The bandgap is a key parameter for understanding and designing hybrid perovskite material properties,as well as developing photovoltaic devices.Traditional bandgap calculation methods like ultravioletvisible spectrosc...The bandgap is a key parameter for understanding and designing hybrid perovskite material properties,as well as developing photovoltaic devices.Traditional bandgap calculation methods like ultravioletvisible spectroscopy and first-principles calculations are time-and power-consuming,not to mention capturing bandgap change mechanisms for hybrid perovskite materials across a wide range of unknown space.In the present work,an artificial intelligence ensemble comprising two classifiers(with F1 scores of 0.9125 and 0.925)and a regressor(with mean squared error of 0.0014 eV)is constructed to achieve high-precision prediction of the bandgap.The bandgap perovskite dataset is established through highthroughput prediction of bandgaps by the ensemble.Based on the self-built dataset,partial dependence analysis(PDA)is developed to interpret the bandgap influential mechanism.Meanwhile,an interpretable mathematical model with an R^(2)of 0.8417 is generated using the genetic programming symbolic regression(GPSR)technique.The constructed PDA maps agree well with the Shapley Additive exPlanations,the GPSR model,and experiment verification.Through PDA,we reveal the boundary effect,the bowing effect,and their evolution trends with key descriptors.展开更多
Ceramic relief mural is a contemporary landscape art that is carefully designed based on human nature,culture,and architectural wall space,combined with social customs,visual sensibility,and art.It may also become the...Ceramic relief mural is a contemporary landscape art that is carefully designed based on human nature,culture,and architectural wall space,combined with social customs,visual sensibility,and art.It may also become the main axis of ceramic art in the future.Taiwan public ceramic relief murals(PCRM)are most distinctive with the PCRM pioneered by Pan-Hsiung Chu of Meinong Kiln in 1987.In addition to breaking through the limitations of traditional public ceramic murals,Chu leveraged local culture and sensibility.The theme of art gives PCRM its unique style and innovative value throughout the Taiwan region.This study mainly analyzes and understands the design image of public ceramic murals,taking Taiwan PCRM’s design and creation as the scope,and applies STEEP analysis,that is,the social,technological,economic,ecological,and political-legal environments are analyzed as core factors;eight main important factors in the artistic design image of ceramic murals are evaluated.Then,interpretive structural modeling(ISM)is used to establish five levels,analyze the four main problems in the main core factor area and the four main target results in the affected factor area;and analyze the problem points and target points as well as their causal relationships.It is expected to sort out the relationship between these factors,obtain the hierarchical relationship of each factor,and provide a reference basis and research methods.展开更多
Artificial intelligence(AI)has emerged as a transformative technology in accelerating drug discovery and development within natural medicines research.Natural medicines,characterized by their complex chemical composit...Artificial intelligence(AI)has emerged as a transformative technology in accelerating drug discovery and development within natural medicines research.Natural medicines,characterized by their complex chemical compositions and multifaceted pharmacological mechanisms,demonstrate widespread application in treating diverse diseases.However,research and development face significant challenges,including component complexity,extraction difficulties,and efficacy validation.AI technology,particularly through deep learning(DL)and machine learning(ML)approaches,enables efficient analysis of extensive datasets,facilitating drug screening,component analysis,and pharmacological mechanism elucidation.The implementation of AI technology demonstrates considerable potential in virtual screening,compound optimization,and synthetic pathway design,thereby enhancing natural medicines’bioavailability and safety profiles.Nevertheless,current applications encounter limitations regarding data quality,model interpretability,and ethical considerations.As AI technologies continue to evolve,natural medicines research and development will achieve greater efficiency and precision,advancing both personalized medicine and contemporary drug development approaches.展开更多
This study introduces a comprehensive and automated framework that leverages data-driven method-ologies to address various challenges in shale gas development and production.Specifically,it harnesses the power of Auto...This study introduces a comprehensive and automated framework that leverages data-driven method-ologies to address various challenges in shale gas development and production.Specifically,it harnesses the power of Automated Machine Learning(AutoML)to construct an ensemble model to predict the estimated ultimate recovery(EUR)of shale gas wells.To demystify the“black-box”nature of the ensemble model,KernelSHAP,a kernel-based approach to compute Shapley values,is utilized for elucidating the influential factors that affect shale gas production at both global and local scales.Furthermore,a bi-objective optimization algorithm named NSGA-Ⅱ is seamlessly incorporated to opti-mize hydraulic fracturing designs for production boost and cost control.This innovative framework addresses critical limitations often encountered in applying machine learning(ML)to shale gas pro-duction:the challenge of achieving sufficient model accuracy with limited samples,the multidisciplinary expertise required for developing robust ML models,and the need for interpretability in“black-box”models.Validation with field data from the Fuling shale gas field in the Sichuan Basin substantiates the framework's efficacy in enhancing the precision and applicability of data-driven techniques.The test accuracy of the ensemble ML model reached 83%compared to a maximum of 72%of single ML models.The contribution of each geological and engineering factor to the overall production was quantitatively evaluated.Fracturing design optimization raised EUR by 7%-34%under different production and cost tradeoff scenarios.The results empower domain experts to conduct more precise and objective data-driven analyses and optimizations for shale gas production with minimal expertise in data science.展开更多
Given the growing concern over global warming and the critical role of carbon dioxide(CO_(2))in this phenomenon,the study of CO_(2)-induced alterations in coal strength has garnered significant attention due to its im...Given the growing concern over global warming and the critical role of carbon dioxide(CO_(2))in this phenomenon,the study of CO_(2)-induced alterations in coal strength has garnered significant attention due to its implications for carbon sequestration.A large number of experiments have proved that CO_(2) interaction time(T),saturation pressure(P)and other parameters have significant effects on coal strength.However,accurate evaluation of CO_(2)-induced alterations in coal strength is still a difficult problem,so it is particularly important to establish accurate and efficient prediction models.This study explored the application of advancedmachine learning(ML)algorithms and Gene Expression Programming(GEP)techniques to predict CO_(2)-induced alterations in coal strength.Sixmodels were developed,including three metaheuristic-optimized XGBoost models(GWO-XGBoost,SSA-XGBoost,PO-XGBoost)and three GEP models(GEP-1,GEP-2,GEP-3).Comprehensive evaluations using multiple metrics revealed that all models demonstrated high predictive accuracy,with the SSA-XGBoost model achieving the best performance(R2—Coefficient of determination=0.99396,RMSE—Root Mean Square Error=0.62102,MAE—Mean Absolute Error=0.36164,MAPE—Mean Absolute Percentage Error=4.8101%,RPD—Residual Predictive Deviation=13.4741).Model interpretability analyses using SHAP(Shapley Additive exPlanations),ICE(Individual Conditional Expectation),and PDP(Partial Dependence Plot)techniques highlighted the dominant role of fixed carbon content(FC)and significant interactions between FC and CO_(2) saturation pressure(P).Theresults demonstrated that the proposedmodels effectively address the challenges of CO_(2)-induced strength prediction,providing valuable insights for geological storage safety and environmental applications.展开更多
Formation pore pressure is the foundation of well plan,and it is related to the safety and efficiency of drilling operations in oil and gas development.However,the traditional method for predicting formation pore pres...Formation pore pressure is the foundation of well plan,and it is related to the safety and efficiency of drilling operations in oil and gas development.However,the traditional method for predicting formation pore pressure involves applying post-drilling measurement data from nearby wells to the target well,which may not accurately reflect the formation pore pressure of the target well.In this paper,a novel method for predicting formation pore pressure ahead of the drill bit by embedding petrophysical theory into machine learning based on seismic and logging-while-drilling(LWD)data was proposed.Gated recurrent unit(GRU)and long short-term memory(LSTM)models were developed and validated using data from three wells in the Bohai Oilfield,and the Shapley additive explanations(SHAP)were utilized to visualize and interpret the models proposed in this study,thereby providing valuable insights into the relative importance and impact of input features.The results show that among the eight models trained in this study,almost all model prediction errors converge to 0.05 g/cm^(3),with the largest root mean square error(RMSE)being 0.03072 and the smallest RMSE being 0.008964.Moreover,continuously updating the model with the increasing training data during drilling operations can further improve accuracy.Compared to other approaches,this study accurately and precisely depicts formation pore pressure,while SHAP analysis guides effective model refinement and feature engineering strategies.This work underscores the potential of integrating advanced machine learning techniques with domain-specific knowledge to enhance predictive accuracy for petroleum engineering applications.展开更多
Alarm flood is one of the main problems in the alarm systems of industrial process. Alarm root-cause analysis and alarm prioritization are good for alarm flood reduction. This paper proposes a systematic rationalizati...Alarm flood is one of the main problems in the alarm systems of industrial process. Alarm root-cause analysis and alarm prioritization are good for alarm flood reduction. This paper proposes a systematic rationalization method for multivariate correlated alarms to realize the root cause analysis and alarm prioritization. An information fusion based interpretive structural model is constructed according to the data-driven partial correlation coefficient calculation and process knowledge modification. This hierarchical multi-layer model is helpful in abnormality propagation path identification and root-cause analysis. Revised Likert scale method is adopted to determine the alarm priority and reduce the blindness of alarm handling. As a case study, the Tennessee Eastman process is utilized to show the effectiveness and validity of proposed approach. Alarm system performance comparison shows that our rationalization methodology can reduce the alarm flood to some extent and improve the performance.展开更多
In this paper, the structure characteristics of open complex giant systems are concretely analysed in depth, thus the view and its significance to support the meta synthesis engineering with manifold knowledge models...In this paper, the structure characteristics of open complex giant systems are concretely analysed in depth, thus the view and its significance to support the meta synthesis engineering with manifold knowledge models are clarified. Furthermore, the knowledge based multifaceted modeling methodology for open complex giant systems is emphatically studied. The major points are as follows: (1) nonlinear mechanism and general information partition law; (2) from the symmetry and similarity to the acquisition of construction knowledge; (3) structures for hierarchical and nonhierarchical organizations; (4) the integration of manifold knowledge models; (5) the methodology of knowledge based multifaceted modeling.展开更多
With the rapid development of the Internet,network security and data privacy are increasingly valued.Although classical Network Intrusion Detection System(NIDS)based on Deep Learning(DL)models can provide good detecti...With the rapid development of the Internet,network security and data privacy are increasingly valued.Although classical Network Intrusion Detection System(NIDS)based on Deep Learning(DL)models can provide good detection accuracy,but collecting samples for centralized training brings the huge risk of data privacy leakage.Furthermore,the training of supervised deep learning models requires a large number of labeled samples,which is usually cumbersome.The“black-box”problem also makes the DL models of NIDS untrustworthy.In this paper,we propose a trusted Federated Learning(FL)Traffic IDS method called FL-TIDS to address the above-mentioned problems.In FL-TIDS,we design an unsupervised intrusion detection model based on autoencoders that alleviates the reliance on marked samples.At the same time,we use FL for model training to protect data privacy.In addition,we design an improved SHAP interpretable method based on chi-square test to perform interpretable analysis of the trained model.We conducted several experiments to evaluate the proposed FL-TIDS.We first determine experimentally the structure and the number of neurons of the unsupervised AE model.Secondly,we evaluated the proposed method using the UNSW-NB15 and CICIDS2017 datasets.The exper-imental results show that the unsupervised AE model has better performance than the other 7 intrusion detection models in terms of precision,recall and f1-score.Then,federated learning is used to train the intrusion detection model.The experimental results indicate that the model is more accurate than the local learning model.Finally,we use an improved SHAP explainability method based on Chi-square test to analyze the explainability.The analysis results show that the identification characteristics of the model are consistent with the attack characteristics,and the model is reliable.展开更多
In enterprise operations,maintaining manual rules for enterprise processes can be expensive,time-consuming,and dependent on specialized domain knowledge in that enterprise domain.Recently,rule-generation has been auto...In enterprise operations,maintaining manual rules for enterprise processes can be expensive,time-consuming,and dependent on specialized domain knowledge in that enterprise domain.Recently,rule-generation has been automated in enterprises,particularly through Machine Learning,to streamline routine tasks.Typically,these machine models are black boxes where the reasons for the decisions are not always transparent,and the end users need to verify the model proposals as a part of the user acceptance testing to trust it.In such scenarios,rules excel over Machine Learning models as the end-users can verify the rules and have more trust.In many scenarios,the truth label changes frequently thus,it becomes difficult for the Machine Learning model to learn till a considerable amount of data has been accumulated,but with rules,the truth can be adapted.This paper presents a novel framework for generating human-understandable rules using the Classification and Regression Tree(CART)decision tree method,which ensures both optimization and user trust in automated decision-making processes.The framework generates comprehensible rules in the form of if condition and then predicts class even in domains where noise is present.The proposed system transforms enterprise operations by automating the production of human-readable rules from structured data,resulting in increased efficiency and transparency.Removing the need for human rule construction saves time and money while guaranteeing that users can readily check and trust the automatic judgments of the system.The remarkable performance metrics of the framework,which achieve 99.85%accuracy and 96.30%precision,further support its efficiency in translating complex data into comprehensible rules,eventually empowering users and enhancing organizational decision-making processes.展开更多
Supply chain traceability is a critical aspect of modern business operations,and blockchain technology has emerged as a promising solution to enhance traceability in supply chain management.However,the effective appli...Supply chain traceability is a critical aspect of modern business operations,and blockchain technology has emerged as a promising solution to enhance traceability in supply chain management.However,the effective application of blockchain faces various challenges and limitations.This study aims to investigate how blockchain technology can address these challenges and improve traceability within supply chains.Employing a systematic literature review combined with interpretative structural modeling(ISM),we comprehensively assess and classify the literature on blockchain-enabled supply chain traceability.Our exploratory research approach delves into the contributions of blockchain technology and identifies key factors that enhance traceability.We adopt a mixed-methods approach,incorporating both secondary and primary data to ensure robust analysis.Our study addresses essential questions regarding the application,advantages,limitations,challenges,integration with other technologies,and future potential of blockchain in supply chain traceability.Through a systematic review and the ISM technique,we identify crucial levels and factors necessary for leveraging blockchain technology effectively.Our findings underscore the importance of a robust infrastructure,cutting-edge technology,and significant initial investment in implementing blockchain for supply chain traceability.This research offers a comprehensive understanding of the factors and their levels,providing valuable insights for industry professionals and academic researchers.By laying a solid foundation for informed decision-making and further exploration into the potential of blockchain-enhanced supply chain traceability,our study contributes to advancing knowledge in this crucial area of business operations.展开更多
Food is one of the biggest industries in developed and underdeveloped countries. Supply chain sustainability is essential in established and emerging economies because of the rising acceptance of cost-based outsourcin...Food is one of the biggest industries in developed and underdeveloped countries. Supply chain sustainability is essential in established and emerging economies because of the rising acceptance of cost-based outsourcing and the growing technological, social, and environmental concerns. The food business faces serious sustainability and growth challenges in developing countries. A comprehensive analysis of the critical success factors (CSFs) influencing the performance outcome and the sustainable supply chain management (SSCM) process. A theoretical framework is established to explain how they are used to examine the organizational aspect of the food supply chain life cycle analysis. This study examined the CSFs and revealed the relationships between them using a methodology that included a review of literature, interpretative structural modeling (ISM), and cross-impact matrix multiplication applied in classification (MICMAC) tool analysis of soil liquefaction factors. The findings of this research demonstrate that the quality and safety of food are important factors and have a direct effect on other factors. To make sustainable food supply chain management more adequate, legislators, managers, and experts need to pay attention to this factor. In this work. It also shows that companies aiming to create a sustainable business model must make sustainability a fundamental tenet of their organization. Practitioners and managers may devise effective long-term plans for establishing a sustainable food supply chain utilizing the recommended methodology.展开更多
This study is novel,as it aims to generate an emergency scenario model for the analysis of dynamic risks in business parks to help decision-makers provide an optimal response in any emergency.To this end,the CIA-ISM m...This study is novel,as it aims to generate an emergency scenario model for the analysis of dynamic risks in business parks to help decision-makers provide an optimal response in any emergency.To this end,the CIA-ISM methodology,which is the combination of Cross-Impact Analysis(CIA)and Interpretative Structural Model(ISM),allows the representation of all possible connections among risks,as well as representing real events under conditions of uncertainty.The proposed model integrates the use of an information system for the generation of multiple emergency scenarios that include the capture of complex interactions among agents,resources and variable environmental conditions.The results highlight the capacity of the proposed emergency scenario model based on CIA-ISM for the analysis of dynamic risks in business parks,identification of hidden vulnerabilities and evaluation of mitigation strategies in real-time.This study not only expands the theoretical knowledge of emergency management but also provides a useful tool to improve preparedness and response capacity in the face of adverse events in dynamic and complex environments.展开更多
Discernment of seismic soil liquefaction is a complex and non-linear procedure that is affected by diversified factors of uncertainties and complexity.The Bayesian belief network(BBN)is an effective tool to present a ...Discernment of seismic soil liquefaction is a complex and non-linear procedure that is affected by diversified factors of uncertainties and complexity.The Bayesian belief network(BBN)is an effective tool to present a suitable framework to handle insights into such uncertainties and cause–effect relationships.The intention of this study is to use a hybrid approach methodology for the development of BBN model based on cone penetration test(CPT)case history records to evaluate seismic soil liquefaction potential.In this hybrid approach,naive model is developed initially only by an interpretive structural modeling(ISM)technique using domain knowledge(DK).Subsequently,some useful information about the naive model are embedded as DK in the K2 algorithm to develop a BBN-K2 and DK model.The results of the BBN models are compared and validated with the available artificial neural network(ANN)and C4.5 decision tree(DT)models and found that the BBN model developed by hybrid approach showed compatible and promising results for liquefaction potential assessment.The BBN model developed by hybrid approach provides a viable tool for geotechnical engineers to assess sites conditions susceptible to seismic soil liquefaction.This study also presents sensitivity analysis of the BBN model based on hybrid approach and the most probable explanation of liquefied sites,owing to know the most likely scenario of the liquefaction phenomenon.展开更多
The evolution of pore structure in shales is affected by both the thermal evolution of organic matter(OM)and by inorganic diagenesis,resulting in a wide variety of pore structures.This paper examines the OM distributi...The evolution of pore structure in shales is affected by both the thermal evolution of organic matter(OM)and by inorganic diagenesis,resulting in a wide variety of pore structures.This paper examines the OM distribution in lacustrine shales and its influence on pore structure,and describes the process of porosity development.The principal findings are:(i)Three distribution patterns of OM in lacustrine shales are distinguished;laminated continuous distribution,clumped distribution,and stellate scattered distribution.The differences in total organic carbon(TOC)content,free hydrocarbon content(S_(1)),and OM porosity among these distribution patterns are discussed.(ii)Porosity is negatively correlated with TOC and plagioclase content and positively correlated with quartz,dolomite,and clay mineral content.(iii)Pore evolution in lacustrine shales is characterized by a sequence of decreasing-increasing-decreasing porosity,followed by continuously increasing porosity until a relatively stable condition is reached.(iv)A new model for evaluating porosity in lacustrine shales is proposed.Using this model,the organic and inorganic porosity of shales in the Permian Lucaogou Formation are calculated to be 2.5%-5%and 1%-6.3%,respectively,which correlate closely with measured data.These findings may provide a scientific basis and technical support for the sweet spotting in lacustrine shales in China.展开更多
Characterized by self-monitoring and agile adaptation to fast changing dynamics in complex production environments,smart manufacturing as envisioned under Industry 4.0 aims to improve the throughput and reliability of...Characterized by self-monitoring and agile adaptation to fast changing dynamics in complex production environments,smart manufacturing as envisioned under Industry 4.0 aims to improve the throughput and reliability of production beyond the state-of-the-art.While the widespread application of deep learning(DL)has opened up new opportunities to accomplish the goal,data quality and model interpretability have continued to present a roadblock for the widespread acceptance of DL for real-world applications.This has motivated research on two fronts:data curation,which aims to provide quality data as input for meaningful DL-based analysis,and model interpretation,which intends to reveal the physical reasoning underlying DL model outputs and promote trust from the users.This paper summarizes several key techniques in data curation where breakthroughs in data denoising,outlier detection,imputation,balancing,and semantic annotation have demonstrated the effectiveness in information extraction from noisy,incomplete,insufficient,and/or unannotated data.Also highlighted are model interpretation methods that address the“black-box”nature of DL towards model transparency.展开更多
A data augmentation technique is employed in the current work on a training dataset of 610 bulk metallic glasses(BMGs),which are randomly selected from 762 collected data.An ensemble machine learning(ML)model is devel...A data augmentation technique is employed in the current work on a training dataset of 610 bulk metallic glasses(BMGs),which are randomly selected from 762 collected data.An ensemble machine learning(ML)model is developed on augmented training dataset and tested by the rest 152 data.The result shows that ML model has the ability to predict the maximal diameter Dmaxof BMGs more accurate than all reported ML models.In addition,the novel ML model gives the glass forming ability(GFA)rules:average atomic radius ranging from 140 pm to 165 pm,the value of TT/(T-T)(T-T)being higher than 2.5,the entropy of mixing being higher than 10 J/K/mol,and the enthalpy of mixing ranging from-32 k J/mol to-26 k J/mol.ML model is interpretative,thereby deepening the understanding of GFA.展开更多
For ecological restoration and reconstruction of the degraded area, it is an important premise to correctly understand the degradation factors of the ecosystem in the arid-hot valleys. The factors including vegetation...For ecological restoration and reconstruction of the degraded area, it is an important premise to correctly understand the degradation factors of the ecosystem in the arid-hot valleys. The factors including vegetation degradation, land degradation, arid climate, policy failure, forest fire, rapid population growth, excessive deforestation, overgrazing, steep slope reclamation, economic poverty, engineering construction, lithology, slope, low cultural level, geological hazards, biological disaster, soil properties etc, were selected to study the Yuanmou arid-hot valleys. Based on the interpretative structural model (ISM), it has found out that the degradation factors of the Yuanmou arid-hot valleys were not at the same level but in a multilevel hierarchical system with internal relations, which pointed out that the degradation mode of the arid-hot valleys was "straight (appearance)-penetrating-background". Such researches have important directive significance for the restoration and reconstruction of the arid-hot valleys ecosystem.展开更多
This study was conducted to enable prompt classification of malware,which was becoming increasingly sophisticated.To do this,we analyzed the important features of malware and the relative importance of selected featur...This study was conducted to enable prompt classification of malware,which was becoming increasingly sophisticated.To do this,we analyzed the important features of malware and the relative importance of selected features according to a learning model to assess how those important features were identified.Initially,the analysis features were extracted using Cuckoo Sandbox,an open-source malware analysis tool,then the features were divided into five categories using the extracted information.The 804 extracted features were reduced by 70%after selecting only the most suitable ones for malware classification using a learning model-based feature selection method called the recursive feature elimination.Next,these important features were analyzed.The level of contribution from each one was assessed by the Random Forest classifier method.The results showed that System call features were mostly allocated.At the end,it was possible to accurately identify the malware type using only 36 to 76 features for each of the four types of malware with the most analysis samples available.These were the Trojan,Adware,Downloader,and Backdoor malware.展开更多
In order to improve the interpretation of production log data on gas-water elongated bubble (EB) flow in horizontal wells, a multi-phase flow simulation device was set up to conduct a series of measurement experimen...In order to improve the interpretation of production log data on gas-water elongated bubble (EB) flow in horizontal wells, a multi-phase flow simulation device was set up to conduct a series of measurement experiments using air and tap water as test media, which were measured using a real production logging tool (PLT) string at different deviations and in different mixed flow states. By understanding the characteristics and mechanisms of gas-water EB flow in transparent experimental boreholes during production logging, combined with an analysis of the production log response characteristics and experimental production logging flow pattern maps, a method for flow pattern identification relying on log responses and a drift-flux model were proposed for gas-water EB flow. This model, built upon experimental data of EB flow, reveals physical mechanisms of gas-water EB flow during measurement processing. The coefficients it contains are the specific values under experimental conditions and with the PLT string used in our experiments. These coefficients also reveal the interference with original downhole flow patterns by the PLT string. Due to the representativeness that our simulated flow experiments and PLT string possess, the model coefficients can be applied as empirical values of logging interpretation model parameters directly to real production logging data interpretation, when the measurement circumstances and PLT strings are similar.展开更多
基金supported by the National Research Foundation of Korea(NRF)funded by the Korean government(MSIT)(Grant number:RS-2025-02316700,and RS-2025-00522430)the China Scholarship Council Program。
文摘The bandgap is a key parameter for understanding and designing hybrid perovskite material properties,as well as developing photovoltaic devices.Traditional bandgap calculation methods like ultravioletvisible spectroscopy and first-principles calculations are time-and power-consuming,not to mention capturing bandgap change mechanisms for hybrid perovskite materials across a wide range of unknown space.In the present work,an artificial intelligence ensemble comprising two classifiers(with F1 scores of 0.9125 and 0.925)and a regressor(with mean squared error of 0.0014 eV)is constructed to achieve high-precision prediction of the bandgap.The bandgap perovskite dataset is established through highthroughput prediction of bandgaps by the ensemble.Based on the self-built dataset,partial dependence analysis(PDA)is developed to interpret the bandgap influential mechanism.Meanwhile,an interpretable mathematical model with an R^(2)of 0.8417 is generated using the genetic programming symbolic regression(GPSR)technique.The constructed PDA maps agree well with the Shapley Additive exPlanations,the GPSR model,and experiment verification.Through PDA,we reveal the boundary effect,the bowing effect,and their evolution trends with key descriptors.
文摘Ceramic relief mural is a contemporary landscape art that is carefully designed based on human nature,culture,and architectural wall space,combined with social customs,visual sensibility,and art.It may also become the main axis of ceramic art in the future.Taiwan public ceramic relief murals(PCRM)are most distinctive with the PCRM pioneered by Pan-Hsiung Chu of Meinong Kiln in 1987.In addition to breaking through the limitations of traditional public ceramic murals,Chu leveraged local culture and sensibility.The theme of art gives PCRM its unique style and innovative value throughout the Taiwan region.This study mainly analyzes and understands the design image of public ceramic murals,taking Taiwan PCRM’s design and creation as the scope,and applies STEEP analysis,that is,the social,technological,economic,ecological,and political-legal environments are analyzed as core factors;eight main important factors in the artistic design image of ceramic murals are evaluated.Then,interpretive structural modeling(ISM)is used to establish five levels,analyze the four main problems in the main core factor area and the four main target results in the affected factor area;and analyze the problem points and target points as well as their causal relationships.It is expected to sort out the relationship between these factors,obtain the hierarchical relationship of each factor,and provide a reference basis and research methods.
基金supports from the National Key Research and Development Program of China(No.2020YFE0202200)the National Natural Science Foundation of China(Nos.81903538,82322073,92253303)+1 种基金the Innovation Team and Talents Cultivation Program of National Administration of Traditional Chinese Medicine(No.ZYYCXTD-D-202004)the Science and Technology Commission of Shanghai Municipality(Nos.22ZR1474200,24JS2830200).
文摘Artificial intelligence(AI)has emerged as a transformative technology in accelerating drug discovery and development within natural medicines research.Natural medicines,characterized by their complex chemical compositions and multifaceted pharmacological mechanisms,demonstrate widespread application in treating diverse diseases.However,research and development face significant challenges,including component complexity,extraction difficulties,and efficacy validation.AI technology,particularly through deep learning(DL)and machine learning(ML)approaches,enables efficient analysis of extensive datasets,facilitating drug screening,component analysis,and pharmacological mechanism elucidation.The implementation of AI technology demonstrates considerable potential in virtual screening,compound optimization,and synthetic pathway design,thereby enhancing natural medicines’bioavailability and safety profiles.Nevertheless,current applications encounter limitations regarding data quality,model interpretability,and ethical considerations.As AI technologies continue to evolve,natural medicines research and development will achieve greater efficiency and precision,advancing both personalized medicine and contemporary drug development approaches.
基金funded by the National Natural Science Foundation of China(42050104).
文摘This study introduces a comprehensive and automated framework that leverages data-driven method-ologies to address various challenges in shale gas development and production.Specifically,it harnesses the power of Automated Machine Learning(AutoML)to construct an ensemble model to predict the estimated ultimate recovery(EUR)of shale gas wells.To demystify the“black-box”nature of the ensemble model,KernelSHAP,a kernel-based approach to compute Shapley values,is utilized for elucidating the influential factors that affect shale gas production at both global and local scales.Furthermore,a bi-objective optimization algorithm named NSGA-Ⅱ is seamlessly incorporated to opti-mize hydraulic fracturing designs for production boost and cost control.This innovative framework addresses critical limitations often encountered in applying machine learning(ML)to shale gas pro-duction:the challenge of achieving sufficient model accuracy with limited samples,the multidisciplinary expertise required for developing robust ML models,and the need for interpretability in“black-box”models.Validation with field data from the Fuling shale gas field in the Sichuan Basin substantiates the framework's efficacy in enhancing the precision and applicability of data-driven techniques.The test accuracy of the ensemble ML model reached 83%compared to a maximum of 72%of single ML models.The contribution of each geological and engineering factor to the overall production was quantitatively evaluated.Fracturing design optimization raised EUR by 7%-34%under different production and cost tradeoff scenarios.The results empower domain experts to conduct more precise and objective data-driven analyses and optimizations for shale gas production with minimal expertise in data science.
基金partially supported by the National Natural Science Foundation of China(42177164,52474121)the Outstanding Youth Project of Hunan Provincial Department of Education(23B0008).
文摘Given the growing concern over global warming and the critical role of carbon dioxide(CO_(2))in this phenomenon,the study of CO_(2)-induced alterations in coal strength has garnered significant attention due to its implications for carbon sequestration.A large number of experiments have proved that CO_(2) interaction time(T),saturation pressure(P)and other parameters have significant effects on coal strength.However,accurate evaluation of CO_(2)-induced alterations in coal strength is still a difficult problem,so it is particularly important to establish accurate and efficient prediction models.This study explored the application of advancedmachine learning(ML)algorithms and Gene Expression Programming(GEP)techniques to predict CO_(2)-induced alterations in coal strength.Sixmodels were developed,including three metaheuristic-optimized XGBoost models(GWO-XGBoost,SSA-XGBoost,PO-XGBoost)and three GEP models(GEP-1,GEP-2,GEP-3).Comprehensive evaluations using multiple metrics revealed that all models demonstrated high predictive accuracy,with the SSA-XGBoost model achieving the best performance(R2—Coefficient of determination=0.99396,RMSE—Root Mean Square Error=0.62102,MAE—Mean Absolute Error=0.36164,MAPE—Mean Absolute Percentage Error=4.8101%,RPD—Residual Predictive Deviation=13.4741).Model interpretability analyses using SHAP(Shapley Additive exPlanations),ICE(Individual Conditional Expectation),and PDP(Partial Dependence Plot)techniques highlighted the dominant role of fixed carbon content(FC)and significant interactions between FC and CO_(2) saturation pressure(P).Theresults demonstrated that the proposedmodels effectively address the challenges of CO_(2)-induced strength prediction,providing valuable insights for geological storage safety and environmental applications.
基金supported by the National Natural Science Foundation of China(Grant numbers:52174012,52394250,52394255,52234002,U22B20126,51804322).
文摘Formation pore pressure is the foundation of well plan,and it is related to the safety and efficiency of drilling operations in oil and gas development.However,the traditional method for predicting formation pore pressure involves applying post-drilling measurement data from nearby wells to the target well,which may not accurately reflect the formation pore pressure of the target well.In this paper,a novel method for predicting formation pore pressure ahead of the drill bit by embedding petrophysical theory into machine learning based on seismic and logging-while-drilling(LWD)data was proposed.Gated recurrent unit(GRU)and long short-term memory(LSTM)models were developed and validated using data from three wells in the Bohai Oilfield,and the Shapley additive explanations(SHAP)were utilized to visualize and interpret the models proposed in this study,thereby providing valuable insights into the relative importance and impact of input features.The results show that among the eight models trained in this study,almost all model prediction errors converge to 0.05 g/cm^(3),with the largest root mean square error(RMSE)being 0.03072 and the smallest RMSE being 0.008964.Moreover,continuously updating the model with the increasing training data during drilling operations can further improve accuracy.Compared to other approaches,this study accurately and precisely depicts formation pore pressure,while SHAP analysis guides effective model refinement and feature engineering strategies.This work underscores the potential of integrating advanced machine learning techniques with domain-specific knowledge to enhance predictive accuracy for petroleum engineering applications.
基金Supported by the National Natural Science Foundation of China(61473026,61104131)the Fundamental Research Funds for the Central Universities(JD1413)
文摘Alarm flood is one of the main problems in the alarm systems of industrial process. Alarm root-cause analysis and alarm prioritization are good for alarm flood reduction. This paper proposes a systematic rationalization method for multivariate correlated alarms to realize the root cause analysis and alarm prioritization. An information fusion based interpretive structural model is constructed according to the data-driven partial correlation coefficient calculation and process knowledge modification. This hierarchical multi-layer model is helpful in abnormality propagation path identification and root-cause analysis. Revised Likert scale method is adopted to determine the alarm priority and reduce the blindness of alarm handling. As a case study, the Tennessee Eastman process is utilized to show the effectiveness and validity of proposed approach. Alarm system performance comparison shows that our rationalization methodology can reduce the alarm flood to some extent and improve the performance.
文摘In this paper, the structure characteristics of open complex giant systems are concretely analysed in depth, thus the view and its significance to support the meta synthesis engineering with manifold knowledge models are clarified. Furthermore, the knowledge based multifaceted modeling methodology for open complex giant systems is emphatically studied. The major points are as follows: (1) nonlinear mechanism and general information partition law; (2) from the symmetry and similarity to the acquisition of construction knowledge; (3) structures for hierarchical and nonhierarchical organizations; (4) the integration of manifold knowledge models; (5) the methodology of knowledge based multifaceted modeling.
基金supported by National Natural Science Fundation of China under Grant 61972208National Natural Science Fundation(General Program)of China under Grant 61972211+2 种基金National Key Research and Development Project of China under Grant 2020YFB1804700Future Network Innovation Research and Application Projects under Grant No.2021FNA020062021 Jiangsu Postgraduate Research Innovation Plan under Grant No.KYCX210794.
文摘With the rapid development of the Internet,network security and data privacy are increasingly valued.Although classical Network Intrusion Detection System(NIDS)based on Deep Learning(DL)models can provide good detection accuracy,but collecting samples for centralized training brings the huge risk of data privacy leakage.Furthermore,the training of supervised deep learning models requires a large number of labeled samples,which is usually cumbersome.The“black-box”problem also makes the DL models of NIDS untrustworthy.In this paper,we propose a trusted Federated Learning(FL)Traffic IDS method called FL-TIDS to address the above-mentioned problems.In FL-TIDS,we design an unsupervised intrusion detection model based on autoencoders that alleviates the reliance on marked samples.At the same time,we use FL for model training to protect data privacy.In addition,we design an improved SHAP interpretable method based on chi-square test to perform interpretable analysis of the trained model.We conducted several experiments to evaluate the proposed FL-TIDS.We first determine experimentally the structure and the number of neurons of the unsupervised AE model.Secondly,we evaluated the proposed method using the UNSW-NB15 and CICIDS2017 datasets.The exper-imental results show that the unsupervised AE model has better performance than the other 7 intrusion detection models in terms of precision,recall and f1-score.Then,federated learning is used to train the intrusion detection model.The experimental results indicate that the model is more accurate than the local learning model.Finally,we use an improved SHAP explainability method based on Chi-square test to analyze the explainability.The analysis results show that the identification characteristics of the model are consistent with the attack characteristics,and the model is reliable.
文摘In enterprise operations,maintaining manual rules for enterprise processes can be expensive,time-consuming,and dependent on specialized domain knowledge in that enterprise domain.Recently,rule-generation has been automated in enterprises,particularly through Machine Learning,to streamline routine tasks.Typically,these machine models are black boxes where the reasons for the decisions are not always transparent,and the end users need to verify the model proposals as a part of the user acceptance testing to trust it.In such scenarios,rules excel over Machine Learning models as the end-users can verify the rules and have more trust.In many scenarios,the truth label changes frequently thus,it becomes difficult for the Machine Learning model to learn till a considerable amount of data has been accumulated,but with rules,the truth can be adapted.This paper presents a novel framework for generating human-understandable rules using the Classification and Regression Tree(CART)decision tree method,which ensures both optimization and user trust in automated decision-making processes.The framework generates comprehensible rules in the form of if condition and then predicts class even in domains where noise is present.The proposed system transforms enterprise operations by automating the production of human-readable rules from structured data,resulting in increased efficiency and transparency.Removing the need for human rule construction saves time and money while guaranteeing that users can readily check and trust the automatic judgments of the system.The remarkable performance metrics of the framework,which achieve 99.85%accuracy and 96.30%precision,further support its efficiency in translating complex data into comprehensible rules,eventually empowering users and enhancing organizational decision-making processes.
文摘Supply chain traceability is a critical aspect of modern business operations,and blockchain technology has emerged as a promising solution to enhance traceability in supply chain management.However,the effective application of blockchain faces various challenges and limitations.This study aims to investigate how blockchain technology can address these challenges and improve traceability within supply chains.Employing a systematic literature review combined with interpretative structural modeling(ISM),we comprehensively assess and classify the literature on blockchain-enabled supply chain traceability.Our exploratory research approach delves into the contributions of blockchain technology and identifies key factors that enhance traceability.We adopt a mixed-methods approach,incorporating both secondary and primary data to ensure robust analysis.Our study addresses essential questions regarding the application,advantages,limitations,challenges,integration with other technologies,and future potential of blockchain in supply chain traceability.Through a systematic review and the ISM technique,we identify crucial levels and factors necessary for leveraging blockchain technology effectively.Our findings underscore the importance of a robust infrastructure,cutting-edge technology,and significant initial investment in implementing blockchain for supply chain traceability.This research offers a comprehensive understanding of the factors and their levels,providing valuable insights for industry professionals and academic researchers.By laying a solid foundation for informed decision-making and further exploration into the potential of blockchain-enhanced supply chain traceability,our study contributes to advancing knowledge in this crucial area of business operations.
文摘Food is one of the biggest industries in developed and underdeveloped countries. Supply chain sustainability is essential in established and emerging economies because of the rising acceptance of cost-based outsourcing and the growing technological, social, and environmental concerns. The food business faces serious sustainability and growth challenges in developing countries. A comprehensive analysis of the critical success factors (CSFs) influencing the performance outcome and the sustainable supply chain management (SSCM) process. A theoretical framework is established to explain how they are used to examine the organizational aspect of the food supply chain life cycle analysis. This study examined the CSFs and revealed the relationships between them using a methodology that included a review of literature, interpretative structural modeling (ISM), and cross-impact matrix multiplication applied in classification (MICMAC) tool analysis of soil liquefaction factors. The findings of this research demonstrate that the quality and safety of food are important factors and have a direct effect on other factors. To make sustainable food supply chain management more adequate, legislators, managers, and experts need to pay attention to this factor. In this work. It also shows that companies aiming to create a sustainable business model must make sustainability a fundamental tenet of their organization. Practitioners and managers may devise effective long-term plans for establishing a sustainable food supply chain utilizing the recommended methodology.
文摘This study is novel,as it aims to generate an emergency scenario model for the analysis of dynamic risks in business parks to help decision-makers provide an optimal response in any emergency.To this end,the CIA-ISM methodology,which is the combination of Cross-Impact Analysis(CIA)and Interpretative Structural Model(ISM),allows the representation of all possible connections among risks,as well as representing real events under conditions of uncertainty.The proposed model integrates the use of an information system for the generation of multiple emergency scenarios that include the capture of complex interactions among agents,resources and variable environmental conditions.The results highlight the capacity of the proposed emergency scenario model based on CIA-ISM for the analysis of dynamic risks in business parks,identification of hidden vulnerabilities and evaluation of mitigation strategies in real-time.This study not only expands the theoretical knowledge of emergency management but also provides a useful tool to improve preparedness and response capacity in the face of adverse events in dynamic and complex environments.
基金Projects(2016YFE0200100,2018YFC1505300-5.3)supported by the National Key Research&Development Plan of ChinaProject(51639002)supported by the Key Program of National Natural Science Foundation of China
文摘Discernment of seismic soil liquefaction is a complex and non-linear procedure that is affected by diversified factors of uncertainties and complexity.The Bayesian belief network(BBN)is an effective tool to present a suitable framework to handle insights into such uncertainties and cause–effect relationships.The intention of this study is to use a hybrid approach methodology for the development of BBN model based on cone penetration test(CPT)case history records to evaluate seismic soil liquefaction potential.In this hybrid approach,naive model is developed initially only by an interpretive structural modeling(ISM)technique using domain knowledge(DK).Subsequently,some useful information about the naive model are embedded as DK in the K2 algorithm to develop a BBN-K2 and DK model.The results of the BBN models are compared and validated with the available artificial neural network(ANN)and C4.5 decision tree(DT)models and found that the BBN model developed by hybrid approach showed compatible and promising results for liquefaction potential assessment.The BBN model developed by hybrid approach provides a viable tool for geotechnical engineers to assess sites conditions susceptible to seismic soil liquefaction.This study also presents sensitivity analysis of the BBN model based on hybrid approach and the most probable explanation of liquefied sites,owing to know the most likely scenario of the liquefaction phenomenon.
基金sponsored by the National Natural Science Foundation of China(42072187,42090025)CNPC Key Project of Science and Technology(2021DQ0405)。
文摘The evolution of pore structure in shales is affected by both the thermal evolution of organic matter(OM)and by inorganic diagenesis,resulting in a wide variety of pore structures.This paper examines the OM distribution in lacustrine shales and its influence on pore structure,and describes the process of porosity development.The principal findings are:(i)Three distribution patterns of OM in lacustrine shales are distinguished;laminated continuous distribution,clumped distribution,and stellate scattered distribution.The differences in total organic carbon(TOC)content,free hydrocarbon content(S_(1)),and OM porosity among these distribution patterns are discussed.(ii)Porosity is negatively correlated with TOC and plagioclase content and positively correlated with quartz,dolomite,and clay mineral content.(iii)Pore evolution in lacustrine shales is characterized by a sequence of decreasing-increasing-decreasing porosity,followed by continuously increasing porosity until a relatively stable condition is reached.(iv)A new model for evaluating porosity in lacustrine shales is proposed.Using this model,the organic and inorganic porosity of shales in the Permian Lucaogou Formation are calculated to be 2.5%-5%and 1%-6.3%,respectively,which correlate closely with measured data.These findings may provide a scientific basis and technical support for the sweet spotting in lacustrine shales in China.
文摘Characterized by self-monitoring and agile adaptation to fast changing dynamics in complex production environments,smart manufacturing as envisioned under Industry 4.0 aims to improve the throughput and reliability of production beyond the state-of-the-art.While the widespread application of deep learning(DL)has opened up new opportunities to accomplish the goal,data quality and model interpretability have continued to present a roadblock for the widespread acceptance of DL for real-world applications.This has motivated research on two fronts:data curation,which aims to provide quality data as input for meaningful DL-based analysis,and model interpretation,which intends to reveal the physical reasoning underlying DL model outputs and promote trust from the users.This paper summarizes several key techniques in data curation where breakthroughs in data denoising,outlier detection,imputation,balancing,and semantic annotation have demonstrated the effectiveness in information extraction from noisy,incomplete,insufficient,and/or unannotated data.Also highlighted are model interpretation methods that address the“black-box”nature of DL towards model transparency.
基金the National Key R&D Program of China(No.2018YFB0704404)the Guangdong Basic and Applied Basic Research Foundation(No.2020A1515110798)+1 种基金the National Natural Science Foundation of China(Grant Nos.91860115)the Stable Supporting Fund of Shenzhen(GXWD20201230155427003-20200728114835006)。
文摘A data augmentation technique is employed in the current work on a training dataset of 610 bulk metallic glasses(BMGs),which are randomly selected from 762 collected data.An ensemble machine learning(ML)model is developed on augmented training dataset and tested by the rest 152 data.The result shows that ML model has the ability to predict the maximal diameter Dmaxof BMGs more accurate than all reported ML models.In addition,the novel ML model gives the glass forming ability(GFA)rules:average atomic radius ranging from 140 pm to 165 pm,the value of TT/(T-T)(T-T)being higher than 2.5,the entropy of mixing being higher than 10 J/K/mol,and the enthalpy of mixing ranging from-32 k J/mol to-26 k J/mol.ML model is interpretative,thereby deepening the understanding of GFA.
基金the National Basic Research Program of China (973 Program) ( 2007CB407206)the National Key Technologies Research and Develop-ment Program in the Eleventh Five-Year Plan of China (2006BAC01A11)
文摘For ecological restoration and reconstruction of the degraded area, it is an important premise to correctly understand the degradation factors of the ecosystem in the arid-hot valleys. The factors including vegetation degradation, land degradation, arid climate, policy failure, forest fire, rapid population growth, excessive deforestation, overgrazing, steep slope reclamation, economic poverty, engineering construction, lithology, slope, low cultural level, geological hazards, biological disaster, soil properties etc, were selected to study the Yuanmou arid-hot valleys. Based on the interpretative structural model (ISM), it has found out that the degradation factors of the Yuanmou arid-hot valleys were not at the same level but in a multilevel hierarchical system with internal relations, which pointed out that the degradation mode of the arid-hot valleys was "straight (appearance)-penetrating-background". Such researches have important directive significance for the restoration and reconstruction of the arid-hot valleys ecosystem.
基金supported by the Research Program through the National Research Foundation of Korea,NRF-2018R1D1A1B07050864.
文摘This study was conducted to enable prompt classification of malware,which was becoming increasingly sophisticated.To do this,we analyzed the important features of malware and the relative importance of selected features according to a learning model to assess how those important features were identified.Initially,the analysis features were extracted using Cuckoo Sandbox,an open-source malware analysis tool,then the features were divided into five categories using the extracted information.The 804 extracted features were reduced by 70%after selecting only the most suitable ones for malware classification using a learning model-based feature selection method called the recursive feature elimination.Next,these important features were analyzed.The level of contribution from each one was assessed by the Random Forest classifier method.The results showed that System call features were mostly allocated.At the end,it was possible to accurately identify the malware type using only 36 to 76 features for each of the four types of malware with the most analysis samples available.These were the Trojan,Adware,Downloader,and Backdoor malware.
文摘In order to improve the interpretation of production log data on gas-water elongated bubble (EB) flow in horizontal wells, a multi-phase flow simulation device was set up to conduct a series of measurement experiments using air and tap water as test media, which were measured using a real production logging tool (PLT) string at different deviations and in different mixed flow states. By understanding the characteristics and mechanisms of gas-water EB flow in transparent experimental boreholes during production logging, combined with an analysis of the production log response characteristics and experimental production logging flow pattern maps, a method for flow pattern identification relying on log responses and a drift-flux model were proposed for gas-water EB flow. This model, built upon experimental data of EB flow, reveals physical mechanisms of gas-water EB flow during measurement processing. The coefficients it contains are the specific values under experimental conditions and with the PLT string used in our experiments. These coefficients also reveal the interference with original downhole flow patterns by the PLT string. Due to the representativeness that our simulated flow experiments and PLT string possess, the model coefficients can be applied as empirical values of logging interpretation model parameters directly to real production logging data interpretation, when the measurement circumstances and PLT strings are similar.