This paper evaluates the performance of Internet Protocol Security (IPSec) based Multiprotocol Label Switching (MPLS) virtual private network (VPN) in a small to medium sized organization. The demand for security in d...This paper evaluates the performance of Internet Protocol Security (IPSec) based Multiprotocol Label Switching (MPLS) virtual private network (VPN) in a small to medium sized organization. The demand for security in data networks has been increasing owing to the high cyber attacks and potential risks associated with networks spread over distant geographical locations. The MPLS networks ride on the public network backbone that is porous and highly susceptible to attacks and so the need for reliable security mechanisms to be part of the deployment plan. The evaluation criteria concentrated on Voice over Internet Protocol (VoIP) and Video conferencing with keen interest in jitter, end to end delivery and general data flow. This study used both structured questionnaire and observation methods. The structured questionnaire was administered to a group of 70 VPN users in a company. This provided the study with precise responses. The observation method was used in data simulations using OPNET Version 14.5 Simulation software. The results show that the IPSec features increase the size of data packets by approximately 9.98% translating into approximately 90.02% effectiveness. The tests showed that the performance metrics are all well within the recommended standards. The IPSec Based MPLS Virtual private network is more stable and secure than one without IPSec.展开更多
The Internet of Healthcare Things(IoHT)marks a significant breakthrough in modern medicine by enabling a new era of healthcare services.IoHT supports real-time,continuous,and personalized monitoring of patients’healt...The Internet of Healthcare Things(IoHT)marks a significant breakthrough in modern medicine by enabling a new era of healthcare services.IoHT supports real-time,continuous,and personalized monitoring of patients’health conditions.However,the security of sensitive data exchanged within IoHT remains a major concern,as the widespread connectivity and wireless nature of these systems expose them to various vulnerabilities.Potential threats include unauthorized access,device compromise,data breaches,and data alteration,all of which may compromise the confidentiality and integrity of patient information.In this paper,we provide an in-depth security analysis of LAP-IoHT,an authentication scheme designed to ensure secure communication in Internet of Healthcare Things environments.This analysis reveals several vulnerabilities in the LAP-IoHT protocol,namely its inability to resist various attacks,including user impersonation and privileged insider threats.To address these issues,we introduce LSAP-IoHT,a secure and lightweight authentication protocol for the Internet of Healthcare Things(IoHT).This protocol leverages Elliptic Curve Cryptography(ECC),Physical Unclonable Functions(PUFs),and Three-Factor Authentication(3FA).Its security is validated through both informal analysis and formal verification using the Scyther tool and the Real-Or-Random(ROR)model.The results demonstrate strong resistance against man-in-the-middle(MITM)attacks,replay attacks,identity spoofing,stolen smart device attacks,and insider threats,while maintaining low computational and communication costs.展开更多
This study focuses on testing and quality measurement and analysis of VoIPv6 performance. A client, server codes were developed using FreeBSD. This is a step before analyzing the Architectures of VoIPv6 in the current...This study focuses on testing and quality measurement and analysis of VoIPv6 performance. A client, server codes were developed using FreeBSD. This is a step before analyzing the Architectures of VoIPv6 in the current internet in order for it to cope with IPv6 traffic transmission requirements in general and specifically voice traffic, which is being attracting the efforts of research, bodes currently. These tests were conducted in the application level without looking into the network level of the network. VoIPv6 performance tests were conducted in the current tunneled and native IPv6 aiming for better end-to-end VoIPv6 performance. The results obtained in this study were shown in deferent codec's for different bit rates in Kilo bits per second, which act as an indicator for the better performance of G.711 compared with the rest of the tested codes.展开更多
文摘This paper evaluates the performance of Internet Protocol Security (IPSec) based Multiprotocol Label Switching (MPLS) virtual private network (VPN) in a small to medium sized organization. The demand for security in data networks has been increasing owing to the high cyber attacks and potential risks associated with networks spread over distant geographical locations. The MPLS networks ride on the public network backbone that is porous and highly susceptible to attacks and so the need for reliable security mechanisms to be part of the deployment plan. The evaluation criteria concentrated on Voice over Internet Protocol (VoIP) and Video conferencing with keen interest in jitter, end to end delivery and general data flow. This study used both structured questionnaire and observation methods. The structured questionnaire was administered to a group of 70 VPN users in a company. This provided the study with precise responses. The observation method was used in data simulations using OPNET Version 14.5 Simulation software. The results show that the IPSec features increase the size of data packets by approximately 9.98% translating into approximately 90.02% effectiveness. The tests showed that the performance metrics are all well within the recommended standards. The IPSec Based MPLS Virtual private network is more stable and secure than one without IPSec.
文摘The Internet of Healthcare Things(IoHT)marks a significant breakthrough in modern medicine by enabling a new era of healthcare services.IoHT supports real-time,continuous,and personalized monitoring of patients’health conditions.However,the security of sensitive data exchanged within IoHT remains a major concern,as the widespread connectivity and wireless nature of these systems expose them to various vulnerabilities.Potential threats include unauthorized access,device compromise,data breaches,and data alteration,all of which may compromise the confidentiality and integrity of patient information.In this paper,we provide an in-depth security analysis of LAP-IoHT,an authentication scheme designed to ensure secure communication in Internet of Healthcare Things environments.This analysis reveals several vulnerabilities in the LAP-IoHT protocol,namely its inability to resist various attacks,including user impersonation and privileged insider threats.To address these issues,we introduce LSAP-IoHT,a secure and lightweight authentication protocol for the Internet of Healthcare Things(IoHT).This protocol leverages Elliptic Curve Cryptography(ECC),Physical Unclonable Functions(PUFs),and Three-Factor Authentication(3FA).Its security is validated through both informal analysis and formal verification using the Scyther tool and the Real-Or-Random(ROR)model.The results demonstrate strong resistance against man-in-the-middle(MITM)attacks,replay attacks,identity spoofing,stolen smart device attacks,and insider threats,while maintaining low computational and communication costs.
文摘This study focuses on testing and quality measurement and analysis of VoIPv6 performance. A client, server codes were developed using FreeBSD. This is a step before analyzing the Architectures of VoIPv6 in the current internet in order for it to cope with IPv6 traffic transmission requirements in general and specifically voice traffic, which is being attracting the efforts of research, bodes currently. These tests were conducted in the application level without looking into the network level of the network. VoIPv6 performance tests were conducted in the current tunneled and native IPv6 aiming for better end-to-end VoIPv6 performance. The results obtained in this study were shown in deferent codec's for different bit rates in Kilo bits per second, which act as an indicator for the better performance of G.711 compared with the rest of the tested codes.