommendation algorithms,we propose an efficient KGRS model.KGRS first obtains reasoning paths of knowledge graph and embeds the entities of paths into vectors based on knowledge representation learning TransD algorithm,then uses LSTM and soft attention mechanism to capture the semantic of each path reasoning,then uses convolution operation and pooling operation to distinguish the importance of different paths reasoning.Finally,through the full connection layer and sigmoid function to get the prediction ratings,and the items are sorted according to the prediction ratings to get the user’s recommendation list.KGRS is tested on the movielens-100k dataset.Compared with the related representative algorithm,including the state-of-the-art interpretable recommendation models RKGE and RippleNet,the experimental results show that KGRS has good recommendation interpretation and higher recommendation accuracy. 展开更多
关键词 Knowledge graph collaborative filtering deep learning interpretable recommendation knowledge representation learning
在线阅读 下载PDF
Illuminating Recommendation by Understanding the Explicit Item Relations 被引量:4
2
作者 Qi Liu Hong-Ke Zhao +2 位作者 Le Wu Zhi Li En-Hong Chen 《Journal of Computer Science & Technology》 SCIE EI CSCD 2018年第4期739-755,共17页
Recent years have witnessed the prevalence of recommender systems in various fields, which provide a personalized recommendation list for each user based on various kinds of information. For quite a long time, most re... Recent years have witnessed the prevalence of recommender systems in various fields, which provide a personalized recommendation list for each user based on various kinds of information. For quite a long time, most researchers have been pursing recommendation performances with predefined metrics, e.g., accuracy. However, in real-world applications, users select items from a huge item list by considering their internal personalized demand and external constraints. Thus, we argue that explicitly modeling the complex relations among items under domain-specific applications is an indispensable part for enhancing the recommendations. Actually, in this area, researchers have done some work to understand the item relations gradually from "implicit" to "explicit" views when recommending. To this end, in this paper, we conduct a survey of these recent advances on recommender systems from the perspective of the explicit item relation understanding. We organize these relevant studies from three types of item relations, i.e., combination-effect relations, sequence-dependence relations, and external-constraint relations. Specifically, the combination-effect relation and the sequence-dependence relation based work models the intra-group intrinsic relations of items from the user demand perspective, and the external-constraint relation emphasizes the external requirements for items. After that, we also propose our opinions on the open issues along the line of understanding item relations and suggest some future research directions in recommendation area. 展开更多
关键词 recommender system item relation recommendation interpretability
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部