To address the negative impact of an internal curing agent on strength while preserving its ability to resist autogenous shrinkage,we investigated the incorporation of triethanolamine and triisopropanolamine as early-...To address the negative impact of an internal curing agent on strength while preserving its ability to resist autogenous shrinkage,we investigated the incorporation of triethanolamine and triisopropanolamine as early-strength components.These additives were combined with an internal curing agent to prepare a compound early-strength internal curing agent so as to investigate how compound early-strength internal curing agents affect the mechanical characteristics and volume stability of mortar.This was assessed using a battery of tests,including strength,autogenous shrinkage,internal relative humidity,mercury intrusion porosimetry,X-ray powder diffraction,and scanning electron microscopy.These results indicate that the compound early-strength internal curing agent effectively maintains the volume stability of the mortar without compromising its early mechanical properties.The compressive strength ratios of the mortar mixed with the compound early-strength internal curing agent were 109.45% at 3 days and 119% at 7 days,indicating significant improvement compared with the internal curing agent.Furthermore,the 7-day autogenous shrinkage rate of the mortar was-56.78μm/m.The proportion of hazardous-grade pores larger than 100 nm was reduced to 3.54%,and the pore distribution was uniform.This study introduces innovative ideas and methods for mitigating the adverse effects of internal curing agents on the early strength of mortar.展开更多
Internal curing agents (ICA) based on super absorbent polymer have poor alkali tolerance and reduce the early strength of concrete.An alkali tolerate internal curing agent (CAA-ICA) was designed and prepared by using ...Internal curing agents (ICA) based on super absorbent polymer have poor alkali tolerance and reduce the early strength of concrete.An alkali tolerate internal curing agent (CAA-ICA) was designed and prepared by using sodium carboxymethyl starch (CMS) with high hydrophilicity,acrylic acid (AA) containing anionic carboxylic group and acrylamide (AM) containing non-ionic amide group as the main raw materials.The results show that the ratio of CAA-ICA alkali absorption solution is higher than that existing ICA,which solves the low water absorption ratio of the ICA in alkali environment.The water absorption ratio of CAA-ICA in saturated Ca(OH)_(2) solution is 95.8 g·g^(-1),and the alkali tolerance coefficient is 3.4.The application of CAA-ICA in cement-based materials can increase the internal relative humidity and miniaturize the pore structure.The compressive strength of mortar increases up to 12.95%at 28 d,which provids a solution to overcome the reduction of the early strength.展开更多
基金Funded by the Guangxi Key Research and Development Program(No.GK AB19259008)the Director's Fund of Key Laboratory of Non-ferrous Metals and Materials Processing New Technology of Ministry of Education(No.22AA-6)。
文摘To address the negative impact of an internal curing agent on strength while preserving its ability to resist autogenous shrinkage,we investigated the incorporation of triethanolamine and triisopropanolamine as early-strength components.These additives were combined with an internal curing agent to prepare a compound early-strength internal curing agent so as to investigate how compound early-strength internal curing agents affect the mechanical characteristics and volume stability of mortar.This was assessed using a battery of tests,including strength,autogenous shrinkage,internal relative humidity,mercury intrusion porosimetry,X-ray powder diffraction,and scanning electron microscopy.These results indicate that the compound early-strength internal curing agent effectively maintains the volume stability of the mortar without compromising its early mechanical properties.The compressive strength ratios of the mortar mixed with the compound early-strength internal curing agent were 109.45% at 3 days and 119% at 7 days,indicating significant improvement compared with the internal curing agent.Furthermore,the 7-day autogenous shrinkage rate of the mortar was-56.78μm/m.The proportion of hazardous-grade pores larger than 100 nm was reduced to 3.54%,and the pore distribution was uniform.This study introduces innovative ideas and methods for mitigating the adverse effects of internal curing agents on the early strength of mortar.
基金Funded by the National Key Research and Development Program of China (No.2019YFC1906202)the Guangxi Key Research and Development Plan (Nos.Guike AA18242007-3, Guike AB19259008, and Guike AB20297014)。
文摘Internal curing agents (ICA) based on super absorbent polymer have poor alkali tolerance and reduce the early strength of concrete.An alkali tolerate internal curing agent (CAA-ICA) was designed and prepared by using sodium carboxymethyl starch (CMS) with high hydrophilicity,acrylic acid (AA) containing anionic carboxylic group and acrylamide (AM) containing non-ionic amide group as the main raw materials.The results show that the ratio of CAA-ICA alkali absorption solution is higher than that existing ICA,which solves the low water absorption ratio of the ICA in alkali environment.The water absorption ratio of CAA-ICA in saturated Ca(OH)_(2) solution is 95.8 g·g^(-1),and the alkali tolerance coefficient is 3.4.The application of CAA-ICA in cement-based materials can increase the internal relative humidity and miniaturize the pore structure.The compressive strength of mortar increases up to 12.95%at 28 d,which provids a solution to overcome the reduction of the early strength.