In this paper, we propose a highly automatic approach for 3D photorealistic face reconstruction from a single frontal image. The key point of our work is the implementation of adaptive manifold learning approach. Befo...In this paper, we propose a highly automatic approach for 3D photorealistic face reconstruction from a single frontal image. The key point of our work is the implementation of adaptive manifold learning approach. Beforehand, an active appearance model (AAM) is trained for automatic feature extraction and adaptive locally linear embedding (ALLE) algorithm is utilized to reduce the dimensionality of the 3D database. Then, given an input frontal face image, the corresponding weights between 3D samples and the image are synthesized adaptively according to the AAM selected facial features. Finally, geometry reconstruction is achieved by linear weighted combination of adaptively selected samples. Radial basis function (RBF) is adopted to map facial texture from the frontal image to the reconstructed face geometry. The texture of invisible regions between the face and the ears is interpolated by sampling from the frontal image. This approach has several advantages: (1) Only a single frontal face image is needed for highly automatic face reconstruction; (2) Compared with former works, our reconstruction approach provides higher accuracy; (3) Constraint based RBF texture mapping provides natural appearance for reconstructed face.展开更多
In this work we consider the problem of shape reconstruction from an unorganized data set which has many important applications in medical imaging, scientific computing, reverse engineering and geometric modelling. Th...In this work we consider the problem of shape reconstruction from an unorganized data set which has many important applications in medical imaging, scientific computing, reverse engineering and geometric modelling. The reconstructed surface is obtained by continuously deforming an initial surface following the Partial Differential Equation (PDE)-based diffusion model derived by a minimal volume-like variational formulation. The evolution is driven both by the distance from the data set and by the curvature analytically computed by it. The distance function is computed by implicit local interpolants defined in terms of radial basis functions. Space discretization of the PDE model is obtained by finite co-volume schemes and semi-implicit approach is used in time/scale. The use of a level set method for the numerical computation of the surface reconstruction allows us to handle complex geometry and even changing topology,without the need of user-interaction. Numerical examples demonstrate the ability of the proposed method to produce high quality reconstructions. Moreover, we show the effectiveness of the new approach to solve hole filling problems and Boolean operations between different data sets.展开更多
To analyze the stress wave propagation associated with the vortex-induced vibration(VIV) of a marine riser, this paper employed a multi-signal complex exponential method. This method is an extension of the classical...To analyze the stress wave propagation associated with the vortex-induced vibration(VIV) of a marine riser, this paper employed a multi-signal complex exponential method. This method is an extension of the classical Prony's method which decomposes a complicated signal into a number of complex exponential components. Because the proposed method processes multiple signals simultaneously, it can estimate the “global” dominating frequencies(poles) shared by those signals.The complex amplitude(residues) corresponding to the estimated frequencies for those signals is also obtained in the process. As the signals were collected at different locations along the axial direction of a marine riser, the phenomena of the stress wave propagation could be analyzed through the obtained residues of those signals. The Norwegian Deepwater Program(NDP) high mode test data were utilized in the numerical studies, including data sets in both the in-line(IL) and cross-flow(CF) directions. It was found that the most dominant component in the IL direction has its stress wave propagation along the riser being dominated by a standing wave, while that in the CF direction dominated by a traveling wave.展开更多
On the basis of eight atmospheric reanalyses, we analyzed the spatial-temporal characteristics of global evaporation and also briefly evaluated the eight reanalyses. The results indicate that the long-term mean annual...On the basis of eight atmospheric reanalyses, we analyzed the spatial-temporal characteristics of global evaporation and also briefly evaluated the eight reanalyses. The results indicate that the long-term mean annual evaporation obtained from different reanalyses are consistent over most regions, with significant maritime-continental contrasts, as well as differences in meridional directions, and the land evaporation generally decreases with the increase of altitude. In addition, the temporal evolution of global evaporation varies significantly among the datasets, MERRA, ERA-Interim, NCEP-NCRA, and NCEP-DOE are very similar, whereas CFSR agrees best with ERA-40. Comparison of the inter-annual to inter-decadal variability of land evaporation reveals large differences among the reanalyses, whereas MERRA, CFSR, and NCEP-DOE are exactly similar. The temporal variation of evaporation over the oceans showed a relatively high consistency, which indicates that the quality of the reconstructed evaporation values over the oceans is higher, and even greater uncertainties lie in the estimates of evaporation over the land. In general, MERRA and NCEP-DOE may appropriately reflect the spatial-temporal characteristics of global evaporation, showing strong representativeness. The CFSR and ERA-40 are capable of revealing the characteristics of land evaporation, whereas ERA-Interim, NCEP-NCAR, OAFlux, and HOAPS are relatively applicable for research focused on the evaporation over the oceans. According to ERA-40, NCEP-NCAR, and OAFlux, global evaporation significantly decreased for the period of 1958–1978. In contrast, most of the eight reanalyses show a significant linear increase for the period of 1979–2011, and evaporation over the oceans was even more pronounced. Furthermore, the results are presented for the mean annual cycle of global evaporation, the changes at the low latitudes in the Northern Hemisphere are most distinct, and the monthly variation amplitude of the land evaporation was higher than that of the evaporation over the oceans.展开更多
基金Project supported by the National Natural Science Foundation of China (Nos. 60533090, 60525108)the National Basic Research Program (973) of China (No. 2002CB312101)+1 种基金the Science and Technology Project of Zhejiang Province, China (Nos. 2005C13032, 2005C11001-05)China-US Million Book Digital Library Project
文摘In this paper, we propose a highly automatic approach for 3D photorealistic face reconstruction from a single frontal image. The key point of our work is the implementation of adaptive manifold learning approach. Beforehand, an active appearance model (AAM) is trained for automatic feature extraction and adaptive locally linear embedding (ALLE) algorithm is utilized to reduce the dimensionality of the 3D database. Then, given an input frontal face image, the corresponding weights between 3D samples and the image are synthesized adaptively according to the AAM selected facial features. Finally, geometry reconstruction is achieved by linear weighted combination of adaptively selected samples. Radial basis function (RBF) is adopted to map facial texture from the frontal image to the reconstructed face geometry. The texture of invisible regions between the face and the ears is interpolated by sampling from the frontal image. This approach has several advantages: (1) Only a single frontal face image is needed for highly automatic face reconstruction; (2) Compared with former works, our reconstruction approach provides higher accuracy; (3) Constraint based RBF texture mapping provides natural appearance for reconstructed face.
基金supported by PRIN-MIUR-Cofin 2006,project,by"Progetti Strategici EF2006"University of Bologna,and by University of Bologna"Funds for selected research topics"
文摘In this work we consider the problem of shape reconstruction from an unorganized data set which has many important applications in medical imaging, scientific computing, reverse engineering and geometric modelling. The reconstructed surface is obtained by continuously deforming an initial surface following the Partial Differential Equation (PDE)-based diffusion model derived by a minimal volume-like variational formulation. The evolution is driven both by the distance from the data set and by the curvature analytically computed by it. The distance function is computed by implicit local interpolants defined in terms of radial basis functions. Space discretization of the PDE model is obtained by finite co-volume schemes and semi-implicit approach is used in time/scale. The use of a level set method for the numerical computation of the surface reconstruction allows us to handle complex geometry and even changing topology,without the need of user-interaction. Numerical examples demonstrate the ability of the proposed method to produce high quality reconstructions. Moreover, we show the effectiveness of the new approach to solve hole filling problems and Boolean operations between different data sets.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51490675,51379197 and 51522906)
文摘To analyze the stress wave propagation associated with the vortex-induced vibration(VIV) of a marine riser, this paper employed a multi-signal complex exponential method. This method is an extension of the classical Prony's method which decomposes a complicated signal into a number of complex exponential components. Because the proposed method processes multiple signals simultaneously, it can estimate the “global” dominating frequencies(poles) shared by those signals.The complex amplitude(residues) corresponding to the estimated frequencies for those signals is also obtained in the process. As the signals were collected at different locations along the axial direction of a marine riser, the phenomena of the stress wave propagation could be analyzed through the obtained residues of those signals. The Norwegian Deepwater Program(NDP) high mode test data were utilized in the numerical studies, including data sets in both the in-line(IL) and cross-flow(CF) directions. It was found that the most dominant component in the IL direction has its stress wave propagation along the riser being dominated by a standing wave, while that in the CF direction dominated by a traveling wave.
基金supported by the National Basic Research Program of China(Grant Nos.2013CB430204,2012CB955900)the National Natural Science Foundation of China(Grant Nos.41375078,41175084)the Special Scientific Research Fund of Meteorological Public Welfare Profession of China(Grant No.GYHY201106016)
文摘On the basis of eight atmospheric reanalyses, we analyzed the spatial-temporal characteristics of global evaporation and also briefly evaluated the eight reanalyses. The results indicate that the long-term mean annual evaporation obtained from different reanalyses are consistent over most regions, with significant maritime-continental contrasts, as well as differences in meridional directions, and the land evaporation generally decreases with the increase of altitude. In addition, the temporal evolution of global evaporation varies significantly among the datasets, MERRA, ERA-Interim, NCEP-NCRA, and NCEP-DOE are very similar, whereas CFSR agrees best with ERA-40. Comparison of the inter-annual to inter-decadal variability of land evaporation reveals large differences among the reanalyses, whereas MERRA, CFSR, and NCEP-DOE are exactly similar. The temporal variation of evaporation over the oceans showed a relatively high consistency, which indicates that the quality of the reconstructed evaporation values over the oceans is higher, and even greater uncertainties lie in the estimates of evaporation over the land. In general, MERRA and NCEP-DOE may appropriately reflect the spatial-temporal characteristics of global evaporation, showing strong representativeness. The CFSR and ERA-40 are capable of revealing the characteristics of land evaporation, whereas ERA-Interim, NCEP-NCAR, OAFlux, and HOAPS are relatively applicable for research focused on the evaporation over the oceans. According to ERA-40, NCEP-NCAR, and OAFlux, global evaporation significantly decreased for the period of 1958–1978. In contrast, most of the eight reanalyses show a significant linear increase for the period of 1979–2011, and evaporation over the oceans was even more pronounced. Furthermore, the results are presented for the mean annual cycle of global evaporation, the changes at the low latitudes in the Northern Hemisphere are most distinct, and the monthly variation amplitude of the land evaporation was higher than that of the evaporation over the oceans.