The existing estimates of the volume transport from the Pacific Ocean to the South China Sea are summarized, showing an annual mean westward transport, with the Taiwan Strait outflow subtracted, of 3.5±2.0 Sv (1...The existing estimates of the volume transport from the Pacific Ocean to the South China Sea are summarized, showing an annual mean westward transport, with the Taiwan Strait outflow subtracted, of 3.5±2.0 Sv (1 Sv=-0^6 ma s^-1). Results of a global ocean circulation model show an annual mean transport of 3.9 Sv from the Pacific to the Indian Ocean through the South China Sea. The boreal winter transport is larger and exhibits a South China Sea branch of the Pacific-to-Indian Ocean throughflow, which originates from the western Philippine Sea toward the Indonesian Seas through the South China Sea, as well as through the Karimata and Mindoro Straits. The southwestward current near the continental slope of the northern South China Sea is shown to be a combination of this branch and the interior circulation gyre. This winter branch can be confirmed by trajectories of satellite-tracked drifters, which clearly show a flow from the Luzon Strait to the Karimata Strait in winter. In summer, the flow in the Karimata Strait is reversed. Numerical model results indicate that the Pacific water can enter the South China Sea and exit toward the Sulu Sea, but no observational evidence is available. The roles of the throughiiow branch in the circulation, water properties and air-sea exchange of the South China Sea, and in enhancing and regulating the volume transport and reducing the heat transport of the Indonesian Throughflow, are discussed.展开更多
On the basis of the salinity distribution of isopycnal(σ_0=27.2 kg/m^3) surface and in salinity minimum, the Antarctic Intermediate Water(AAIW) around South Australia can be classified into five types correspondi...On the basis of the salinity distribution of isopycnal(σ_0=27.2 kg/m^3) surface and in salinity minimum, the Antarctic Intermediate Water(AAIW) around South Australia can be classified into five types corresponding to five regions by using in situ CTD observations. Type 1 is the Tasman AAIW, which has consistent hydrographic properties in the South Coral Sea and the North Tasman Sea. Type 2 is the Southern Ocean(SO) AAIW, parallel to and extending from the Subantarctic Front with the freshest and coldest AAIW in the study area. Type 3 is a transition between Type 1 and Type 2. The AAIW transforms from fresh to saline with the latitude declining(equatorward). Type 4, the South Australia AAIW, has relatively uniform AAIW properties due to the semienclosed South Australia Basin. Type 5, the Southeast Indian AAIW, progressively becomes more saline through mixing with the subtropical Indian intermediate water from south to north. In addition to the above hydrographic analysis of AAIW, the newest trajectories of Argo(Array for real-time Geostrophic Oceanography) floats were used to constructed the intermediate(1 000 m water depth) current field, which show the major interocean circulation of AAIW in the study area. Finally, a refined schematic of intermediate circulation shows that several currents get together to complete the connection between the Pacific Ocean and the Indian Ocean. They include the South Equatorial Current and the East Australia Current in the Southwest Pacific Ocean, the Tasman Leakage and the Flinders Current in the South Australia Basin, and the extension of Flinders Current in the southeast Indian Ocean.展开更多
基金the National Science Foundation of China through Grants Nos.40520140074,40136010(for G.Fang),40476016(for Z.Wei)partly supported by The National Science Foundation(U.S.A)through Grant OCE-02-19782 and ONR Grants Nos.014041.0698,014051—0272(for R.D.Susanto)partly supported b oNR through Grants 040611-8331,050303-7499(for Q.Zheng).
文摘The existing estimates of the volume transport from the Pacific Ocean to the South China Sea are summarized, showing an annual mean westward transport, with the Taiwan Strait outflow subtracted, of 3.5±2.0 Sv (1 Sv=-0^6 ma s^-1). Results of a global ocean circulation model show an annual mean transport of 3.9 Sv from the Pacific to the Indian Ocean through the South China Sea. The boreal winter transport is larger and exhibits a South China Sea branch of the Pacific-to-Indian Ocean throughflow, which originates from the western Philippine Sea toward the Indonesian Seas through the South China Sea, as well as through the Karimata and Mindoro Straits. The southwestward current near the continental slope of the northern South China Sea is shown to be a combination of this branch and the interior circulation gyre. This winter branch can be confirmed by trajectories of satellite-tracked drifters, which clearly show a flow from the Luzon Strait to the Karimata Strait in winter. In summer, the flow in the Karimata Strait is reversed. Numerical model results indicate that the Pacific water can enter the South China Sea and exit toward the Sulu Sea, but no observational evidence is available. The roles of the throughiiow branch in the circulation, water properties and air-sea exchange of the South China Sea, and in enhancing and regulating the volume transport and reducing the heat transport of the Indonesian Throughflow, are discussed.
基金The Chinese Polar Environment Comprehensive Investigation and Assessment Programs under contract Nos CHINARE-04-04 and CHINARE-04-01
文摘On the basis of the salinity distribution of isopycnal(σ_0=27.2 kg/m^3) surface and in salinity minimum, the Antarctic Intermediate Water(AAIW) around South Australia can be classified into five types corresponding to five regions by using in situ CTD observations. Type 1 is the Tasman AAIW, which has consistent hydrographic properties in the South Coral Sea and the North Tasman Sea. Type 2 is the Southern Ocean(SO) AAIW, parallel to and extending from the Subantarctic Front with the freshest and coldest AAIW in the study area. Type 3 is a transition between Type 1 and Type 2. The AAIW transforms from fresh to saline with the latitude declining(equatorward). Type 4, the South Australia AAIW, has relatively uniform AAIW properties due to the semienclosed South Australia Basin. Type 5, the Southeast Indian AAIW, progressively becomes more saline through mixing with the subtropical Indian intermediate water from south to north. In addition to the above hydrographic analysis of AAIW, the newest trajectories of Argo(Array for real-time Geostrophic Oceanography) floats were used to constructed the intermediate(1 000 m water depth) current field, which show the major interocean circulation of AAIW in the study area. Finally, a refined schematic of intermediate circulation shows that several currents get together to complete the connection between the Pacific Ocean and the Indian Ocean. They include the South Equatorial Current and the East Australia Current in the Southwest Pacific Ocean, the Tasman Leakage and the Flinders Current in the South Australia Basin, and the extension of Flinders Current in the southeast Indian Ocean.