期刊文献+
共找到33,176篇文章
< 1 2 250 >
每页显示 20 50 100
Physics-guided interpretable CNN for SAR target recognition
1
作者 Peng LI Xiaowei HU +1 位作者 Cunqian FENG Weike FENG 《Chinese Journal of Aeronautics》 2025年第5期317-334,共18页
Deep Learning(DL)model has been widely used in the field of Synthetic Aperture Radar Automatic Target Recognition(SAR-ATR)and has achieved excellent performance.However,the black-box nature of DL models has been the f... Deep Learning(DL)model has been widely used in the field of Synthetic Aperture Radar Automatic Target Recognition(SAR-ATR)and has achieved excellent performance.However,the black-box nature of DL models has been the focus of criticism,especially in the application of SARATR,which is closely associated with the national defense and security domain.To address these issues,a new interpretable recognition model Physics-Guided BagNet(PGBN)is proposed in this article.The model adopts an interpretable convolutional neural network framework and uses time–frequency analysis to extract physical scattering features in SAR images.Based on the physical scattering features,an unsupervised segmentation method is proposed to distinguish targets from the background in SAR images.On the basis of the segmentation result,a structure is designed,which constrains the model's spatial attention to focus more on the targets themselves rather than the background,thereby making the model's decision-making more in line with physical principles.In contrast to previous interpretable research methods,this model combines interpretable structure with physical interpretability,further reducing the model's risk of error recognition.Experiments on the MSTAR dataset verify that the PGBN model exhibits excellent interpretability and recognition performance,and comparative experiments with heatmaps indicate that the physical feature guidance module presented in this article can constrain the model to focus more on the target itself rather than the background. 展开更多
关键词 SAR-ATR Time-frequency analysis interpretable deep learning Convolutional neural net-work Physically interpretable
原文传递
Data-driven Study on Interpreting Education Empirical Researches in China
2
作者 JIA Xiaoqing YUE Baoling 《Psychology Research》 2025年第1期10-19,共10页
Based on 1,003 articles about empirical research on interpreting teaching from 2002 to 2022 retrieved from China National Knowledge Internet,this paper extracts three main research methods,uncovering common problems i... Based on 1,003 articles about empirical research on interpreting teaching from 2002 to 2022 retrieved from China National Knowledge Internet,this paper extracts three main research methods,uncovering common problems in interpreting education and practical teaching suggestions:(1)Corpus-based researches collect numerous audios to study typical mistakes made by interpreting learners,particularly pause and self-repair,and suggest interpreting teaching improve learners’ability to use language chunks and encourage students to interpret smoothly;(2)Questionnaire surveys help understand requirements for professional interpreters and how interpreting teaching meets market demands;(3)Teaching experiments last for one to two semesters,addressing issues like outdated teaching materials and modes,and show how teaching materials and modes integrate modern technology.But empirical researches need to build new corpora,professional interpreters’corpora and address problems that haven’t been adequately discussed.This paper is helpful for improving interpreting education in China and other countries and for making clear tasks to be fulfilled in empirical research on interpreting education. 展开更多
关键词 Chinese interpreting education empirical research interpreting learner corpus questionnaire survey teaching experiment
在线阅读 下载PDF
Preoperative prediction of textbook outcome in intrahepatic cholangiocarcinoma by interpretable machine learning: A multicenter cohort study 被引量:1
3
作者 Ting-Feng Huang Cong Luo +9 位作者 Luo-Bin Guo Hong-Zhi Liu Jiang-Tao Li Qi-Zhu Lin Rui-Lin Fan Wei-Ping Zhou Jing-Dong Li Ke-Can Lin Shi-Chuan Tang Yong-Yi Zeng 《World Journal of Gastroenterology》 2025年第11期33-45,共13页
BACKGROUND To investigate the preoperative factors influencing textbook outcomes(TO)in Intrahepatic cholangiocarcinoma(ICC)patients and evaluate the feasibility of an interpretable machine learning model for preoperat... BACKGROUND To investigate the preoperative factors influencing textbook outcomes(TO)in Intrahepatic cholangiocarcinoma(ICC)patients and evaluate the feasibility of an interpretable machine learning model for preoperative prediction of TO,we developed a machine learning model for preoperative prediction of TO and used the SHapley Additive exPlanations(SHAP)technique to illustrate the prediction process.AIM To analyze the factors influencing textbook outcomes before surgery and to establish interpretable machine learning models for preoperative prediction.METHODS A total of 376 patients diagnosed with ICC were retrospectively collected from four major medical institutions in China,covering the period from 2011 to 2017.Logistic regression analysis was conducted to identify preoperative variables associated with achieving TO.Based on these variables,an EXtreme Gradient Boosting(XGBoost)machine learning prediction model was constructed using the XGBoost package.The SHAP(package:Shapviz)algorithm was employed to visualize each variable's contribution to the model's predictions.Kaplan-Meier survival analysis was performed to compare the prognostic differences between the TO-achieving and non-TO-achieving groups.RESULTS Among 376 patients,287 were included in the training group and 89 in the validation group.Logistic regression identified the following preoperative variables influencing TO:Child-Pugh classification,Eastern Cooperative Oncology Group(ECOG)score,hepatitis B,and tumor size.The XGBoost prediction model demonstrated high accuracy in internal validation(AUC=0.8825)and external validation(AUC=0.8346).Survival analysis revealed that the disease-free survival rates for patients achieving TO at 1,2,and 3 years were 64.2%,56.8%,and 43.4%,respectively.CONCLUSION Child-Pugh classification,ECOG score,hepatitis B,and tumor size are preoperative predictors of TO.In both the training group and the validation group,the machine learning model had certain effectiveness in predicting TO before surgery.The SHAP algorithm provided intuitive visualization of the machine learning prediction process,enhancing its interpretability. 展开更多
关键词 Intrahepatic cholangiocarcinoma Textbook outcome interpretable machine learning PREDICTION PROGNOSIS
暂未订购
Interpretable machine learning excavates a low-alloyed magnesium alloy with strength-ductility synergy based on data augmentation and reconstruction 被引量:1
4
作者 Qinghang Wang Xu Qin +6 位作者 Shouxin Xia Li Wang Weiqi Wang Weiying Huang Yan Song Weineng Tang Daolun Chen 《Journal of Magnesium and Alloys》 2025年第6期2866-2883,共18页
The application of machine learning in alloy design is increasingly widespread,yet traditional models still face challenges when dealing with limited datasets and complex nonlinear relationships.This work proposes an ... The application of machine learning in alloy design is increasingly widespread,yet traditional models still face challenges when dealing with limited datasets and complex nonlinear relationships.This work proposes an interpretable machine learning method based on data augmentation and reconstruction,excavating high-performance low-alloyed magnesium(Mg)alloys.The data augmentation technique expands the original dataset through Gaussian noise.The data reconstruction method reorganizes and transforms the original data to extract more representative features,significantly improving the model's generalization ability and prediction accuracy,with a coefficient of determination(R^(2))of 95.9%for the ultimate tensile strength(UTS)model and a R^(2)of 95.3%for the elongation-to-failure(EL)model.The correlation coefficient assisted screening(CCAS)method is proposed to filter low-alloyed target alloys.A new Mg-2.2Mn-0.4Zn-0.2Al-0.2Ca(MZAX2000,wt%)alloy is designed and extruded into bar at given processing parameters,achieving room-temperature strength-ductility synergy showing an excellent UTS of 395 MPa and a high EL of 17.9%.This is closely related to its hetero-structured characteristic in the as-extruded MZAX2000 alloy consisting of coarse grains(16%),fine grains(75%),and fiber regions(9%).Therefore,this work offers new insights into optimizing alloy compositions and processing parameters for attaining new high strong and ductile low-alloyed Mg alloys. 展开更多
关键词 Magnesium alloy interpretable machine learning Alloy design Hetero-structure Strength-ductility synergy
在线阅读 下载PDF
A Deep-Learning-Based Method for Interpreting Distribution and Difference Knowledge from Raster Topographic Maps 被引量:1
5
作者 PAN Yalan TI Peng +1 位作者 LI Mingyao LI Zhilin 《Journal of Geodesy and Geoinformation Science》 2025年第2期21-36,共16页
Topographic maps,as essential tools and sources of information for geographic research,contain precise spatial locations and rich map features,and they illustrate spatio-temporal information on the distribution and di... Topographic maps,as essential tools and sources of information for geographic research,contain precise spatial locations and rich map features,and they illustrate spatio-temporal information on the distribution and differences of various surface features.Currently,topographic maps are mainly stored in raster and vector formats.Extraction of the spatio-temporal knowledge in the maps—such as spatial distribution patterns,feature relationships,and dynamic evolution—still primarily relies on manual interpretation.However,manual interpretation is time-consuming and laborious,especially for large-scale,long-term map knowledge extraction and application.With the development of artificial intelligence technology,it is possible to improve the automation level of map knowledge interpretation.Therefore,the present study proposes an automatic interpretation method for raster topographic map knowledge based on deep learning.To address the limitations of current data-driven intelligent technology in learning map spatial relations and cognitive logic,we establish a formal description of map knowledge by mapping the relationship between map knowledge and features,thereby ensuring interpretation accuracy.Subsequently,deep learning techniques are employed to extract map features automatically,and the spatio-temporal knowledge is constructed by combining formal descriptions of geographic feature knowledge.Validation experiments demonstrate that the proposed method effectively achieves automatic interpretation of spatio-temporal knowledge of geographic features in maps,with an accuracy exceeding 80%.The findings of the present study contribute to machine understanding of spatio-temporal differences in map knowledge and advances the intelligent interpretation and utilization of cartographic information. 展开更多
关键词 raster topographic maps geographic feature knowledge intelligent interpretation deep learning
在线阅读 下载PDF
Prediction of ionic liquid toxicity by interpretable machine learning
6
作者 Haijun Feng Li Jiajia Zhou Jian 《Chinese Journal of Chemical Engineering》 2025年第8期201-210,共10页
The potential toxicity of ionic liquids(ILs)affects their applications;how to control the toxicity is one of the key issues in their applications.To understand its toxicity structure relationship and promote its green... The potential toxicity of ionic liquids(ILs)affects their applications;how to control the toxicity is one of the key issues in their applications.To understand its toxicity structure relationship and promote its greener application,six different machine learning algorithms,including Bagging,Adaptive Boosting(AdaBoost),Gradient Boosting(GBoost),Stacking,Voting and Categorical Boosting(CatBoost),are established to model the toxicity of ILs on four distinct datasets including Leukemia rat cell line IPC-81(IPC-81),Acetylcholinesterase(AChE),Escherichia coli(E.coli)and Vibrio fischeri.Molecular descriptors obtained from the simplified molecular input line entry system(SMILES)are used to characterize ILs.All models are assessed by the mean square error(MSE),root mean square error(RMSE),mean absolute error(MAE)and correlation coefficient(R^(2)).Additionally,an interpretation model based on SHapley Additive exPlanations(SHAP)is built to determine the positive and negative effects of each molecular feature on toxicity.With additional parameters and complexity,the Catboost model outperforms the other models,making it a more reliable model for ILs'toxicity prediction.The results of the model's interpretation indicate that the most significant positive features,SMR_VSA5,PEOE_VSA8,Kappa2,PEOE_VSA6,SMR_VSA5,PEOE_VSA6 and EState_VSA1,can increase the toxicity of ILs as their levels rise,while the most significant negative features,VSA_EState7,EState_VSA8,PEOE_VSA9 and FpDensityMorgan1,can decrease the toxicity as their levels rise.Also,an IL's toxicity will grow as its average molecular weight and number of pyridine rings increase,whereas its toxicity will decrease as its hydrogen bond acceptors increase.This finding offers a theoretical foundation for rapid screening and synthesis of environmentally-benign ILs. 展开更多
关键词 Ionic liquids TOXICITY Machine learning Model PREDICTION interpretATION
在线阅读 下载PDF
Machine learning accelerated catalysts design for CO reduction:An interpretability and transferability analysis
7
作者 Yuhang Wang Yaqin Zhang +4 位作者 Ninggui Ma Jun Zhao Yu Xiong Shuang Luo Jun Fan 《Journal of Materials Science & Technology》 2025年第10期14-23,共10页
Developing machine learning frameworks with predictive power,interpretability,and transferability is crucial,yet it faces challenges in the field of electrocatalysis.To achieve this,we employed rigorous feature engine... Developing machine learning frameworks with predictive power,interpretability,and transferability is crucial,yet it faces challenges in the field of electrocatalysis.To achieve this,we employed rigorous feature engineering to establish a finely tuned gradient boosting regressor(GBR)model,which adeptly captures the physical complexity from feature space to target variables.We demonstrated that environmental electron effects and atomic number significantly govern the success of the mapping process via global and local explanations.The finely tuned GBR model exhibits exceptional robustness in predicting CO adsorption energies(R_(ave)^(2)=0.937,RMSE=0.153 eV).Moreover,the model demonstrated remarkable transfer learning ability,showing excellent predictive power for OH,NO,and N_(2) adsorption.Importantly,the GBR model exhibits exceptional predictive capability across an extensive search space,thereby demonstrating profound adaptability and versatility.Our research framework significantly enhances the interpretability and transferability of machine learning in electrocatalysis,offering vital insights for further advancements. 展开更多
关键词 Machine learning First-principles calculation interpretABILITY Transferability CO reduction
原文传递
Toward the rational design for low-temperature hydrogenation of silicon tetrachloride:Mechanism and data-driven interpretable descriptor
8
作者 Zhe Ding Li Guo +3 位作者 Fang Bai Chao Hua Ping Lu Jinyi Chen 《Chinese Journal of Chemical Engineering》 2025年第3期172-184,共13页
Low-temperature hydrogenation of silicon tetrachloride(STC)is an essential step in polysilicon production.The addition of CuCl to silicon powder is currently a commonly used catalytic method and the silicon powder act... Low-temperature hydrogenation of silicon tetrachloride(STC)is an essential step in polysilicon production.The addition of CuCl to silicon powder is currently a commonly used catalytic method and the silicon powder acts as both a reactant and a catalyst.However,the reaction mechanism and the structure-activity relationship of this process have not been fully elucidated.In this work,a comprehensive study of the reaction mechanism in the presence of Si and Cu_(3)Si was carried out using density functional theory(DFT)combined with experiments,respectively.The results indicated that the ratedetermining step(RDS)in the presence of Si is the phase transition of Si atom,meanwhile,the RDS in the presence of Cu_(3)Si is the TCS-generation process.The activation barrier of the latter is smaller,highlighting that the interaction of Si with the bulk phase is the pivotal factor influencing the catalytic activity.The feasibility of transition metal doping to facilitate this step was further investigated.The Si disengage energy(E_(d))was used as a quantitative parameter to assess the catalytic activity of the catalysts,and the optimal descriptor was determined through interpretable machine learning.It was demonstrated that d-band center and electron transfer play a crucial role in regulating the level of Ed.This work reveals the mechanism and structure-activity relationship for the low-temperature hydrogenation reaction of STC,and provides a basis for the rational design of catalysts. 展开更多
关键词 Silicon tetrachloride HYDROGENATION Reaction mechanism interpretable machine learning Catalyst Structure-activity relationship
在线阅读 下载PDF
Interpretable Machine Learning-Based Spring Algal Bloom Forecast Model for the Coastal Waters of Zhejiang
9
作者 HUANG Guoqiang BAO Min +3 位作者 ZHANG Zhao GU Dongming LIANG Liansong TAO Bangyi 《Journal of Ocean University of China》 2025年第1期1-12,共12页
The 2016–2022 monitoring data from three ecological buoys in the Wenzhou coastal region of Zhejiang Province and the dataset European Centre for Medium-Range Weather Forecasts were examined to clarify the elaborate r... The 2016–2022 monitoring data from three ecological buoys in the Wenzhou coastal region of Zhejiang Province and the dataset European Centre for Medium-Range Weather Forecasts were examined to clarify the elaborate relationship between variations in ecological parameters during spring algal bloom incidents and the associated changes in temperature and wind fields in this study.A long short-term memory recurrent neural network was employed,and a predictive model for spring algal bloom in this region was developed.This model integrated various inputs,including temperature,wind speed,and other pertinent variables,and chlorophyll concentration served as the primary output indicator.The model training used chlorophyll concentration data,which were supplemented by reanalysis and forecast temperature and wind field data.The model demonstrated proficiency in forecasting next-day chlorophyll concentrations and assessing the likelihood of spring algal bloom occurrences using a defined chlorophyll concentration threshold.The historical validation from 2016 to 2019 corroborated the model's accuracy with an 81.71%probability of correct prediction,which was further proven by its precise prediction of two spring algal bloom incidents in late April 2023 and early May 2023.An interpretable machine learning-based model for spring algal bloom prediction,displaying effective forecasting with limited data,was established through the detailed analysis of the spring algal bloom mechanism and the careful selection of input variables.The insights gained from this study offer valuable contributions to the development of early warning systems for spring algal bloom in the Wenzhou coastal area of Zhejiang Province. 展开更多
关键词 spring algal bloom FORECAST LSTM interpretable
在线阅读 下载PDF
Knowledge Driven Machine Learning Towards Interpretable Intelligent Prognostics and Health Management:Review and Case Study
10
作者 Ruqiang Yan Zheng Zhou +6 位作者 Zuogang Shang Zhiying Wang Chenye Hu Yasong Li Yuangui Yang Xuefeng Chen Robert X.Gao 《Chinese Journal of Mechanical Engineering》 2025年第1期31-61,共31页
Despite significant progress in the Prognostics and Health Management(PHM)domain using pattern learning systems from data,machine learning(ML)still faces challenges related to limited generalization and weak interpret... Despite significant progress in the Prognostics and Health Management(PHM)domain using pattern learning systems from data,machine learning(ML)still faces challenges related to limited generalization and weak interpretability.A promising approach to overcoming these challenges is to embed domain knowledge into the ML pipeline,enhancing the model with additional pattern information.In this paper,we review the latest developments in PHM,encapsulated under the concept of Knowledge Driven Machine Learning(KDML).We propose a hierarchical framework to define KDML in PHM,which includes scientific paradigms,knowledge sources,knowledge representations,and knowledge embedding methods.Using this framework,we examine current research to demonstrate how various forms of knowledge can be integrated into the ML pipeline and provide roadmap to specific usage.Furthermore,we present several case studies that illustrate specific implementations of KDML in the PHM domain,including inductive experience,physical model,and signal processing.We analyze the improvements in generalization capability and interpretability that KDML can achieve.Finally,we discuss the challenges,potential applications,and usage recommendations of KDML in PHM,with a particular focus on the critical need for interpretability to ensure trustworthy deployment of artificial intelligence in PHM. 展开更多
关键词 PHM Knowledge driven machine learning Signal processing Physics informed interpretABILITY
在线阅读 下载PDF
Bayesian interpretation of Husimi function and Wehrl entropy
11
作者 Chen Xu Yiqi Yu Peng Zhang 《Communications in Theoretical Physics》 2025年第9期35-42,共8页
The Husimi function(Q-function)of a quantum state is the distribution function of the density operator in the coherent state representation.It is widely used in theoretical research,such as in quantum optics.The Wehrl... The Husimi function(Q-function)of a quantum state is the distribution function of the density operator in the coherent state representation.It is widely used in theoretical research,such as in quantum optics.The Wehrl entropy is the Shannon entropy of the Husimi function,and is nonzero even for pure states.This entropy has been extensively studied in mathematical physics.Recent research also suggests a significant connection between the Wehrl entropy and manybody quantum entanglement in spin systems.We investigate the statistical interpretation of the Husimi function and the Wehrl entropy,taking the system of N spin-1/2 particles as an example.Due to the completeness of coherent states,the Husimi function and Wehrl entropy can be explained via the positive operator-valued measurement(POVM)theory,although the coherent states are not a set of orthonormal basis.Here,with the help of the Bayes’theorem,we provide an alternative probabilistic interpretation for the Husimi function and the Wehrl entropy.This interpretation is based on direct measurements of the system,and thus does not require the introduction of an ancillary system as in the POVM theory.Moreover,under this interpretation the classical correspondences of the Husimi function and the Wehrl entropy are just phase-space probability distribution function of N classical tops,and its associated entropy,respectively.Therefore,this explanation contributes to a better understanding of the relationship between the Husimi function,Wehrl entropy,and classical-quantum correspondence.The generalization of this statistical interpretation to continuous-variable systems is also discussed. 展开更多
关键词 Bayesian interpretation Husimi function Wehrl entropy classical-quantum correspondence
原文传递
Research on the Paradigm Reconstruction of Interpreting Pedagogy Driven by Generative AI
12
作者 Huiying Yang Yefeng Qiao Mengmeng Liu 《Journal of Contemporary Educational Research》 2025年第8期85-93,共9页
This paper explores the paradigm reconstruction of interpreting pedagogy driven by generative AI technology.With the breakthroughs of AI technologies such as ChatGPT in natural language processing,traditional interpre... This paper explores the paradigm reconstruction of interpreting pedagogy driven by generative AI technology.With the breakthroughs of AI technologies such as ChatGPT in natural language processing,traditional interpreting education faces dual challenges of technological substitution and pedagogical transformation.Based on Kuhn’s paradigm theory,the study analyzes the limitations of three traditional interpreting teaching paradigms,language-centric,knowledge-based,and skill-acquisition-oriented,and proposes a novel“teacher-AI-learner”triadic collaborative paradigm.Through reconstructing teaching subjects,environments,and curriculum systems,the integration of real-time translation tools and intelligent terminology databases facilitates the transition from static skill training to dynamic human-machine collaboration.The research simultaneously highlights challenges in technological ethics and curriculum design transformation pressures,emphasizing the necessity to balance technological empowerment with humanistic education. 展开更多
关键词 Generative AI interpreting pedagogy Paradigm reconstruction Human-machine collaboration Technological ethics
在线阅读 下载PDF
New interpretation methods for rockhead determination using passive seismic surface wave data:Insights from Singapore
13
作者 Yu Zhang Jian Chu +1 位作者 Shifan Wu Kiefer Chiam 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第7期4008-4019,共12页
Accurate determination of rockhead is crucial for underground construction.Traditionally,borehole data are mainly used for this purpose.However,borehole drilling is costly,time-consuming,and sparsely distributed.Non-i... Accurate determination of rockhead is crucial for underground construction.Traditionally,borehole data are mainly used for this purpose.However,borehole drilling is costly,time-consuming,and sparsely distributed.Non-invasive geophysical methods,particularly those using passive seismic surface waves,have emerged as viable alternatives for geological profiling and rockhead detection.This study proposes three interpretation methods for rockhead determination using passive seismic surface wave data from Microtremor Array Measurement(MAM)and Horizontal-to-Vertical Spectral Ratio(HVSR)tests.These are:(1)the Wavelength-Normalized phase velocity(WN)method in which a nonlinear relationship between rockhead depth and wavelength is established;(2)the Statistically Determined-shear wave velocity(SD-V_(s))method in which the representative V_(s) value for rockhead is automatically determined using a statistical method;and(3)the empirical HVSR method in which the rockhead is determined by interpreting resonant frequencies using a reliably calibrated empirical equation.These methods were implemented to determine rockhead depths at 28 locations across two distinct geological formations in Singapore,and the results were evaluated using borehole data.The WN method can determine rockhead depths accurately and reliably with minimal absolute errors(average RMSE=3.11 m),demonstrating robust performance across both geological formations.Its advantage lies in interpreting dispersion curves alone,without the need for the inversion process.The SD-V_(s) method is practical in engineering practice owing to its simplicity.The empirical HVSR method reasonably determines rockhead depths with moderate accuracy,benefiting from a reliably calibrated empirical equation. 展开更多
关键词 Rockhead Microtremor array measurement Horizontal-to-vertical spectral ratio Site investigation GEOPHYSICS interpretation methods
在线阅读 下载PDF
Interpretation of nursing guidelines for intravenous thrombolysis in acute ischemic stroke
14
作者 Yawei YU Hong GUO +3 位作者 Ling TANG Jie ZHOU Guiying LIU Qingwen GENG 《Journal of Integrative Nursing》 2025年第1期54-61,共8页
The Interpretation of Nursing Guidelines for Intravenous Thrombolysis in Acute Ischemic Stroke offers comprehensive recommendations across five key domains:hospital organizational management,patient condition monitori... The Interpretation of Nursing Guidelines for Intravenous Thrombolysis in Acute Ischemic Stroke offers comprehensive recommendations across five key domains:hospital organizational management,patient condition monitoring,complication observation and management,positioning and mobility away from the bed,and quality assurance.These Guidelines encompass all the phases of intravenous thrombolysis care for patients experiencing acute ischemic stroke.This article aims to elucidate the Guidelines by discussing their developmental background,the designation process,usage recommendations,and the interpretation of evolving perspectives,thereby providing valuable insights for clinical practice. 展开更多
关键词 Acute ischemic stroke GUIDELINE guideline interpretation intravenous thrombolysis
暂未订购
Studying,Analyzing,and Interpreting the Gut Microbiome of the Earthworm M.peguana(Rosa,1890)Using Next-Generation Sequencing
15
作者 Rungroj Kraisittipanit Titiya Meechai +8 位作者 Arnat Tancho Patcharee Panraksa Phuriwat Khiewkamrop Narawadee Prathum Lalita Honghernsthit Tamkan Junyangdikul Dhanes Rangsrikajee Pairoj Junyangdikul Ranida Tuanudom 《Journal of Environmental & Earth Sciences》 2025年第7期185-197,共13页
This study investigates the diversity of gut microbiota in Metaphire peguana,an earthworm species commonly found in agricultural areas of Thailand.Earthworms play a critical role in soil ecosystems by supporting nutri... This study investigates the diversity of gut microbiota in Metaphire peguana,an earthworm species commonly found in agricultural areas of Thailand.Earthworms play a critical role in soil ecosystems by supporting nutrient cycling and breaking down organic matter.Understanding the microbial diversity in their gut is essential for exploring their ecological contributions.Using Next Generation Sequencing(NGS),we analyzed the mycobiome in the gut of M.peguana.Our findings revealed a high diversity of fungal species,primarily belonging to two major phyla:Ascomycota and Basidiomycota.Ascomycota was the most abundant phylum,comprising 40.1% of the total fungal species identified.A total of 33 distinct fungal species were identified,which underscores the richness of microbial life within the earthworm gut.This study successfully created the first genetic database of the microbial community in M.peguana,providing a foundation for future research in agricultural applications.The microbial species identified,particularly siderophoreproducing fungi,could have significant implications for improving soil fertility and promoting sustainable agricultural practices.The use of NGS technology has enabled comprehensive profiling of microbial communities,allowing for precise identification of fungi that may play essential roles in soil health.Furthermore,the study paves the way for future studies on the potential applications of earthworm gut microbiomes in biotechnology,especially in enhancing soil nutrient availability and plant growth.The findings of this research contribute to the broader understanding of the ecological roles of earthworms and their microbiomes in soil ecosystems. 展开更多
关键词 Gut Microbiome Metaphire peguana FUNGI EARTHWORM interpreting the Gut Microbiome Next-Generation Sequencing
在线阅读 下载PDF
Managing Linguistic Uncertainty in Interpreting:Insights from an Empirical Investigation
16
作者 HE Yan WANG Yi 《Journal of Literature and Art Studies》 2025年第10期750-761,共12页
Interpreting is a fast-paced activity where interpreters must make quick choices when faced with uncertainty. This study looks at how professional interpreters handle linguistic uncertainty in English-Chinese sight tr... Interpreting is a fast-paced activity where interpreters must make quick choices when faced with uncertainty. This study looks at how professional interpreters handle linguistic uncertainty in English-Chinese sight translation, with a focus on the strategies they use. By analyzing transcription data alongside instructor evaluations, we found that interpreters relied most on creative interpretation and omission, while strategies like paraphrasing, simplification, transformation, addition, and generalization appeared less often. The results show a clear preference for strategies that keep communication flowing without adding unnecessary cognitive load. These findings support the Processing Economy Hypothesis, which suggests interpreters naturally seek efficient ways to process language while maintaining meaning. The study also highlights practical implications for interpreter training, emphasizing the value of flexible, economy-oriented strategies to help interpreters stay fluent under pressure. 展开更多
关键词 linguistic uncertainty strategies Processing Economy Hypothesis interpretING English-Chinese sight translation
在线阅读 下载PDF
Artificial intelligence high-throughput prediction building dataset to enhance the interpretability of hybrid halide perovskite bandgap
17
作者 Wenning Chen Jungchul Yun +6 位作者 Doyun Im Sijia Li Kelvian T.Mularso Jihun Nam Bonghyun Jo Sangwook Lee Hyun Suk Jung 《Journal of Energy Chemistry》 2025年第10期649-661,共13页
The bandgap is a key parameter for understanding and designing hybrid perovskite material properties,as well as developing photovoltaic devices.Traditional bandgap calculation methods like ultravioletvisible spectrosc... The bandgap is a key parameter for understanding and designing hybrid perovskite material properties,as well as developing photovoltaic devices.Traditional bandgap calculation methods like ultravioletvisible spectroscopy and first-principles calculations are time-and power-consuming,not to mention capturing bandgap change mechanisms for hybrid perovskite materials across a wide range of unknown space.In the present work,an artificial intelligence ensemble comprising two classifiers(with F1 scores of 0.9125 and 0.925)and a regressor(with mean squared error of 0.0014 eV)is constructed to achieve high-precision prediction of the bandgap.The bandgap perovskite dataset is established through highthroughput prediction of bandgaps by the ensemble.Based on the self-built dataset,partial dependence analysis(PDA)is developed to interpret the bandgap influential mechanism.Meanwhile,an interpretable mathematical model with an R^(2)of 0.8417 is generated using the genetic programming symbolic regression(GPSR)technique.The constructed PDA maps agree well with the Shapley Additive exPlanations,the GPSR model,and experiment verification.Through PDA,we reveal the boundary effect,the bowing effect,and their evolution trends with key descriptors. 展开更多
关键词 Artificial intelligence HIGH-THROUGHPUT Perovskite bandgap Partial dependence analysis Model interpretability
在线阅读 下载PDF
Magnetic Structure of Agadem Petroleum Block(Termit Basin,Eastern Niger):Analysis and Interpretation of Aeromagnetic Data
18
作者 Abdourhamane Halidou Amadou 《Journal of Environmental & Earth Sciences》 2025年第5期492-506,共15页
The Agadem block is an area of major oil interest located in the large sedimentary basin of Termit,in the south-east of the Republic of Niger.Since the 1950s,this basin has known geological and geophysical research ac... The Agadem block is an area of major oil interest located in the large sedimentary basin of Termit,in the south-east of the Republic of Niger.Since the 1950s,this basin has known geological and geophysical research activities.However,despite the extensive research carried out,we believe that a geophysical contribution in terms of magnetic properties and their repercussions on the structure of the Agadem block allowing the improvement of existing knowledge is essential.The present study aims to study the structural characteristics of the Agadem block associated with magnetic anomalies.For this,after data shaping,several filtering techniques were applied to the aeromagnetic data to identify and map deep geological structures.The reduction to the pole map shows large negative wavelength anomalies in the southeast half of the block and short positive wavelength anomalies in the northwest part embedded in a large positive anomaly occupying the lower northern half of the block.The maps of the total horizontal derivative and tilt angle show lineaments globally distributed along the NW-SE direction in accordance with the structural style of the study area.The resulting map highlights numerous lineaments that may be associated with faults hidden by the sedimentary cover.The calculation of the Euler deconvolution allowed us to locate and estimate the depths of magnetic sources at variable depths of up to 4000 m.The compilation of the results obtained allowed us to locate zones of high and low intensities which correspond respectively to horsts and grabens as major structures of the Agadem block. 展开更多
关键词 Magnetic Structure Reduction to the Pole Magnetic Lineaments Filtering interpretATION Agadem Block
在线阅读 下载PDF
Prediction of abnormal TBM disc cutter wear in mixed ground condition using interpretable machine learning with data augmentation
19
作者 Kibeom Kwon Hangseok Choi +2 位作者 Jaehoon Jung Dongku Kim Young Jin Shin 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第4期2059-2071,共13页
The widespread adoption of tunnel boring machines(TBMs)has led to an increased focus on disc cutter wear,including both normal and abnormal types,for efficient and safe TBM excavation.However,abnormal wear has yet to ... The widespread adoption of tunnel boring machines(TBMs)has led to an increased focus on disc cutter wear,including both normal and abnormal types,for efficient and safe TBM excavation.However,abnormal wear has yet to be thoroughly investigated,primarily due to the complexity of considering mixed ground conditions and the imbalance in the number of instances between the two types of wear.This study developed a prediction model for abnormal TBM disc cutter wear,considering mixed ground conditions,by employing interpretable machine learning with data augmentation.An equivalent elastic modulus was used to consider the characteristics of mixed ground conditions,and wear data was obtained from 65 cutterhead intervention(CHI)reports covering both mixed ground and hard rock sections.With a balanced training dataset obtained by data augmentation,an extreme gradient boosting(XGB)model delivered acceptable results with an accuracy of 0.94,an F1-score of 0.808,and a recall of 0.8.In addition,the accuracy for each individual disc cutter exhibited low variability.When employing data augmentation,a significant improvement in recall was observed compared to when it was not used,although the difference in accuracy and F1-score was marginal.The subsequent model interpretation revealed the chamber pressure,cutter installation radius,and torque as significant contributors.Specifically,a threshold in chamber pressure was observed,which could induce abnormal wear.The study also explored how elevated values of these influential contributors correlate with abnormal wear.The proposed model offers a valuable tool for planning the replacement of abnormally worn disc cutters,enhancing the safety and efficiency of TBM operations. 展开更多
关键词 Disc cutter Abnormal wear Mixed ground interpretable machine learning Data augmentation
在线阅读 下载PDF
Dynamic interpretation of stress adjustment types in high geostress hard rock tunnels based on microseismic monitoring
20
作者 Weihao Xu Chunchi Ma +4 位作者 Tianbin Li Shoudong Shi Feng Peng Ziquan Chen Hang Zhang 《International Journal of Mining Science and Technology》 2025年第5期801-816,共16页
Dynamic stress adjustment in deep-buried high geostress hard rock tunnels frequently triggers catastrophic failures such as rockbursts and collapses.While a comprehensive understanding of this process is critical for ... Dynamic stress adjustment in deep-buried high geostress hard rock tunnels frequently triggers catastrophic failures such as rockbursts and collapses.While a comprehensive understanding of this process is critical for evaluating surrounding rock stability,its dynamic evolution are often overlooked in engineering practice.This study systematically summarizes a novel classification framework for stress adjustment types—stabilizing(two-zoned),shallow failure(three-zoned),and deep failure(four-zoned)—characterized by distinct stress adjustment stages.A dynamic interpretation technology system is developed based on microseismic monitoring,integrating key microseismic parameters(energy index EI,apparent stressσa,microseismic activity S),seismic source parameter space clustering,and microseismic paths.This approach enables precise identification of evolutionary stages,stress adjustment types,and failure precursors,thereby elucidating the intrinsic linkage between geomechanical processes(stress redistribution)and failure risks.The study establishes criteria and procedures for identifying stress adjustment types and their associated failure risks,which were successfully applied in the Grand Canyon Tunnel of the E-han Highway to detect 50 instances of disaster risks.The findings offer invaluable insights into understanding the evolution process of stress adjustment and pinpointing the disaster risks linked to hard rock in comparable high geostress tunnels. 展开更多
关键词 High geostress tunnels Stress adjustment types Microseismic monitoring Dynamic interpretation Risk identification
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部