This paper is an extended research for a novel technique used in the pose error compensations of the robot and manipulator calibration process based on an IT2FEI (interval type-2 fuzzy error interpolation) method. R...This paper is an extended research for a novel technique used in the pose error compensations of the robot and manipulator calibration process based on an IT2FEI (interval type-2 fuzzy error interpolation) method. Robot calibrations can be classified into model-based and modeless methods. A model-based calibration method normally requires that the practitioners understand the kinematics of the robot therefore may pose a challenger for field engineers. An alternative yet effective means for robot calibration is to use a modeless method; however with such a method there is a conflict between the calibration accuracy of the robot and the number of grid points used in the calibration task. In this paper, an interval type-2 fuzzy interpolation system is applied to improve the compensation accuracy of the robot in its 3D workspace. An on-line type-2 fuzzy inference system is implemented to meet the needs of on-line robot trajectory planning and control. The simulated results given in this paper show that not only robot compensation accuracy can be greatly improved, but also the calibration process can be significantly simplified, and it is more suitable for practical applications.展开更多
Purpose–This research aims to monitor seismic intensity along railway lines,study methods for calculating the extent of earthquake impact on railways and address practical challenges in estimating intensity distribut...Purpose–This research aims to monitor seismic intensity along railway lines,study methods for calculating the extent of earthquake impact on railways and address practical challenges in estimating intensity distribution along railway routes,thereby achieving graded post-earthquake response measures.Design/methodology/approach–The seismic intensity monitoring system for railways adopts a two-level architecture,namely the seismic intensity monitoring equipment and the seismic intensity rapid reporting information center processing platform.The platform obtains measured instrumental intensity through the seismic intensity monitoring equipment deployed along railways and combines it with the National Seismic Network Earthquake Catalog to generate real-time railway seismic intensity distribution maps using the Kriging interpolation algorithm.A calculation method for railway seismic impact intervals is designed to calculate the mileage intervals where the intensity area corresponding to each contour line in the seismic intensity distribution map intersects with the railway line.Findings–The system was deployed for practical earthquake monitoring demonstration applications on the Nanjiang Railway Line in Xinjiang.During the operational period,the seismic intensity monitoring equipment calculated and uploaded instrumental intensity values to the seismic intensity rapid reporting information center processing platform a total of nine times.Among these,earthquakes triggering the Kriging interpolation algorithm occurred twice.The system operated stably throughout the application period and successfully visualized relevant seismic impact data,such as earthquake intensity distribution maps and affected railway mileage sections.These results validate the system’s practicality and effectiveness.Originality/value–The seismic intensity monitoring for the railway system designed in this study can integrate the measured instrumental intensity data along railways and the earthquake catalog of the National Seismic Network.It uses the Kriging interpolation method to calculate the intensity distribution and determine the seismic impact scope,thereby addressing the issue that the seismic intensity distribution calculated by traditional attenuation formulas deviates from reality.The system can provide clear graded interval recommendations for post-earthquake disposal,effectively improve the efficiency of post-earthquake recovery and inspection and offer a decision-making basis for restoring railway operations quickly.展开更多
A novel suppression method of the phase noise is proposed to reduce the negative impacts of phase noise in coherent optical orthogonal frequency division multiplexing(CO-OFDM)systems.The method integrates the sub-symb...A novel suppression method of the phase noise is proposed to reduce the negative impacts of phase noise in coherent optical orthogonal frequency division multiplexing(CO-OFDM)systems.The method integrates the sub-symbol second-order polynomial interpolation(SSPI)with cubature Kalman filter(CKF)to improve the precision and effectiveness of the data processing through using a three-stage processing approach of phase noise.First of all,the phase noise values in OFDM symbols are calculated by using pilot symbols.Then,second-order Newton interpolation(SNI)is used in second-order interpolation to acquire precise noise estimation.Afterwards,every OFDM symbol is partitioned into several sub-symbols,and second-order polynomial interpolation(SPI)is utilized in the time domain to enhance suppression accuracy and time resolution.Ultimately,CKF is employed to suppress the residual phase noise.The simulation results show that this method significantly suppresses the impact of the phase noise on the system,and the error floors can be decreased at the condition of 16 quadrature amplitude modulation(16QAM)and 32QAM.The proposed method can greatly improve the CO-OFDM system's ability to tolerate the wider laser linewidth.This method,compared to the linear interpolation sub-symbol common phase error compensation(LI-SCPEC)and Lagrange interpolation and extended Kalman filter(LRI-EKF)algorithms,has superior suppression effect.展开更多
A 5-axis controller with curve interpolation function is developed to satisfy high-speed and high-precision computer numerical control (CNC) machining of machine parts with complex shapes in the authors-devised open C...A 5-axis controller with curve interpolation function is developed to satisfy high-speed and high-precision computer numerical control (CNC) machining of machine parts with complex shapes in the authors-devised open CNC system. The instruction for- mat of this interpolation method and the generation procedure of the numerical control (NC) files are introduced. The interpola- tion curves of both position vectors and orientation vectors constructed by the controller are C2 continuous and independent of machin...展开更多
The ensemble optimal interpolation (EnOI) is applied to the regional ocean modeling system (ROMS) with the ability to assimilate the along-track sea level anomaly (TSLA). This system is tested with an eddy-resol...The ensemble optimal interpolation (EnOI) is applied to the regional ocean modeling system (ROMS) with the ability to assimilate the along-track sea level anomaly (TSLA). This system is tested with an eddy-resolving system of the South China Sea (SCS). Background errors are derived from a running seasonal ensemble to account for the seasonal variability within the SCS. A fifth-order localization function with a 250 km localization radius is chosen to reduce the negative effects of sampling errors. The data assimilation system is tested from January 2004 to December 2006. The results show that the root mean square deviation (RMSD) of the sea level anomaly decreased from 10.57 to 6.70 cm, which represents a 36.6% reduction of error. The data assimilation reduces error for temperature within the upper 800 m and for salinity within the upper 200 m, although error degrades slightly at deeper depths. Surface currents are in better agreement with trajectories of surface drifters after data assimilation. The variance of sea level improves significantly in terms of both the amplitude and position of the strong and weak variance regions after assimilating TSLA. Results with AGE error (AGE) perform better than no AGE error (NoAGE) when considering the improvements of the temperature and the salinity. Furthermore, reasons for the extremely strong variability in the northern SCS in high resolution models are investigated. The results demonstrate that the strong variability of sea level in the high resolution model is caused by an extremely strong Kuroshio intrusion. Therefore, it is demonstrated that it is necessary to assimilate the TSLA in order to better simulate the SCS with high resolution models.展开更多
A modified time domain interpolation method is proposed for orthogonal frequency division multiplexing(OFDM)systems to address the problem that time domain interpolation in the least square(LS)channel estimation metho...A modified time domain interpolation method is proposed for orthogonal frequency division multiplexing(OFDM)systems to address the problem that time domain interpolation in the least square(LS)channel estimation method based on comb-type pilots cannot choose the pilot spacing flexibly.Firstly,the estimated channel frequency response(CFR)at pilot positions in the frequency domain is obtained by LS channel estimation based on comb-type pilots,and the estimated channel impulse response(CIR)in the time domain is obtained by linear interpolation and inverse fast Fourier transform(IFFT).Secondly,the error of the estimated CIR obtained by linear interpolation is analyzed by theoretical deduction,and a method for correcting it is proposed.Finally,an estimated CFR at all subcarrier positions in the frequency domain is obtained by performing zero padding in the time domain and fast Fourier transform(FFT)on the modified CIR.The simulation results suggest that the proposed method gives similar performance to time domain interpolation,yet it does not need to meet the condition of time domain interpolation that the number of subcarriers must be an integral multiple of pilot spacing to use it.The proposed method allows for flexible pilot spacing,reducing the number of pilots and the consumption of subcarriers used for channel estimation.展开更多
Spatial circular arc can be machined conveniently by a 5-axis NC machine tool.Based on the data sampling method,circular interpolation in two-dimensional plane is discussed briefly.The key is to solve the problem of c...Spatial circular arc can be machined conveniently by a 5-axis NC machine tool.Based on the data sampling method,circular interpolation in two-dimensional plane is discussed briefly.The key is to solve the problem of circular center ex- pressed in the workpiece coordinate system by means of the transformation matrix.Circular interpolation in three-dimensional space is analyzed in detail.The method of undetermined coefficient is used to solve the center of the spatial circle and the method of coor- dinate transformation is used to transform the spatial circle into the XY-plane.Circular arc in three-dimensional space can be ma- chined by the positional 5-axis machining and the conical surface can be machined by the continuous 5-axis machining.The velocity control is presented to avoid the feedrate fluctuation.The interpolation algorithms are tested by a simulation example and the inter- polation algorithms are proved feasible.The algorithms are applied to the 5-axis CNC system software.展开更多
Interpolation methods in ArcGIS_ESRI Geostatistical Analyst tool allow obtaining unknown values at unsampled points from observed data and generating continuous surfaces. In this paper, forest data variables as tree h...Interpolation methods in ArcGIS_ESRI Geostatistical Analyst tool allow obtaining unknown values at unsampled points from observed data and generating continuous surfaces. In this paper, forest data variables as tree height and diameter measured in two plots in Central Mountains in Spain. These data were georeferenced to obtain maps that can visualize the spatial variability of these forest variables. In order to evaluate the best interpolation method that could adequately explain the spatial variability of those variables, two interpolation methods were studied: inverse results was made by means of statistical methods to analyze distance weighted (IDW) and Ordinary Kriging (OK). A comparison of residuals. Results with the kriging method were slightly better.展开更多
A theorem for osculatory rational interpolation was shown to establish a new criterion of interpolation. On the basis of this conclusion a practical algorithm was presented to get a reduction model of the linear syste...A theorem for osculatory rational interpolation was shown to establish a new criterion of interpolation. On the basis of this conclusion a practical algorithm was presented to get a reduction model of the linear systems. Some numerical examples were given to explain the result in this paper.展开更多
The criteria of convergence, including a theorem of Grunwald- type and the rate of convergence in terms of the modulus omega phi (f,t) of Ditzian and Totik for truncated Hermite interpolation on ail arbitrary system o...The criteria of convergence, including a theorem of Grunwald- type and the rate of convergence in terms of the modulus omega phi (f,t) of Ditzian and Totik for truncated Hermite interpolation on ail arbitrary system of nodes are given.展开更多
Aiming at harmonic detection, fast Fourier transform can only detect integer harmonics precisely, short time Fourier transform can detect non-integer harmonics with low resolution, and some former wavelet based method...Aiming at harmonic detection, fast Fourier transform can only detect integer harmonics precisely, short time Fourier transform can detect non-integer harmonics with low resolution, and some former wavelet based methods have no aliasing-reduction scheme which result in low measurement precision and poor robustness. A frequency-domain interpolation algorithm to detect harmonics is proposed by choosing Shannon wavelet. Shannon wavelet is an orthogonal wavelet possessing best ideal frequency domain localization ability, it can restrict wavelet abasing but bring about Gibbs oscillation phenomenon simultaneously. An interpolation algorithm is developed to overcome this problem. Simulation reveals that the proposed method can effectively cancel aliasing, spectral leakage and Gibbs phenomenon, so it provides an effective means for power system harmonic analysis.展开更多
The work studies model reduction method for nonlinear systems based on proper orthogonal decomposition (POD)and discrete empirical interpolation method (DEIM). Instead of using the classical DEIM to directly approxima...The work studies model reduction method for nonlinear systems based on proper orthogonal decomposition (POD)and discrete empirical interpolation method (DEIM). Instead of using the classical DEIM to directly approximate thenonlinear term of a system, our approach extracts the main part of the nonlinear term with a linear approximation beforeapproximating the residual with the DEIM. We construct the linear term by Taylor series expansion and dynamic modedecomposition (DMD), respectively, so as to obtain a more accurate reconstruction of the nonlinear term. In addition, anovel error prediction model is devised for the POD-DEIM reduced systems by employing neural networks with the aid oferror data. The error model is cheaply computable and can be adopted as a remedy model to enhance the reduction accuracy.Finally, numerical experiments are performed on two nonlinear problems to show the performance of the proposed method.展开更多
In this paper sufficient conditions for mean convergence and rate of convergence of Hermite-Fejer type interpolation in the Lp norm on an arbitrary system of nodes are presented.
The linear interpolation of linear system on a family of linear systems is introduced and discussed. Some results and examples on singly generated systems on a finite dimensional vector space are given.
Ray-space based arbitrary viewpoint rendering without complex object segmentation or model construction is the main technology to realize Free Viewpoint Video(FVV) system for complex scenes. Ray-space interpolation an...Ray-space based arbitrary viewpoint rendering without complex object segmentation or model construction is the main technology to realize Free Viewpoint Video(FVV) system for complex scenes. Ray-space interpolation and compression are two key techniques for the solution. In this paper,correlation among multiple epipolar lines in ray-space data is analyzed,and a new method of ray-space interpolation with multi-epipolar lines matching is proposed. Comparing with the pixel-based matching interpolation method and the block-based matching interpolation method,the proposed method can achieve higher Peak Signal to Noise Ratio(PSNR) in interpolating rayspace data and rendering arbitrary viewpoint images.展开更多
This paper presents a free viewpoint video (FVV) system based on ray-space interpolation method The new algorithm matches individual pixels in corresponding scanline pairs by using a ruing technique. A sparse interm...This paper presents a free viewpoint video (FVV) system based on ray-space interpolation method The new algorithm matches individual pixels in corresponding scanline pairs by using a ruing technique. A sparse intermediate view disparity map is projected from matched dynamic programpixels firstly, and the holes (occluded pixels) are filled in by propagating the disparity of neighboring background pixels. After interpolating dense view images, an arbitrary virtual view image can be easily rendered from the dense ray-space converted from these view images. The proposed method is evaluated on the Middlebury data set and compared with other methods, experimental results show that the better quality of the intermediate view is obtained and the corresponding computational complexity is reduced significantly.展开更多
This paper analyzes and compares two time interpolators, i.e., time replica and time linear interpolator, for pilot aided channel estimation in orthogonal frequency division multiplexing (OFDM) systems. The mean squar...This paper analyzes and compares two time interpolators, i.e., time replica and time linear interpolator, for pilot aided channel estimation in orthogonal frequency division multiplexing (OFDM) systems. The mean square error (MSE) of two interpolators is theoretically derived for the general case. The equally spaced pilot arrangement is proposed as a special platform for these two time interpolators. Based on this proposed platform, the MSE of two time interpolators at the virtual pilot tones is derived analytically;moreover, the MSE of per channel estimator at the entire OFDM symbol based on per time interpolator is also derived. The effectiveness of the theoretical analysis is demonstrated by numerical simulation in both the time-invariant frequency-selective channel and the time varying frequency-selective channel.展开更多
With the rapid expansion of multimedia data,protecting digital information has become increasingly critical.Reversible data hiding offers an effective solution by allowing sensitive information to be embedded in multi...With the rapid expansion of multimedia data,protecting digital information has become increasingly critical.Reversible data hiding offers an effective solution by allowing sensitive information to be embedded in multimedia files while enabling full recovery of the original data after extraction.Audio,as a vital medium in communication,entertainment,and information sharing,demands the same level of security as images.However,embedding data in encrypted audio poses unique challenges due to the trade-offs between security,data integrity,and embedding capacity.This paper presents a novel interpolation-based reversible data hiding algorithm for encrypted audio that achieves scalable embedding capacity.By increasing sample density through interpolation,embedding opportunities are significantly enhanced while maintaining encryption throughout the process.The method further integrates multiple most significant bit(multi-MSB)prediction and Huffman coding to optimize compression and embedding efficiency.Experimental results on standard audio datasets demonstrate the proposed algorithm’s ability to embed up to 12.47 bits per sample with over 9.26 bits per sample available for pure embedding capacity,while preserving full reversibility.These results confirm the method’s suitability for secure applications that demand high embedding capacity and perfect reconstruction of original audio.This work advances reversible data hiding in encrypted audio by offering a secure,efficient,and fully reversible data hiding framework.展开更多
Multiple-input multiple-output(MIMO)technology has been promoted to achieve high-speed data transmission.Compared to the orthogonal frequency division multiplexing(OFDM)based MIMO systems,the single-carrier scheme(SC)...Multiple-input multiple-output(MIMO)technology has been promoted to achieve high-speed data transmission.Compared to the orthogonal frequency division multiplexing(OFDM)based MIMO systems,the single-carrier scheme(SC)has attracted lots of attention due to its low peak-to-average ratio(PAPR)feature and is quite suitable for longdistance transmission.However,one of the significant challenges of SC-MIMO systems is the vast complexity of channel equalization and signal detection,especially for the inter-symbol interference(ISI)caused by the multipath channel.The single carrier frequency domain equalization-based minimum mean square error(SCFDE-MMSE)algorithm is proved to achieve satisfying performance.However,it involves large numbers of DFTs and large-scale matrix inversions,which is unacceptable for practical systems.In this paper,a low-complexity SCFDE-MMSE(LCSCFDE-MMSE)algorithm is proposed.Firstly,the characteristics of cyclic matrix and DFT cyclic shift are combined to reduce the number of DFTs.Secondly,SCFDE is transformed into a symbol-wise manner to avoid large-scale matrix inversions.Finally,a frequency-domain interpolation method is proposed to reduce the number of small-scale matrix inversions further.According to the evaluation results,the pro-Received:Jan.18,2022 Revised:Mar.25,2022 Editor:Xiao Zhenyu posed LC-SCFDE-MMSE reduces the complexity of the traditional SCFDE-MMSE algorithm by more than one order of magnitude with less than 0.1 dB performance loss.展开更多
Data hiding methods involve embedding secret messages into cover objects to enable covert communication in a way that is difficult to detect.In data hiding methods based on image interpolation,the image size is reduce...Data hiding methods involve embedding secret messages into cover objects to enable covert communication in a way that is difficult to detect.In data hiding methods based on image interpolation,the image size is reduced and then enlarged through interpolation,followed by the embedding of secret data into the newly generated pixels.A general improving approach for embedding secret messages is proposed.The approach may be regarded a general model for enhancing the data embedding capacity of various existing image interpolation-based data hiding methods.This enhancement is achieved by expanding the range of pixel values available for embedding secret messages,removing the limitations of many existing methods,where the range is restricted to powers of two to facilitate the direct embedding of bit-based messages.This improvement is accomplished through the application of multiple-based number conversion to the secret message data.The method converts the message bits into a multiple-based number and uses an algorithm to embed each digit of this number into an individual pixel,thereby enhancing the message embedding efficiency,as proved by a theorem derived in this study.The proposed improvement method has been tested through experiments on three well-known image interpolation-based data hiding methods.The results show that the proposed method can enhance the three data embedding rates by approximately 14%,13%,and 10%,respectively,create stego-images with good quality,and resist RS steganalysis attacks.These experimental results indicate that the use of the multiple-based number conversion technique to improve the three interpolation-based methods for embedding secret messages increases the number of message bits embedded in the images.For many image interpolation-based data hiding methods,which use power-of-two pixel-value ranges for message embedding,other than the three tested ones,the proposed improvement method is also expected to be effective for enhancing their data embedding capabilities.展开更多
文摘This paper is an extended research for a novel technique used in the pose error compensations of the robot and manipulator calibration process based on an IT2FEI (interval type-2 fuzzy error interpolation) method. Robot calibrations can be classified into model-based and modeless methods. A model-based calibration method normally requires that the practitioners understand the kinematics of the robot therefore may pose a challenger for field engineers. An alternative yet effective means for robot calibration is to use a modeless method; however with such a method there is a conflict between the calibration accuracy of the robot and the number of grid points used in the calibration task. In this paper, an interval type-2 fuzzy interpolation system is applied to improve the compensation accuracy of the robot in its 3D workspace. An on-line type-2 fuzzy inference system is implemented to meet the needs of on-line robot trajectory planning and control. The simulated results given in this paper show that not only robot compensation accuracy can be greatly improved, but also the calibration process can be significantly simplified, and it is more suitable for practical applications.
基金funded by the Research and Development Fund Project of China Academy of Railway Science Group Co.,Ltd.,(No:2023YJ259)the Science and Technology Research and Development Program Project of China State Railway Group Co.,Ltd.(No:J2024G008).
文摘Purpose–This research aims to monitor seismic intensity along railway lines,study methods for calculating the extent of earthquake impact on railways and address practical challenges in estimating intensity distribution along railway routes,thereby achieving graded post-earthquake response measures.Design/methodology/approach–The seismic intensity monitoring system for railways adopts a two-level architecture,namely the seismic intensity monitoring equipment and the seismic intensity rapid reporting information center processing platform.The platform obtains measured instrumental intensity through the seismic intensity monitoring equipment deployed along railways and combines it with the National Seismic Network Earthquake Catalog to generate real-time railway seismic intensity distribution maps using the Kriging interpolation algorithm.A calculation method for railway seismic impact intervals is designed to calculate the mileage intervals where the intensity area corresponding to each contour line in the seismic intensity distribution map intersects with the railway line.Findings–The system was deployed for practical earthquake monitoring demonstration applications on the Nanjiang Railway Line in Xinjiang.During the operational period,the seismic intensity monitoring equipment calculated and uploaded instrumental intensity values to the seismic intensity rapid reporting information center processing platform a total of nine times.Among these,earthquakes triggering the Kriging interpolation algorithm occurred twice.The system operated stably throughout the application period and successfully visualized relevant seismic impact data,such as earthquake intensity distribution maps and affected railway mileage sections.These results validate the system’s practicality and effectiveness.Originality/value–The seismic intensity monitoring for the railway system designed in this study can integrate the measured instrumental intensity data along railways and the earthquake catalog of the National Seismic Network.It uses the Kriging interpolation method to calculate the intensity distribution and determine the seismic impact scope,thereby addressing the issue that the seismic intensity distribution calculated by traditional attenuation formulas deviates from reality.The system can provide clear graded interval recommendations for post-earthquake disposal,effectively improve the efficiency of post-earthquake recovery and inspection and offer a decision-making basis for restoring railway operations quickly.
基金supported by the National Natural Science Foundation of China(Nos.U21A20447 and 61971079)。
文摘A novel suppression method of the phase noise is proposed to reduce the negative impacts of phase noise in coherent optical orthogonal frequency division multiplexing(CO-OFDM)systems.The method integrates the sub-symbol second-order polynomial interpolation(SSPI)with cubature Kalman filter(CKF)to improve the precision and effectiveness of the data processing through using a three-stage processing approach of phase noise.First of all,the phase noise values in OFDM symbols are calculated by using pilot symbols.Then,second-order Newton interpolation(SNI)is used in second-order interpolation to acquire precise noise estimation.Afterwards,every OFDM symbol is partitioned into several sub-symbols,and second-order polynomial interpolation(SPI)is utilized in the time domain to enhance suppression accuracy and time resolution.Ultimately,CKF is employed to suppress the residual phase noise.The simulation results show that this method significantly suppresses the impact of the phase noise on the system,and the error floors can be decreased at the condition of 16 quadrature amplitude modulation(16QAM)and 32QAM.The proposed method can greatly improve the CO-OFDM system's ability to tolerate the wider laser linewidth.This method,compared to the linear interpolation sub-symbol common phase error compensation(LI-SCPEC)and Lagrange interpolation and extended Kalman filter(LRI-EKF)algorithms,has superior suppression effect.
基金Key Development Program of Science and Technology of Heilongjiang Province, China (GB05A501)
文摘A 5-axis controller with curve interpolation function is developed to satisfy high-speed and high-precision computer numerical control (CNC) machining of machine parts with complex shapes in the authors-devised open CNC system. The instruction for- mat of this interpolation method and the generation procedure of the numerical control (NC) files are introduced. The interpola- tion curves of both position vectors and orientation vectors constructed by the controller are C2 continuous and independent of machin...
基金The Major State Basic Research Development Program of China under contract Nos 201-1CB403606 and 2011CB403500the National Natural Science Foundation of China under contract Nos 41222038,41076011and 41206023the National Marine Environmental Forecasting Center Operational Development Foundation of the State Oceanic Administration of China under contract No.2013002
文摘The ensemble optimal interpolation (EnOI) is applied to the regional ocean modeling system (ROMS) with the ability to assimilate the along-track sea level anomaly (TSLA). This system is tested with an eddy-resolving system of the South China Sea (SCS). Background errors are derived from a running seasonal ensemble to account for the seasonal variability within the SCS. A fifth-order localization function with a 250 km localization radius is chosen to reduce the negative effects of sampling errors. The data assimilation system is tested from January 2004 to December 2006. The results show that the root mean square deviation (RMSD) of the sea level anomaly decreased from 10.57 to 6.70 cm, which represents a 36.6% reduction of error. The data assimilation reduces error for temperature within the upper 800 m and for salinity within the upper 200 m, although error degrades slightly at deeper depths. Surface currents are in better agreement with trajectories of surface drifters after data assimilation. The variance of sea level improves significantly in terms of both the amplitude and position of the strong and weak variance regions after assimilating TSLA. Results with AGE error (AGE) perform better than no AGE error (NoAGE) when considering the improvements of the temperature and the salinity. Furthermore, reasons for the extremely strong variability in the northern SCS in high resolution models are investigated. The results demonstrate that the strong variability of sea level in the high resolution model is caused by an extremely strong Kuroshio intrusion. Therefore, it is demonstrated that it is necessary to assimilate the TSLA in order to better simulate the SCS with high resolution models.
基金The National Natural Science Foundation of China(No.51975117)。
文摘A modified time domain interpolation method is proposed for orthogonal frequency division multiplexing(OFDM)systems to address the problem that time domain interpolation in the least square(LS)channel estimation method based on comb-type pilots cannot choose the pilot spacing flexibly.Firstly,the estimated channel frequency response(CFR)at pilot positions in the frequency domain is obtained by LS channel estimation based on comb-type pilots,and the estimated channel impulse response(CIR)in the time domain is obtained by linear interpolation and inverse fast Fourier transform(IFFT).Secondly,the error of the estimated CIR obtained by linear interpolation is analyzed by theoretical deduction,and a method for correcting it is proposed.Finally,an estimated CFR at all subcarrier positions in the frequency domain is obtained by performing zero padding in the time domain and fast Fourier transform(FFT)on the modified CIR.The simulation results suggest that the proposed method gives similar performance to time domain interpolation,yet it does not need to meet the condition of time domain interpolation that the number of subcarriers must be an integral multiple of pilot spacing to use it.The proposed method allows for flexible pilot spacing,reducing the number of pilots and the consumption of subcarriers used for channel estimation.
文摘Spatial circular arc can be machined conveniently by a 5-axis NC machine tool.Based on the data sampling method,circular interpolation in two-dimensional plane is discussed briefly.The key is to solve the problem of circular center ex- pressed in the workpiece coordinate system by means of the transformation matrix.Circular interpolation in three-dimensional space is analyzed in detail.The method of undetermined coefficient is used to solve the center of the spatial circle and the method of coor- dinate transformation is used to transform the spatial circle into the XY-plane.Circular arc in three-dimensional space can be ma- chined by the positional 5-axis machining and the conical surface can be machined by the continuous 5-axis machining.The velocity control is presented to avoid the feedrate fluctuation.The interpolation algorithms are tested by a simulation example and the inter- polation algorithms are proved feasible.The algorithms are applied to the 5-axis CNC system software.
文摘Interpolation methods in ArcGIS_ESRI Geostatistical Analyst tool allow obtaining unknown values at unsampled points from observed data and generating continuous surfaces. In this paper, forest data variables as tree height and diameter measured in two plots in Central Mountains in Spain. These data were georeferenced to obtain maps that can visualize the spatial variability of these forest variables. In order to evaluate the best interpolation method that could adequately explain the spatial variability of those variables, two interpolation methods were studied: inverse results was made by means of statistical methods to analyze distance weighted (IDW) and Ordinary Kriging (OK). A comparison of residuals. Results with the kriging method were slightly better.
基金supported by the National Natural Science Foundation of China (Grant No.10271074)
文摘A theorem for osculatory rational interpolation was shown to establish a new criterion of interpolation. On the basis of this conclusion a practical algorithm was presented to get a reduction model of the linear systems. Some numerical examples were given to explain the result in this paper.
基金Project 19671082 Supported by National Natural Science Foundation of China
文摘The criteria of convergence, including a theorem of Grunwald- type and the rate of convergence in terms of the modulus omega phi (f,t) of Ditzian and Totik for truncated Hermite interpolation on ail arbitrary system of nodes are given.
文摘Aiming at harmonic detection, fast Fourier transform can only detect integer harmonics precisely, short time Fourier transform can detect non-integer harmonics with low resolution, and some former wavelet based methods have no aliasing-reduction scheme which result in low measurement precision and poor robustness. A frequency-domain interpolation algorithm to detect harmonics is proposed by choosing Shannon wavelet. Shannon wavelet is an orthogonal wavelet possessing best ideal frequency domain localization ability, it can restrict wavelet abasing but bring about Gibbs oscillation phenomenon simultaneously. An interpolation algorithm is developed to overcome this problem. Simulation reveals that the proposed method can effectively cancel aliasing, spectral leakage and Gibbs phenomenon, so it provides an effective means for power system harmonic analysis.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11871400 and 11971386)the Natural Science Foundation of Shaanxi Province,China(Grant No.2017JM1019).
文摘The work studies model reduction method for nonlinear systems based on proper orthogonal decomposition (POD)and discrete empirical interpolation method (DEIM). Instead of using the classical DEIM to directly approximate thenonlinear term of a system, our approach extracts the main part of the nonlinear term with a linear approximation beforeapproximating the residual with the DEIM. We construct the linear term by Taylor series expansion and dynamic modedecomposition (DMD), respectively, so as to obtain a more accurate reconstruction of the nonlinear term. In addition, anovel error prediction model is devised for the POD-DEIM reduced systems by employing neural networks with the aid oferror data. The error model is cheaply computable and can be adopted as a remedy model to enhance the reduction accuracy.Finally, numerical experiments are performed on two nonlinear problems to show the performance of the proposed method.
基金Project 19671082 supported by National Natural Science Foundation of China, I acknowledge endless help from Prof. Shi Ying-Guang during finishing this paper.
文摘In this paper sufficient conditions for mean convergence and rate of convergence of Hermite-Fejer type interpolation in the Lp norm on an arbitrary system of nodes are presented.
文摘The linear interpolation of linear system on a family of linear systems is introduced and discussed. Some results and examples on singly generated systems on a finite dimensional vector space are given.
基金the National Natural Science Foundation of China (No.60472100)the Natural Science Foundation of Zhejiang Province (No.Y105577)the Key Project of Chinese Ministry of Education (No.206059).
文摘Ray-space based arbitrary viewpoint rendering without complex object segmentation or model construction is the main technology to realize Free Viewpoint Video(FVV) system for complex scenes. Ray-space interpolation and compression are two key techniques for the solution. In this paper,correlation among multiple epipolar lines in ray-space data is analyzed,and a new method of ray-space interpolation with multi-epipolar lines matching is proposed. Comparing with the pixel-based matching interpolation method and the block-based matching interpolation method,the proposed method can achieve higher Peak Signal to Noise Ratio(PSNR) in interpolating rayspace data and rendering arbitrary viewpoint images.
基金the Natural Science Foundation of China(No.60472100,60672073)the Program for New Century Excellent Talents in University(No.NCET-06-0537)the Key Project of Chinese Ministry of Education(No.206059)
文摘This paper presents a free viewpoint video (FVV) system based on ray-space interpolation method The new algorithm matches individual pixels in corresponding scanline pairs by using a ruing technique. A sparse intermediate view disparity map is projected from matched dynamic programpixels firstly, and the holes (occluded pixels) are filled in by propagating the disparity of neighboring background pixels. After interpolating dense view images, an arbitrary virtual view image can be easily rendered from the dense ray-space converted from these view images. The proposed method is evaluated on the Middlebury data set and compared with other methods, experimental results show that the better quality of the intermediate view is obtained and the corresponding computational complexity is reduced significantly.
文摘This paper analyzes and compares two time interpolators, i.e., time replica and time linear interpolator, for pilot aided channel estimation in orthogonal frequency division multiplexing (OFDM) systems. The mean square error (MSE) of two interpolators is theoretically derived for the general case. The equally spaced pilot arrangement is proposed as a special platform for these two time interpolators. Based on this proposed platform, the MSE of two time interpolators at the virtual pilot tones is derived analytically;moreover, the MSE of per channel estimator at the entire OFDM symbol based on per time interpolator is also derived. The effectiveness of the theoretical analysis is demonstrated by numerical simulation in both the time-invariant frequency-selective channel and the time varying frequency-selective channel.
基金funded by theNational Science and Technology Council of Taiwan under the grant number NSTC 113-2221-E-035-058.
文摘With the rapid expansion of multimedia data,protecting digital information has become increasingly critical.Reversible data hiding offers an effective solution by allowing sensitive information to be embedded in multimedia files while enabling full recovery of the original data after extraction.Audio,as a vital medium in communication,entertainment,and information sharing,demands the same level of security as images.However,embedding data in encrypted audio poses unique challenges due to the trade-offs between security,data integrity,and embedding capacity.This paper presents a novel interpolation-based reversible data hiding algorithm for encrypted audio that achieves scalable embedding capacity.By increasing sample density through interpolation,embedding opportunities are significantly enhanced while maintaining encryption throughout the process.The method further integrates multiple most significant bit(multi-MSB)prediction and Huffman coding to optimize compression and embedding efficiency.Experimental results on standard audio datasets demonstrate the proposed algorithm’s ability to embed up to 12.47 bits per sample with over 9.26 bits per sample available for pure embedding capacity,while preserving full reversibility.These results confirm the method’s suitability for secure applications that demand high embedding capacity and perfect reconstruction of original audio.This work advances reversible data hiding in encrypted audio by offering a secure,efficient,and fully reversible data hiding framework.
基金supported by National Natural Science Foundation of China(Grant Number:62371099).
文摘Multiple-input multiple-output(MIMO)technology has been promoted to achieve high-speed data transmission.Compared to the orthogonal frequency division multiplexing(OFDM)based MIMO systems,the single-carrier scheme(SC)has attracted lots of attention due to its low peak-to-average ratio(PAPR)feature and is quite suitable for longdistance transmission.However,one of the significant challenges of SC-MIMO systems is the vast complexity of channel equalization and signal detection,especially for the inter-symbol interference(ISI)caused by the multipath channel.The single carrier frequency domain equalization-based minimum mean square error(SCFDE-MMSE)algorithm is proved to achieve satisfying performance.However,it involves large numbers of DFTs and large-scale matrix inversions,which is unacceptable for practical systems.In this paper,a low-complexity SCFDE-MMSE(LCSCFDE-MMSE)algorithm is proposed.Firstly,the characteristics of cyclic matrix and DFT cyclic shift are combined to reduce the number of DFTs.Secondly,SCFDE is transformed into a symbol-wise manner to avoid large-scale matrix inversions.Finally,a frequency-domain interpolation method is proposed to reduce the number of small-scale matrix inversions further.According to the evaluation results,the pro-Received:Jan.18,2022 Revised:Mar.25,2022 Editor:Xiao Zhenyu posed LC-SCFDE-MMSE reduces the complexity of the traditional SCFDE-MMSE algorithm by more than one order of magnitude with less than 0.1 dB performance loss.
文摘Data hiding methods involve embedding secret messages into cover objects to enable covert communication in a way that is difficult to detect.In data hiding methods based on image interpolation,the image size is reduced and then enlarged through interpolation,followed by the embedding of secret data into the newly generated pixels.A general improving approach for embedding secret messages is proposed.The approach may be regarded a general model for enhancing the data embedding capacity of various existing image interpolation-based data hiding methods.This enhancement is achieved by expanding the range of pixel values available for embedding secret messages,removing the limitations of many existing methods,where the range is restricted to powers of two to facilitate the direct embedding of bit-based messages.This improvement is accomplished through the application of multiple-based number conversion to the secret message data.The method converts the message bits into a multiple-based number and uses an algorithm to embed each digit of this number into an individual pixel,thereby enhancing the message embedding efficiency,as proved by a theorem derived in this study.The proposed improvement method has been tested through experiments on three well-known image interpolation-based data hiding methods.The results show that the proposed method can enhance the three data embedding rates by approximately 14%,13%,and 10%,respectively,create stego-images with good quality,and resist RS steganalysis attacks.These experimental results indicate that the use of the multiple-based number conversion technique to improve the three interpolation-based methods for embedding secret messages increases the number of message bits embedded in the images.For many image interpolation-based data hiding methods,which use power-of-two pixel-value ranges for message embedding,other than the three tested ones,the proposed improvement method is also expected to be effective for enhancing their data embedding capabilities.