期刊文献+
共找到354篇文章
< 1 2 18 >
每页显示 20 50 100
Recent progress in constructing fluorinated solid-electrolyte interphases for stable lithium metal anodes
1
作者 Di Zhang Pengfei Lv +2 位作者 Wei Qin Xin He Yuanhua He 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第2期270-291,共22页
Lithium metal batteries(LMBs)are emerging as a promising energy storage solution owing to their high energy density and specific capacity.However,the non-uniform plating of lithium and the potential rupture of the sol... Lithium metal batteries(LMBs)are emerging as a promising energy storage solution owing to their high energy density and specific capacity.However,the non-uniform plating of lithium and the potential rupture of the solid-electrolyte interphase(SEI)during extended cycling use may result in dendrite growth,which can penetrate the separator and pose significant short-circuit risks.Forming a stable SEI is essential for the long-term operation of the batteries.Fluorine-rich SEI has garnered significant attention for its ability to effectively passivate electrodes,regulate lithium deposition,and inhibit electrolyte corrosion.Understanding the structural components and preparation methods of existing fluorinated SEI is crucial for optimizing lithium metal anode performance.This paper reviews the research on optimizing LiF passivation interfaces to protect lithium metal anodes.It focuses on four types of compositions in fluorinated SEI that work synergistically to enhance SEI performance.For instance,combining compounds with LiF can further enhance the mechanical strength and ionic conductivity of the SEI.Integrating metals with LiF significantly improves electrochemical performance at the SEI/anode interface,with a necessary focus on reducing electron tunneling risks.Additionally,incorporating polymers with LiF offers balanced improvements in interfacial toughness and ionic conductivity,though maintaining structural stability over long cycles remains a critical area for future research.Although alloys combined with LiF increase surface energy and lithium affinity,challenges such as dendrite growth and volume expansion persist.In summary,this paper emphasizes the crucial role of interfacial structures in LMBs and offers comprehensive guidance for future design and development efforts in battery technology. 展开更多
关键词 LIF lithium metal anodes solid-electrolyte interphase interface cycling stability
在线阅读 下载PDF
Rapid anion transporting and mechanically robust cathode-electrolyte interphase for ultrafast and highly reversible dual-ion batteries within a wide temperature range
2
作者 Hubiao Pan Xin Gu +4 位作者 Xinyu Lv Fengchun Li Fei Pang Yanli Zhou Mingbo Wu 《Journal of Energy Chemistry》 2025年第10期100-108,共9页
High-voltage dual-ion batteries(DIBs)face significant challenges,including graphite cathode degradation,cathode-electrolyte interphase(CEI)instability,and the thermodynamic instability of conventional carbonate-based ... High-voltage dual-ion batteries(DIBs)face significant challenges,including graphite cathode degradation,cathode-electrolyte interphase(CEI)instability,and the thermodynamic instability of conventional carbonate-based electrolytes,particularly at extreme temperatures.In this study,we develop a stable electrolyte incorporating lithium difluorophosphate(LiDFP)as an additive to enhance the electrochemical performance of DIBs over a wide temperature range.LiDFP preferentially decomposes to form a rapid anion-transporting,mechanically robust CEI layer on graphite,which provides better protection by suppressing graphite's volume expansion,preventing electrolyte oxidative decomposition,and enhancing reaction kinetics.As a result,Li||graphite half cells using LiDFP electrolyte exhibit outstanding rate performance(90.8% capacity retention at 30 C)and excellent cycle stability(82.2% capacity retention after 5000 cycles)at room temperature.Moreover,graphite||graphite full cells with LiDFP electrolyte demonstrate stable discharge capacity across a temperature range of-20 to 40℃,expanding the potential applications of LiDFP.This work establishes a novel strategy for optimizing the interphase through electrolyte design,paving the way for all-climate DIBs with improved performance and stability. 展开更多
关键词 Dual-ion batteries Graphite cathode Electrolyte additive Cathode-electrolyte interphase Wide temperature range
在线阅读 下载PDF
Synergistic solvation and interphase design via a steric-electronic additive for ultra-long cycling lithium metal batteries
3
作者 Min Cheng Xu Zhou +1 位作者 Yuhang Liang Yuanhui Zheng 《Journal of Energy Chemistry》 2025年第9期759-768,I0020,共11页
The electrochemical instability of traditional ether-based electrolytes poses a challenge for their use in high-voltage lithium metal batteries.Herein,a synergetic optimization strategy was proposed by introducing an ... The electrochemical instability of traditional ether-based electrolytes poses a challenge for their use in high-voltage lithium metal batteries.Herein,a synergetic optimization strategy was proposed by introducing an additive with a strong electron-withdrawing group and significant steric hindrance-isosorbide dinitrate(ISDN),reconstructing the solvation structure and solid electrolyte interphase(SEI),enabling highly stable and efficient lithium metal batteries.We found that ISDN can strengthen the interaction between Li^(+)and the anions of lithium salts and weaken the interaction between Li^(+)and the solvent in the solvation structure.It promotes the formation of a LiF-rich and LiN_(x)O_(y)-rich SEI layer,enhancing the uniformity and compactness of Li deposition and inhibiting solvent decomposition,which effectively expands the electrochemical window to 4.8 V.The optimized Li‖Li cells offer stable cycling over 1000 h with an overpotential of only 57.7 mV at 1 mA cm^(-2).Significantly,Li‖3.7 mA h LiFePO_(4)cells retain 108.3%of initial capacity after 546 cycles at a rate of 3 C.Under high-loading conditions(Li‖4.9 mA h LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)full cells)and a cutoff voltage of 4.5 V,the ISDN-containing electrolyte enables stable cycling for 140 cycles.This study leverages steric hindrance and electron-withdrawing effect to synergistically reconstruct the Li^(+)solvation structure and promote stable SEI formation,establishing a novel electrolyte paradigm for high-energy lithium metal batteries. 展开更多
关键词 Electrolyte additives Steric-electronic synergy Dual-function optimization Solvation structure Solid electrolyte interphase Lithium metal anodes
在线阅读 下载PDF
In situ converting the native passivation layer into a fast ion transport interphase to boost the stability of zinc anodes
4
作者 Zi-Long Xie Yunhai Zhu +5 位作者 Jia-Yi Du Dong-Yue Yang Hao Chen Zhi Wang Gang Huang Xin-Bo Zhang 《Green Energy & Environment》 2025年第7期1559-1567,共9页
Aqueous zinc batteries offer significant potential for large-scale energy storage,wearable devices,and medium-to low-speed transportation due to their safety,affordability,and environmental friendliness.However,the un... Aqueous zinc batteries offer significant potential for large-scale energy storage,wearable devices,and medium-to low-speed transportation due to their safety,affordability,and environmental friendliness.However,the uneven zinc deposition at the anode side caused by localized reaction activity from the passivation layer presents challenges that significantly impact the battery's stability and lifespan.In this study,we have proposed an expandable and maneuverable gel sustained-release(GSR)treatment to polish the Zn metal,which in situ converts its native passivation layer into a composite interphase layer with nanocrystal zinc phosphate and flexible polyvinyl alcohol.Such a thin and uniform interface contributes to fast and homogeneous Zn ion transport and improved anti-corrosion ability,enabling uniform zinc deposition without dendrite growth and thereby improving the battery performance with high-rate ability and long cycle life.This GSR treatment method,characterized by its simplicity,low cost,and universality,facilitates the widespread application of aqueous zinc batteries. 展开更多
关键词 Aqueous zinc batteries DENDRITE Passivation layer interphase layer Gel sustained-release treatment
在线阅读 下载PDF
A high-efficiency FeS_(2)potassium anode enabled by the synergy of cavity-type porous structure and robust KF-rich solid electrolyte interphase
5
作者 Jiling Su Liping Duan +6 位作者 Yuehua Man Yanqi Lv Jie Wang Anni Chen Lei Chen Zeyu Yuan Xiaosi Zhou 《Journal of Energy Chemistry》 2025年第6期885-892,I0018,共9页
FeS_(2)is a promising anode material for potassium-ion batteries(PIBs),with the advantages of low cost and high capacity.However,it still faces challenges of capacity fading and poor rate performance in potassium stor... FeS_(2)is a promising anode material for potassium-ion batteries(PIBs),with the advantages of low cost and high capacity.However,it still faces challenges of capacity fading and poor rate performance in potassium storage.Rational structural design is one way to overcome these drawbacks.In this work,MIL-88B-Fe-derived FeS_(2)nanoparticles/N-doped carbon nanofibers(M-FeS_(2)@CNFs)with expansion buffer capability are designed and synthesized for high-performance PIB anodes via electrospinning and subsequent sulfurization.The uniformly distributed cavity-type porous structure effectively mitigates the severe aggregation problem of FeS_(2)nanoparticles during cycling and buffers the volume change,further enhancing the potassium storage capacity.Meanwhile,the robust KF-rich solid electrolyte interphase induced by methyl trifluoroethylene carbonate(FEMC)additive improves the cycling stability of the M-FeS_(2)@CNF anode.In the electrolyte with 3 wt%FEMC,the M-FeS_(2)@CNF anode shows a reversible specific capacity of 592.7 mA h g^(-1)at 0.1 A g^(-1),an excellent rate capability of 327.1 mA h g^(-1)at 5 A g^(-1),and a retention rate 80.7%over 1000 cycles at 1 A g^(-1).More importantly,when assembled with a K_(1.84)Ni[Fe(CN)_(6)]_(0.88)·0.49H_(2)O cathode,the full battery manifests excellent cycle stability and high rate performance.This study demonstrates the significant importance of the synergistic effect of structural regulation and electrolyte optimization in achieving high cycling stability of PIBs. 展开更多
关键词 FeS_(2) ANODE Electrolyte additive Solid electrolyte interphase Potassium-ion batteries
在线阅读 下载PDF
Electrolyte engineering and interphase chemistry toward high-performance nickel-rich cathodes:Progress and perspectives
6
作者 Shangjuan Yang Ke Yang +4 位作者 Jinshuo Mi Shaoke Guo Xufei An Hai Su Yanbing He 《Materials Reports(Energy)》 2025年第1期19-31,共13页
Nickel(Ni)-rich layered oxides have drawn great attention as cathode for lithium batteries due to their high capacity,high working voltage and competitive cost.Unfortunately,the operation of Ni-rich cathodes suffers f... Nickel(Ni)-rich layered oxides have drawn great attention as cathode for lithium batteries due to their high capacity,high working voltage and competitive cost.Unfortunately,the operation of Ni-rich cathodes suffers from the notorious structural degradation and interfacial side reactions with electrolytes and thus incurs premature failure,especially at high charge cut-off voltages(≥4.4 V).For this,various structural and interphase regulation strategies(such as coating modification,element doping,and electrolyte engineering)are developed to enhance the cycling survivability of Ni-rich cathodes.Among them,electrolyte engineering by changing solvation structure and introducing additives has been considered an efficient method for constructing robust cathode-electrolyte interphases(CEI),inhibiting the formation of harmful species(such as HF and H_(2)O)or restraining the dissolution of transition metal ions.However,there is still an absence of systematic guidelines for selecting and designing competitive electrolyte systems for Ni-rich layered cathodes.In this review,we comprehensively summarize the recent research progress on electrolyte engineering for Ni-rich layered cathodes according to their working mechanisms.Moreover,we propose future perspectives of improving the electrolyte performance,which will provide new insights for designing novel electrolytes toward high-performance Ni-rich layered cathodes. 展开更多
关键词 Ni-rich cathodes Solvation structure regulation Electrolyte additives Cathode-electrolyte interphase High charging cut-off voltage
在线阅读 下载PDF
Revitalizing lithium-mediated ammonia electrosynthesis activity over heterogeneous lithiophobic-lithiophilic solid electrolyte interphase
7
作者 Yu Sun Mingzi Sun +7 位作者 Hao Xue Xuehua Zhang Fangying Duan Zijian Gao Rongji Liu Bolong Huang Menglei Yuan Guangjin Zhang 《Journal of Energy Chemistry》 2025年第8期233-240,共8页
Compared to aqueous-phase electrocatalytic nitrogen reduction reaction(NRR),lithium-mediated NRR(Li-NRR)theoretically enhances the intrinsic activity of NH3 production through spontaneous exothermic reactions between ... Compared to aqueous-phase electrocatalytic nitrogen reduction reaction(NRR),lithium-mediated NRR(Li-NRR)theoretically enhances the intrinsic activity of NH3 production through spontaneous exothermic reactions between Li and N_(2).However,the in-situ generated solid electrolyte interphase(SEI)during the reaction slows down the Li^(+)transport and nucleation kinetics,which further hinders the subsequent activation and protonation processes.Herein,a sophisticated amorphous-crystalline heterostructured SEI of Zn-LiF is formed by additive engineering.The concerted electron interplay between amorphous and crystalline domains is prone to generate lithiophobic Zn and lithiophilic LiF sites,where lithiophobic Zn accelerates Li^(+)diffusion within the SEI and avoids high concentration polarization,and lithiophilic LiF ensures homogeneous nucleation of diffused Li^(+)and its participation in subsequent reactions.Therefore,compared to conventional SEI,a more than 8-fold performance improvement is achieved in the additive-engineered heterogeneous lithiophobic-lithiophilic SEI,which exhibits a high NH_(3)yield rate of 11.58 nmol s^(−1)cm^(−2)and a Faradaic efficiency of 32.97%.Thus,exploiting the synergistic effects in heterogeneous lithiophobic-lithiophilic structures to achieve functional complementarity between different components opens a new avenue toward high-performance Li-NRR. 展开更多
关键词 Lithium-mediated nitrogen reduction Ammonia electrosynthesis Additive engineering Lithiophobic-lithiophilic heterostructures Solid electrolyte interphase
在线阅读 下载PDF
Effect of Mo on acicular ferrite transformation and interphase precipitation of Nb–V–N microalloyed steel during a continuous cooling process
8
作者 Jing Zhang Wen-bin Xin +3 位作者 Deng-yun Hou Jun Peng Zhi-bo Zhao Yang Tong 《Journal of Iron and Steel Research International》 2025年第6期1662-1677,共16页
The substantial influences of Mo contents varying from 0 to 0.26 and 0.50 wt.%on the microstructural evolution and MX(M=Nb,V and Mo;X=C and N)precipitation characteristics of Nb–V–N microalloyed steels processed by ... The substantial influences of Mo contents varying from 0 to 0.26 and 0.50 wt.%on the microstructural evolution and MX(M=Nb,V and Mo;X=C and N)precipitation characteristics of Nb–V–N microalloyed steels processed by hot deformation and continuous cooling were studied using a Gleeble 3800 thermomechanical simulator.Metallographic analysis showed that the ferrite microstructure transformed from polygonal ferrite(PF)in 0Mo steel to both acicular ferrite(AF)and PF in 0.26Mo and 0.50Mo steels,and AF content first increased and then decreased.The thermodynamic calculations and the experimental results proved that the quantity of solid solution of Mo in austenite obviously increased,which reduced the austenite(γ)to ferrite(α)transformation temperature,consequently promoting AF formation in 0.26Mo steel and bainite transformation in 0.50Mo steel.Moreover,the submicron Nb-rich MX particles that precipitated at the temperature of the austenite region further induced AF heterogeneous nucleation with an orientation relationship of(100)_(MX)//(100)_(Ferrite)and[■][001]Ferrite.The interphase precipitation of the nanosized V-rich MX particles with Mo partitioning that precipitated duringγ→αtransformation exhibited a Baker–Nutting orientation relationship of(100)_(MX)//(100)Ferrite and[001]_(MX)//[■]_(Ferrite)with respect to the ferrite matrix.With increasing Mo content from 0 to 0.26 and 0.50 wt.%,the sheet spacing decreased from 46.9–49.0 to 34.6–38.6 and 25.7–28.0 nm,respectively,which evidently hindered dislocation movement and greatly enhanced precipitation strengthening.Furthermore,facilitating AF formation and interphase precipitation was beneficial to improving steel properties,and the optimal Mo content was 0.26 wt.%. 展开更多
关键词 Nb-V-Mo-N microalloyed steel Mo content Acicular ferrite interphase precipitation Secondary ion mass spectrometry
原文传递
Concentrated perchlorate-based electrolyte facilitates Zn anode-compatible in situ solid electrolyte interphase
9
作者 Yin-Sheng Li Li-Shan Geng +5 位作者 Bo-Mian Zhang Zi-He Wei Hao Fan Jing-Hao Li Wen-Cong Feng Liang Zhou 《Rare Metals》 2025年第2期950-960,共11页
Zinc perchlorate(Zn(ClO_(4))_(2))electrolytes have demonstrated favorable low-temperature performance in aqueous zinc-ion batteries(AZIBs).However,the Zn anode encounters serious dendrite formation and parasitic react... Zinc perchlorate(Zn(ClO_(4))_(2))electrolytes have demonstrated favorable low-temperature performance in aqueous zinc-ion batteries(AZIBs).However,the Zn anode encounters serious dendrite formation and parasitic reactions in zinc perchlorate electrolytes,which is caused by the fast corrosive kinetics at room temperature.Herein,a concentrated perchlorate-based electrolyte consisting of 4.0 M Zn(ClO_(4))_(2)and saturated NaClO_(4)solution is developed to achieve dendrite-free and stable AZIBs at room temperature.The ClO_(4)−participates in the primary solvation sheath of Zn^(2+),facilitating the in situ formation of Zn_(5)(OH)_(8)Cl_(2)·H_(2)O-rich solid electrolyte interphase(SEI)to suppress the corrosion effect of ClO_(4)^(−).The Zn anode protected by the SEI achieves stable Zn plating/stripping over 3000 h.Furthermore,the MnO_(2)||Zn full cells manifest a stable specific capacity of 200 mAh·g^(−1)at 28℃and 101 mAh·g^(−1)at−20℃.This work introduces a promising approach for boosting the room-temperature performance of perchlorate-based electrolytes for AZIBs. 展开更多
关键词 Concentrated perchlorate-based electrolytes Solvation sheath Solid electrolyte interphase Dendritefree Zn anode Aqueous zinc-ion batteries
原文传递
Amorphous fluorinated interphase enables fast Li-ion kinetics in sulfide-based all-solid-state lithium metal batteries
10
作者 Ao-Long Yue Hong Yuan +7 位作者 Shi-Jie Yang Jiang-Kui Hu Xi-Long Wang Di-Chen Wu Zi-Hao Zuo Bo-Dong Bi Zhong-Heng Fu Jia-Qi Huang 《Journal of Energy Chemistry》 2025年第8期277-284,共8页
Sulfide-based all-solid-state lithium metal batteries(ASSLMBs)have garnered significant attention due to their potential for high energy density and enhanced safety.However,their practical application is hindered by c... Sulfide-based all-solid-state lithium metal batteries(ASSLMBs)have garnered significant attention due to their potential for high energy density and enhanced safety.However,their practical application is hindered by challenges such as uneven lithium(Li)deposition and the growth of Li dendrites.In this contribution,we propose an amorphous fluorinated interphase(AFI),composed of amorphous LiF and lithiated graphite,to regulate the interfacial Li-ion transport kinetics through in-situ interface chemistry.Amorphous LiF,which exhibits a significantly enhanced Li-ion diffusion compared to its crystalline counterpart,works synergistically with lithiated graphite to promote both short-range and long-range Li-ion transport kinetics at the Li/electrolyte interface.As a result,the Li anode with AFI demonstrates a remarkably enhanced critical current density of 1.6 mA cm^(−2)and an extended cycle life exceeding 1100 h.The Li||LiNi_(0.6)Co_(0.2)Mn_(0.2)O_(2)full cell also achieves a high discharge capacity of 125.7 mA h g^(−1)and retains 71.2%of its initial capacity after 200 cycles.This work provides valuable insights into the rational design of artificial anodic interphase to regulate interfacial Li-ion transport kinetics in ASSLMBs. 展开更多
关键词 All-solid-state lithium metal batteries Solid electrolyte interphase Li-ion transport kinetics Li deposition Li dendrites
在线阅读 下载PDF
Modulation of inactive Li_(2)O via iodinated MOF nanocapsules interfacial transformation engineering for high-performance solid electrolyte interphase
11
作者 Xingxing Zhang Qingmei Su +8 位作者 Gaohui Du Bingshe Xu Xuehan Hou Xiaowei Yang Weihao Shi Zhuo Chen Yang Shi Yujie Lv Wenhuan Huang 《Journal of Energy Chemistry》 2025年第5期482-493,共12页
Lithium(Li)deposition and nucleation at solid electrolyte interphase(SEI)is the main origin for the capacity decay in Li metal batteries(LMBs).SEI conversion with enhanced electrochemical and mechanical properties is ... Lithium(Li)deposition and nucleation at solid electrolyte interphase(SEI)is the main origin for the capacity decay in Li metal batteries(LMBs).SEI conversion with enhanced electrochemical and mechanical properties is an effective approach to achieve uniform nucleation of Li^(+)and stabilize the lithium metal anode.However,complex interfacial reaction mechanisms and interface compatibility issues hinder the development of SEI conversion strategies for stabilizing lithium metal anodes.Herein,we presented the release of I_(3)^(-)in–NH_(2)-modified metal–organic frameworks for a Li metal surface SEI phase conversion strategy.The–NH_(2)group in MOF pores induced the formation of I_(3)^(-)from I_(2),which was further spontaneously reacted with inactive Li_(2)O transforming into high-performance LiI and LiIO_(3)interphase.Furthermore,theoretical calculation provided deeply insight into the unique reconstructed interfacial formation and electrochemical mechanism of rich LiI and LiIO_(3)SEI.As a result,the Li^(+)deposition and nucleation were improved,facilitating the transport kinetics of Li^(+)and inhibiting the growth of lithium dendrites.The assembled solid-state Li||LiFePO_(4)full cells exhibited superior long-term stability of 800 cycles and high Coulombic efficiency(>99%),Li||LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)pouch cell also displayed superior practical performance over 200 cycles at 2 C,high loading of 5 mg cm^(-2)and safety performance.This innovative SEI design strategy promotes the development of high-performance solid-state Li metal batteries. 展开更多
关键词 Solid electrolyte interphase(SEI) SEI phase conversion MOF Nano-capsule Solid-state electrolytes Li metal battery
在线阅读 下载PDF
Armor-like cathode electrolyte interphase contributes to 576 Wh/kg Li||LRMO pouch cell
12
作者 Baofeng Wang Yu Wang +1 位作者 Junxi Zhang Qiang Wu 《Chinese Chemical Letters》 2025年第7期10-12,共3页
Lithium-rich manganese-based oxides(LRMOs;xLi_(2)MnO_(3)(1−x)LiMO_(2);M=transition metal,0<x<1)with excellent specific capacity(>300 mAh/g)and high operating voltage(≥4.8V)are the preferred cathode materials... Lithium-rich manganese-based oxides(LRMOs;xLi_(2)MnO_(3)(1−x)LiMO_(2);M=transition metal,0<x<1)with excellent specific capacity(>300 mAh/g)and high operating voltage(≥4.8V)are the preferred cathode materials for high-specific-energy lithium metal batteries(LMBs)[1].However,LRMOs face a series of serious problems such as irreversible lattice oxygen loss,transition metal(TM)migration,phase transfer,and interfacial side reactions at high voltages,resulting in rapid decay of capacity and voltage[2,3].In situ generating well-functional CEI through electrolyte engineering can effectively address these challenges[4]. 展开更多
关键词 lithium metal batteries lmbs howeverlrmos irreversible lattice oxygen losstransition lithium metal batteries specific capacity lithium rich manganese based oxides cathode materials situ gene armor cathode electrolyte interphase
原文传递
Overcoming electron/ion transport barriers in NASICON-type cathode through mixed-conducting interphase
13
作者 Nan Zhang Qian Yan +7 位作者 Xiaorui Dong Jingyang Wang Fan Jin Jiaxuan Liu Dianlong Wang Huakun Liu Bo Wang Shixue Dou 《Chinese Chemical Letters》 2025年第9期645-653,共9页
The NASICON-structured Na_(3)MnTi(PO_(4))_(3)(NMTP)cathode has attracted widespread attention due to its prominent thermal stability,stable 3D structure and rapid sodium ion transport channel.However,the poor cycling ... The NASICON-structured Na_(3)MnTi(PO_(4))_(3)(NMTP)cathode has attracted widespread attention due to its prominent thermal stability,stable 3D structure and rapid sodium ion transport channel.However,the poor cycling stability,limited electronic conductivity and phase transition represent significant obstacles to for its commercialization.Herein,an innovative mixed-conducting interphase,comprising amorphous carbon and Ti_(3)C_(2)-MXene,was developed for NMTP.NMTP particles are evenly dispersed on the MXene sheets through electrostatic adsorption,and MXenes can also regulate the growth of NMTP crystals and provide a large number of active sites in contact with the electrolyte.Furthermore,DFT calculations demonstrate that MXene enhances both electron and ion transport processes.Therefore,the mixedconducting interphase,forming an interconnected network on the NMTP surface,serves as an artificial cathode electrolyte interface,significantly enhancing the dynamic processes and cycle stability of the NMTP cathode.The NMTP/C@Ti_(3)C_(2)exhibits a fully reversible three-electron redox reaction and inhibited voltage hysteresis.An excellent reversible capacity of 158.2 mAh/g is achieved at 0.2 C,corresponding to an extremely high energy density of 466.6 Wh/kg.This study presents an effective approach for developing high-energy SIB cathodes. 展开更多
关键词 Sodium-ion batteries ASICON structure Na_(3)MnTi(PO_(4))_(3) Mixed-conducting interphase MXenes
原文传递
Ga_(5)Mg_(2) alloy solid electrolyte interphase in-situ formed in[Mg(DME)_(3)][GaCl_(4)]_(2)/PYR14TFSI/DME electrolyte enables high-performance rechargeable magnesium batteries
14
作者 Miao Cheng Yabing Li +7 位作者 Jiaming Shi Qianqian Liu Ruirui Wang Wujun Ma Bo Liu Muzi Chen Wanfei Li Yuegang Zhang 《Journal of Magnesium and Alloys》 2025年第8期3896-3905,共10页
Exploiting high-performance electrolyte holds the key for realization practical application of rechargeable magnesium batteries(RMBs).Herein,a new non-nucleophilic mononuclear electrolyte was developed and its electro... Exploiting high-performance electrolyte holds the key for realization practical application of rechargeable magnesium batteries(RMBs).Herein,a new non-nucleophilic mononuclear electrolyte was developed and its electrochemical active species was identified as[Mg(DME)_(3)][GaCl_(4)]_(2) through single-crystal X-ray diffraction analysis.The as-synthesized Mg(GaCl_(4))_(2)-IL-DME electrolyte could achieve a high ionic conductivity(9.85 m S cm^(-1)),good anodic stability(2.9 V vs.Mg/Mg^(2+)),and highly reversible Mg plating/stripping.The remarkable electrochemical performance should be attributed to the in-situ formation of Mg^(2+)-conducting Ga_(5)Mg_(2)alloy layer at the Mg/electrolyte interface during electrochemical cycling,which not only efficiently protects the Mg anode from passivation,but also allows for rapid Mg-ion transport.Significantly,the Mg(GaCl_(4))_(2)-IL-DME electrolyte showed excellent compatibility with both conversion and intercalation cathodes.The Mg/S batteries with Mg(Ga Cl_(4))_(2)-IL-DME electrolyte and KB/S cathode showed a high specific capacity of 839 m Ah g^(-1)after 50 cycles at 0.1 C with the Coulombic efficiency of~100%.Moreover,the assembled Mg|Mo_6 S_8 batteries delivered a reversible discharge capacity of 85 m Ah g^(-1)after 120 cycles at 0.2 C.This work provides a universal electrolyte for the realization of high-performance and practical RMBs,especially Mg/S batteries. 展开更多
关键词 Non-nucleophilic mono-Mg^(2+)electrolyte [Mg(DME)_(3)][GaCl_(4)]_(2) Ga_(5)Mg_(2)alloy interphase Mg/S batteries
在线阅读 下载PDF
Elevated temperature resilience of pouch LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)/graphite batteries through siloxane-induced cathode electrolyte interphase optimization
15
作者 Xiang Gao Peiqi Zhou +6 位作者 Haijia Li Xueyi Zeng Xin He Weizhen Fan Wenlian Wang Zhen Ma Junmin Nan 《Journal of Energy Chemistry》 2025年第5期202-213,共12页
As a potential candidate for high-energy lithium-ion batteries (LIBs),nickel-rich cathodes encounter significant challenges due to structural instability arising from interphases.In this work,tris(ethenyl)-tris(etheny... As a potential candidate for high-energy lithium-ion batteries (LIBs),nickel-rich cathodes encounter significant challenges due to structural instability arising from interphases.In this work,tris(ethenyl)-tris(ethenyl)silyloxysilane (HVDS) with Si–O bonds and unsaturated bonds is introduced as additive designing functional electrolyte to enhance the long-cycle stability of LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(NCM811)/graphite LIBs at elevated temperature.The preferential oxidization and component of HVDS facilitate the generation of an extremely robust and ultra-thin cathode electrolyte interphase (CEI) comprising a chemically bonded silane polymer.This interphase effectively suppresses side-reactions of electrolyte,mitigates HF erosion,and reduces irreversible phase transitions.Benefiting from the above merits,the batteries’capacity retention shows a remarkable increase from 20% to 92% after nearly 1550 cycles conducted at room temperature.And under elevated temperature conditions (45℃),the capacity retention remains 80%after 670 cycles,in comparison to a drop to 80%after only 250 cycles with the blank electrolyte.These findings highlight HVDS’s potential to functionalize the electrolyte,marking a breakthrough in improving the longevity and reliability of NCM811/graphite LIBs under challenging conditions. 展开更多
关键词 High temperature performance Tris(ethenyl)-tris(ethenyl)silyloxysilane additive LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)/graphite battery Cathode electrolyte interphase
在线阅读 下载PDF
Unique double-layer solid electrolyte interphase formed with fluorinated ether-based electrolytes for high-voltage lithium metal batteries 被引量:2
16
作者 Ruo Wang Jiawei Li +11 位作者 Bing Han Qingrong Wang Ruohong Ke Tong Zhang Xiaohu Ao Guangzhao Zhang Zhongbo Liu Yunxian Qian Fangfang Pan Iseult Lynch Jun Wang Yonghong Deng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期532-542,I0012,共12页
Li metal batteries using high-voltage layered oxides cathodes are of particular interest due to their high energy density.However,they suffer from short lifespan and extreme safety concerns,which are attributed to the... Li metal batteries using high-voltage layered oxides cathodes are of particular interest due to their high energy density.However,they suffer from short lifespan and extreme safety concerns,which are attributed to the degradation of layered oxides and the decomposition of electrolyte at high voltage,as well as the high reactivity of metallic Li.The key is the development of stable electrolytes against both highvoltage cathodes and Li with the formation of robust interphase films on the surfaces.Herein,we report a highly fluorinated ether,1,1,1-trifluoro-2-[(2,2,2-trifluoroethoxy)methoxy]ethane(TTME),as a cosolvent,which not only functions as a diluent forming a localized high concentration electrolyte(LHCE),but also participates in the construction of the inner solvation structure.The TTME-based electrolyte is stable itself at high voltage and induces the formation of a unique double-layer solid electrolyte interphase(SEI)film,which is embodied as one layer rich in crystalline structural components for enhanced mechanical strength and another amorphous layer with a higher concentration of organic components for enhanced flexibility.The Li||Cu cells display a noticeably high Coulombic efficiency of 99.28%after 300 cycles and Li symmetric cells maintain stable cycling more than 3200 h at 0.5 mA/cm^(2) and 1.0m Ah/cm^(2).In addition,lithium metal cells using LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2) and Li CoO_(2) cathodes(both loadings~3.0 m Ah/cm^(2))realize capacity retentions of>85%over 240 cycles with a charge cut-off voltage of 4.4 V and 90%for 170 cycles with a charge cut-off voltage of 4.5 V,respectively.This study offers a bifunctional ether-based electrolyte solvent beneficial for high-voltage Li metal batteries. 展开更多
关键词 Lithium metal batteries High-voltage layered oxides Fluorinated ether-based electrolytes Solid electrolyte interphase Cathode electrolyte interphase
在线阅读 下载PDF
Additive regulating Li^(+)solvation structure to construct dual LiF-rich electrode electrolyte interphases for sustaining 4.6 V Li||LiCoO_(2)batteries
17
作者 Xi Tang Chunlei Zhu +4 位作者 Yulu Yang Shihan Qi Mengqiu Cai Abdullah N.Alodhayb Jianmin Ma 《Chinese Chemical Letters》 SCIE CAS CSCD 2024年第12期285-288,共4页
The battery energy density can be improved by raising the operating voltage,however,which may lead to rapid capacity decay due to the continuous electrolyte decomposition and the thickening of electrode electrolyte in... The battery energy density can be improved by raising the operating voltage,however,which may lead to rapid capacity decay due to the continuous electrolyte decomposition and the thickening of electrode electrolyte interphases.To address these challenges,we proposed tripropyl phosphate(TPP)as an additive-regulating Li~+solvation structure to construct a stable Li F–rich electrode carbonate-based electrolyte interphases for sustaining 4.6 V Li||LiCoO_(2)batteries.This optimized interphases could help reduce the resistance and achieve better rate performance and cycling stability.As expected,the Li||LiCoO_(2)battery retained 79.4%capacity after 100 cycles at 0.5 C,while the Li||Li symmetric cell also kept a stable plating/stripping process over 450 h at the current density of 1.0 mA/cm^(2)with a deposited amount of0.5 mAh/cm^(2). 展开更多
关键词 Lithium metal batteries Electrolyte additive Solid electrolyte interphase Cathode electrolyte interphase Solvation structure
原文传递
Hybrid ionic/electronic interphase enabling uniform nucleation and fast diffusion kinetics for stable lithium metal anode
18
作者 Lun Li Pengxia Ji +5 位作者 Meng Huang Zixin Zhang Hong Wang Francis Verpoort Jinlong Yang Daping He 《Chinese Chemical Letters》 SCIE CAS CSCD 2024年第2期626-633,共8页
Lithium(Li)dendrite issue,which is usually caused by inhomogeneous Li nucleation and fragile solid electrolyte interphase(SEI),impedes the further development of high-energy Li metal batteries.However,the integrated c... Lithium(Li)dendrite issue,which is usually caused by inhomogeneous Li nucleation and fragile solid electrolyte interphase(SEI),impedes the further development of high-energy Li metal batteries.However,the integrated construction of a high-stable SEI layer that can regulate uniform nucleation and facilitate fast Li-ion diffusion kinetics for Li metal anode still falls short.Herein,we designed an artificial SEI with hybrid ionic/electronic interphase to regulate Li deposition by in-situ constructing metal Co clusters embedded in LiF matrix.The generated Co and LiF both enable fast Li-ion diffusion kinetics,meanwhile,the lithiophilic properties of Co clusters can serve as Li-ion nucleation sites,thereby contributing to uniform Li nucleation and non-dendritic growth.As a result,a dendrite-free Li deposition with a low overpotential(16.1 mV)is achieved,which enables an extended lifespan over 750 h under strict conditions.The full cells with high-mass-loading LiFePO_(4)(11.5 mg/cm^(2))as cathodes exhibit a remarkable rate capacity of 84.1 mAh/g at 5 C and an improved cycling performance with a capacity retention of 96.4%after undergoing 180 cycles. 展开更多
关键词 Lithium metal anode Hybrid ionic/electronic interphase Solid electrolyte interphase Fast diffusion kinetics Dendritic growth of lithium
原文传递
Lignin-derived hard carbon anode with a robust solid electrolyte interphase for boosted sodium storage performance 被引量:4
19
作者 Jingqiang Zheng Yulun Wu +6 位作者 Chaohong Guan Danjun Wang Yanqing Lai Jie Li Fuhua Yang Simin Li Zhian Zhang 《Carbon Energy》 SCIE EI CAS CSCD 2024年第9期235-244,共10页
Hard carbon is regarded as a promising anode candidate for sodium-ion batteries due to its low cost,relatively low working voltage,and satisfactory specific capacity.However,it still remains a challenge to obtain a hi... Hard carbon is regarded as a promising anode candidate for sodium-ion batteries due to its low cost,relatively low working voltage,and satisfactory specific capacity.However,it still remains a challenge to obtain a high-performance hard carbon anode from cost-effective carbon sources.In addition,the solid electrolyte interphase(SEI)is subjected to continuous rupture during battery cycling,leading to fast capacity decay.Herein,a lignin-based hard carbon with robust SEI is developed to address these issues,effectively killing two birds with one stone.An innovative gas-phase removal-assisted aqueous washing strategy is developed to remove excessive sodium in the precursor to upcycle industrial lignin into high-value hard carbon,which demonstrated an ultrahigh sodium storage capacity of 359 mAh g^(-1).It is found that the residual sodium components from lignin on hard carbon act as active sites that controllably regulate the composition and morphology of SEI and guide homogeneous SEI growth by a near-shore aggregation mechanism to form thin,dense,and organic-rich SEI.Benefiting from these merits,the as-developed SEI shows fast Na+transfer at the interphases and enhanced structural stability,thus preventing SEI rupture and reformation,and ultimately leading to a comprehensive improvement in sodium storage performance. 展开更多
关键词 hard carbon LIGNIN SODIUM components sodium-ion storage SOLID ELECTROLYTE interphase
在线阅读 下载PDF
Regulating solid electrolyte interphase film on fluorinedoped hard carbon anode for sodium-ion battery 被引量:5
20
作者 Cuiyun Yang Wentao Zhong +4 位作者 Yuqiao Liu Qiang Deng Qian Cheng Xiaozhao Liu Chenghao Yang 《Carbon Energy》 SCIE EI CAS CSCD 2024年第6期200-215,共16页
For the performance optimization strategies of hard carbon,heteroatom doping is an effective way to enhance the intrinsic transfer properties of sodium ions and electrons for accelerating the reaction kinetics.However... For the performance optimization strategies of hard carbon,heteroatom doping is an effective way to enhance the intrinsic transfer properties of sodium ions and electrons for accelerating the reaction kinetics.However,the previous work focuses mainly on the intrinsic physicochemical property changes of the material,but little attention has been paid to the resulting interfacial regulation of the electrode surface,namely the formation of solid electrolyte interphase(SEI)film.In this work,element F,which has the highest electronegativity,was chosen as the doping source to,more effectively,tune the electronic structure of the hard carbon.The effect of F-doping on the physicochemical properties of hard carbon was not only systematically analyzed but also investigated with spectroscopy,optics,and in situ characterization techniques to further verify that appropriate F-doping plays a positive role in constructing a homogenous and inorganic-rich SEI film.The experimentally demonstrated link between the electronic structure of the electrode and the SEI film properties can reframe the doping optimization strategy as well as provide a new idea for the design of electrode materials with low reduction kinetics to the electrolyte.As a result,the optimized sample with the appropriate F-doping content exhibits the best electrochemical performance with high capacity(434.53 mA h g^(-1)at 20mA g^(-1))and excellent rate capability(141 mAh g^(-1)at 400 mA g^(-1)). 展开更多
关键词 F-doping hard carbon reduction kinetics sodium-ion batteries solid electrolyte interphase film
在线阅读 下载PDF
上一页 1 2 18 下一页 到第
使用帮助 返回顶部