In view of the low interpretability of existing collaborative filtering recommendation algorithms and the difficulty of extracting information from content-based recommendation algorithms,we propose an efficient KGRS ...In view of the low interpretability of existing collaborative filtering recommendation algorithms and the difficulty of extracting information from content-based recommendation algorithms,we propose an efficient KGRS model.KGRS first obtains reasoning paths of knowledge graph and embeds the entities of paths into vectors based on knowledge representation learning TransD algorithm,then uses LSTM and soft attention mechanism to capture the semantic of each path reasoning,then uses convolution operation and pooling operation to distinguish the importance of different paths reasoning.Finally,through the full connection layer and sigmoid function to get the prediction ratings,and the items are sorted according to the prediction ratings to get the user’s recommendation list.KGRS is tested on the movielens-100k dataset.Compared with the related representative algorithm,including the state-of-the-art interpretable recommendation models RKGE and RippleNet,the experimental results show that KGRS has good recommendation interpretation and higher recommendation accuracy.展开更多
Recent years have witnessed the prevalence of recommender systems in various fields, which provide a personalized recommendation list for each user based on various kinds of information. For quite a long time, most re...Recent years have witnessed the prevalence of recommender systems in various fields, which provide a personalized recommendation list for each user based on various kinds of information. For quite a long time, most researchers have been pursing recommendation performances with predefined metrics, e.g., accuracy. However, in real-world applications, users select items from a huge item list by considering their internal personalized demand and external constraints. Thus, we argue that explicitly modeling the complex relations among items under domain-specific applications is an indispensable part for enhancing the recommendations. Actually, in this area, researchers have done some work to understand the item relations gradually from "implicit" to "explicit" views when recommending. To this end, in this paper, we conduct a survey of these recent advances on recommender systems from the perspective of the explicit item relation understanding. We organize these relevant studies from three types of item relations, i.e., combination-effect relations, sequence-dependence relations, and external-constraint relations. Specifically, the combination-effect relation and the sequence-dependence relation based work models the intra-group intrinsic relations of items from the user demand perspective, and the external-constraint relation emphasizes the external requirements for items. After that, we also propose our opinions on the open issues along the line of understanding item relations and suggest some future research directions in recommendation area.展开更多
基金supported by the National Science Foundation of China Grant No.61762092“Dynamic multi-objective requirement optimization based on transfer learning”,No.61762089+2 种基金“The key research of high order tensor decomposition in distributed environment”the Open Foundation of the Key Laboratory in Software Engineering of Yunnan Province,Grant No.2017SE204,”Research on extracting software feature models using transfer learning”.
文摘In view of the low interpretability of existing collaborative filtering recommendation algorithms and the difficulty of extracting information from content-based recommendation algorithms,we propose an efficient KGRS model.KGRS first obtains reasoning paths of knowledge graph and embeds the entities of paths into vectors based on knowledge representation learning TransD algorithm,then uses LSTM and soft attention mechanism to capture the semantic of each path reasoning,then uses convolution operation and pooling operation to distinguish the importance of different paths reasoning.Finally,through the full connection layer and sigmoid function to get the prediction ratings,and the items are sorted according to the prediction ratings to get the user’s recommendation list.KGRS is tested on the movielens-100k dataset.Compared with the related representative algorithm,including the state-of-the-art interpretable recommendation models RKGE and RippleNet,the experimental results show that KGRS has good recommendation interpretation and higher recommendation accuracy.
基金This research was partially supported by the National Natural Science Foundation of China under Grant Nos. U1605251, 61672483 and 61602147, and the Fundamental Research Funds for the Central Universities of China under Grant No. JZ2016HGBZ0749. Qi Liu gratefully acknowledges the support of the Young Elite Scientist Sponsorship Program of China Association for Science and Technology (CAST) and the Youth Innovation Promotion Association of Chinese Academy of Sciences (CAS) under Grant No. 2014299.
文摘Recent years have witnessed the prevalence of recommender systems in various fields, which provide a personalized recommendation list for each user based on various kinds of information. For quite a long time, most researchers have been pursing recommendation performances with predefined metrics, e.g., accuracy. However, in real-world applications, users select items from a huge item list by considering their internal personalized demand and external constraints. Thus, we argue that explicitly modeling the complex relations among items under domain-specific applications is an indispensable part for enhancing the recommendations. Actually, in this area, researchers have done some work to understand the item relations gradually from "implicit" to "explicit" views when recommending. To this end, in this paper, we conduct a survey of these recent advances on recommender systems from the perspective of the explicit item relation understanding. We organize these relevant studies from three types of item relations, i.e., combination-effect relations, sequence-dependence relations, and external-constraint relations. Specifically, the combination-effect relation and the sequence-dependence relation based work models the intra-group intrinsic relations of items from the user demand perspective, and the external-constraint relation emphasizes the external requirements for items. After that, we also propose our opinions on the open issues along the line of understanding item relations and suggest some future research directions in recommendation area.