The formation of oligomeric hydrogen peroxide triggered by Criegee intermediate maybe contributes significantly to the formation and growth of secondary organic aerosol(SOA).However,to date,the reactivity of C2 Criege...The formation of oligomeric hydrogen peroxide triggered by Criegee intermediate maybe contributes significantly to the formation and growth of secondary organic aerosol(SOA).However,to date,the reactivity of C2 Criegee intermediates(CH_(3)CHOO)in areas contaminated with acidic gas remains poorly understood.Herein,high-level quantum chemical calculations and Born-Oppenheimer molecular dynamics(BOMD)simulations are used to explore the reaction of CH_(3)CHOO and H_(2)SO_(4)both in the gas phase and at the airwater interface.In the gas phase,the addition reaction of CH_(3)CHOO with H_(2)SO_(4)to generate CH_(3)HC(OOH)OSO_(3)H(HPES)is near-barrierless,regardless of the presence of water molecules.BOMD simulations showthat the reaction at the air-water interface is even faster than that in the gas phase.Further calculations reveal that the HPES has a tendency to aggregate with sulfuric acids,ammonias,and water molecules to form stable clusters,meanwhile the oligomerization reaction of CH_(3)CHOO with HPES in the gas phase is both thermochemically and kinetically favored.Also,it is noted that the interfacial HPES−ion can attract H_(2)SO_(4),NH_(3),(COOH)_(2)and HNO_(3)for particle formation from the gas phase to the water surface.Thus,the results of this work not only elucidate the high atmospheric reactivity of C2 Criegee intermediates in polluted regions,but also deepen our understanding of the formation process of atmospheric SOA induced by Criegee intermediates.展开更多
By manipulating the distribution of surface electrons,defect engineering enables effective control over the adsorption energy between adsorbates and active sites in the CO_(2)reduction reaction(CO_(2)RR).Herein,we rep...By manipulating the distribution of surface electrons,defect engineering enables effective control over the adsorption energy between adsorbates and active sites in the CO_(2)reduction reaction(CO_(2)RR).Herein,we report a hollow indium oxide nanotube containing both oxygen vacancy and sulfur doping(V_o-Sx-In_(2)O_(3))for improved CO_(2)-to-HCOOH electroreduction and Zn-CO_(2)battery.The componential synergy significantly reduces the*OCHO formation barrier to expedite protonation process and creates a favorable electronic micro-environment for*HCOOH desorption.As a result,the CO_(2)RR performance of Vo-Sx-In_(2)O_(3)outperforms Pure-In_(2)O_(3)and V_o-In_(2)O_(3),where V_o-S53-In_(2)O_(3)exhibits a maximal HCOOH Faradaic efficiency of 92.4%at-1,2 V vs.reversible hydrogen electrode(RHE)in H-cell and above 92%over a wide window potential with high current density(119.1 mA cm^(-2)at-1.1 V vs.RHE)in flow cell.Furthermore,the rechargeable Zn-CO_(2)battery utilizing V_o-S53-In_(2)O_(3)as cathode shows a high power density of 2.29 mW cm^(-2)and a long-term stability during charge-discharge cycles.This work provides a valuable perspective to elucidate co-defective catalysts in regulating the intermediates for efficient CO_(2)RR.展开更多
Biochar is a reactive carrier as it may be partially gasified with steam in steam reforming,which could influence the formation of reaction intermediates and modify catalytic behaviors.Herein,the Ni/biochar as well as...Biochar is a reactive carrier as it may be partially gasified with steam in steam reforming,which could influence the formation of reaction intermediates and modify catalytic behaviors.Herein,the Ni/biochar as well as two comparative catalysts,Ni/Al_(2)O_(3) and Ni/SiO_(2),with low nickel loading(2%(mass))was conducted to probe involvement of the varied carriers in the steam reforming.The results indicated that the Ni/biochar performed excellent catalytic activity than Ni/SiO_(2) and Ni/Al_(2)O_(3),as the biochar carrier facilitated quick conversion of the -OH from dissociation of steam to gasify the oxygen-rich carbonaceous intermediates like C=O and C-O-C,resulting in low coverage while high exposure of nickel species for maintaining the superior catalytic performance.In converse,strong adsorption of aliphatic intermediates over Ni/Al_(2)O_(3) and Ni/SiO_(2) induced serious coking with polymeric coke as the main type(21.5%and 32.1%,respectively),which was significantly higher than that over Ni/biochar(3.9%).The coke over Ni/biochar was mainly aromatic or catalytic type with nanotube morphology and high crystallinity.The high resistivity of Ni/biochar towards coking was due to the balance between formation of coke and gasification of coke and partially biochar with steam,which created developed mesopores in spent Ni/biochar while the coke blocked pores in Ni/Al_(2)O_(3) and Ni/SiO_(2) catalysts.展开更多
Detection and observation of reactive intermediates is an essential step in investigation of reaction pathways.However,most reactive intermediates are unstable and present at low concentrations;their short lifetimes m...Detection and observation of reactive intermediates is an essential step in investigation of reaction pathways.However,most reactive intermediates are unstable and present at low concentrations;their short lifetimes make them difficult to detect and characterize.Supramolecular containers offer opportunities for the stabilization and characterization of those labile species,through isolation from the media and protection inside the cavity of the host.In this review,we summarize the examples of labile reaction intermediates that are stabilized and characterized with the help of supramolecular containers.The container compounds include carcerands,deep cavitands and amide naphthotubes.We focus on unstable vip species-cyclobutadiene,benzocyclopropenone,o-benzyne,1,2,4,6-cycloheptatetraene,anti-Bredt's olefin,fluorophenoxycarbene,O-acylisoamide,and hemiaminalthat act as intermediates in certain organic reactions.展开更多
Regulating the intermediates involved in the electrocatalytic nitrate reduction reaction(NO_(3)RR)is crucial for the enhancement of reaction efficiency.However,it remains a great challenge to regulate the reaction int...Regulating the intermediates involved in the electrocatalytic nitrate reduction reaction(NO_(3)RR)is crucial for the enhancement of reaction efficiency.However,it remains a great challenge to regulate the reaction intermediates through active site manipulation on the surface of the catalyst.Here,a family of n%-Co_(3)O_(4)/SiC(n=5,8,12,20)catalysts with a delicate percentage of Co^(2+)and Co^(3+)were prepared for NO_(3)RR.We found that Co^(3+)primarily acts as the active site for NO_(3)^(−)reduction to NO_(2)^(−),while Co^(2+)is responsible for the conversion of NO_(2)^(−)to NH_(3).Moreover,the conversion of these intermediates over the active sites is autonomous and separately controllable.Both processes synergistically accomplish the reduction of nitrate ions to synthesize ammonia.Combining the experimental studies and density functional theory(DFT)calculations,it is discovered the pathway(^(*)NHO→^(*)NHOH→^(*)NH_(2)OH→^(*)NH_(2)→^(*)NH_(3))is more favorable due to the lowerΔG value(0.25 eV)for the rate-limiting step(^(*)NO→^(*)NHO).The NH_(3)yield rate of 8%-Co_(3)O_(4)/SiC reached 1.08 mmol/(cm^(2)h)with a Faradaic efficiency of 96.4%at−0.89 V versus the reversible hydrogen electrode(RHE),surpassing those of most reported non-noble NO_(3)RR catalysts.This strategy not only provides an efficient catalyst for NO_(3)RR but also serves as an illustrative model for the regulation of multi-step reaction intermediates through the design of distinct active sites,thereby presenting a new approach to enhance the efficiency of intricate reactions.展开更多
The underlying spin-related mechanism remains unclear,and the rational manipulation of spin states is challenging due to various spin configurations under different coordination conditions.Therefore,it is urgent to st...The underlying spin-related mechanism remains unclear,and the rational manipulation of spin states is challenging due to various spin configurations under different coordination conditions.Therefore,it is urgent to study spin-dependent oxygen evolution reaction(OER)performance through a controllable method.Herein,we adopt a topochemical reaction method to synthesize a series of selenides with eg occupancies ranging from 1.67 to 1.37.The process begins with monoclinic-CoSeO_(3),featuring a distinct laminar structure and Co-O6 coordination.The topochemical reaction induces significant changes in the crystal field's intensity,leading to spin state transitions.These transitions are driven by topological changes from a Co-O-Se-O-Co to a Co-Se-Co configuration,strengthening the crystalline field and reducing eg orbital occupancy.This reconfiguration of spin states shifts the rate-determining step from desorption to adsorption for both OER and the hydrogen evolution reaction(HER),reducing the potential-determined step barrier and enhancing overall catalytic efficiency.As a result,the synthesized cobalt selenide exhibits significantly enhanced adsorption capabilities.The material demonstrates impressive overpotentials of 35 mV for HER,250 mV for OER,and 270 mV for overall water splitting,indicating superior catalytic activity and efficiency.Additionally,a negative relation between eg filling and OER catalytic performance confirms the spin-dependent nature of OER.Our findings provide crucial insights into the role of spin state transitions in catalytic performance.展开更多
先前的固件静态污点分析方案通过识别中间污点源来精确污点分析的起点,过滤部分情况的安全的命令劫持类危险函数调用点以精简污点分析的目标终点,减少了待分析的污点传播路径,缩短了漏洞挖掘的时间。但由于其在识别中间污点源时所用时...先前的固件静态污点分析方案通过识别中间污点源来精确污点分析的起点,过滤部分情况的安全的命令劫持类危险函数调用点以精简污点分析的目标终点,减少了待分析的污点传播路径,缩短了漏洞挖掘的时间。但由于其在识别中间污点源时所用时间过长,以及没有实现充分过滤安全的危险函数调用点,导致固件漏洞挖掘的整体时间依旧较长。为改进这一现状,提出了一种利用精确中间污点源和危险函数定位加速固件漏洞分析方案ALTSDF(Accurate Locating of intermediate Taint Sources and Dangerous Functions)。在快速精确识别中间污点源作为污点分析的起点时,收集每个函数在程序中不同调用点处使用的参数字符串构成每个函数的函数参数字符串集合,并计算此集合在前后端共享关键字集合中的占比,根据占比对所有函数进行降序排列,占比越高,则此函数越有可能是中间污点源。在过滤安全的危险函数调用点时,通过函数参数静态回溯分析参数类型,排除参数来源是常量的复杂情况的安全的命令劫持类危险函数调用点和安全的缓冲区溢出类危险函数调用点。最终缩短定位中间污点源所用时间,减少由中间污点源到危险函数调用点所构成的污点传播路径数量,进而缩短将污点分析应用于污点传播路径所需的分析时间,达到缩短漏洞挖掘时间的目的。对21个真实设备固件的嵌入式Web程序进行测试后得出,ALTSDF相比先进工具FITS,在中间污点源推断方面所用时间大幅缩短;在安全的危险函数调用点过滤方面,相比先进工具CINDY,ALTSDF使污点分析路径减少了8%,最终使漏洞挖掘时间相比SaTC结合FITS与CINDY的整合方案缩短32%。结果表明,ALTSDF可加速识别固件嵌入式Web程序中的漏洞。展开更多
文摘The photochemical[2+2]cycloaddition reaction of carbonyl compunds and alkenes was studied by photochemical induced dynamic nuclear spin polarization.
基金supported by the National Natural Science Foundation of China(Nos.22073059 and 22203052)the Natural Science Foundation of Shaanxi Province(No.2022JM-060)+1 种基金the Education Department of Shaanxi Provincial Government(No.23JC023)the Key Cultivation Project of Shaanxi University of Technology(No.SLG2101)。
文摘The formation of oligomeric hydrogen peroxide triggered by Criegee intermediate maybe contributes significantly to the formation and growth of secondary organic aerosol(SOA).However,to date,the reactivity of C2 Criegee intermediates(CH_(3)CHOO)in areas contaminated with acidic gas remains poorly understood.Herein,high-level quantum chemical calculations and Born-Oppenheimer molecular dynamics(BOMD)simulations are used to explore the reaction of CH_(3)CHOO and H_(2)SO_(4)both in the gas phase and at the airwater interface.In the gas phase,the addition reaction of CH_(3)CHOO with H_(2)SO_(4)to generate CH_(3)HC(OOH)OSO_(3)H(HPES)is near-barrierless,regardless of the presence of water molecules.BOMD simulations showthat the reaction at the air-water interface is even faster than that in the gas phase.Further calculations reveal that the HPES has a tendency to aggregate with sulfuric acids,ammonias,and water molecules to form stable clusters,meanwhile the oligomerization reaction of CH_(3)CHOO with HPES in the gas phase is both thermochemically and kinetically favored.Also,it is noted that the interfacial HPES−ion can attract H_(2)SO_(4),NH_(3),(COOH)_(2)and HNO_(3)for particle formation from the gas phase to the water surface.Thus,the results of this work not only elucidate the high atmospheric reactivity of C2 Criegee intermediates in polluted regions,but also deepen our understanding of the formation process of atmospheric SOA induced by Criegee intermediates.
基金supported by the Fundamental Research Funds for the Central Universities(22120230104).
文摘By manipulating the distribution of surface electrons,defect engineering enables effective control over the adsorption energy between adsorbates and active sites in the CO_(2)reduction reaction(CO_(2)RR).Herein,we report a hollow indium oxide nanotube containing both oxygen vacancy and sulfur doping(V_o-Sx-In_(2)O_(3))for improved CO_(2)-to-HCOOH electroreduction and Zn-CO_(2)battery.The componential synergy significantly reduces the*OCHO formation barrier to expedite protonation process and creates a favorable electronic micro-environment for*HCOOH desorption.As a result,the CO_(2)RR performance of Vo-Sx-In_(2)O_(3)outperforms Pure-In_(2)O_(3)and V_o-In_(2)O_(3),where V_o-S53-In_(2)O_(3)exhibits a maximal HCOOH Faradaic efficiency of 92.4%at-1,2 V vs.reversible hydrogen electrode(RHE)in H-cell and above 92%over a wide window potential with high current density(119.1 mA cm^(-2)at-1.1 V vs.RHE)in flow cell.Furthermore,the rechargeable Zn-CO_(2)battery utilizing V_o-S53-In_(2)O_(3)as cathode shows a high power density of 2.29 mW cm^(-2)and a long-term stability during charge-discharge cycles.This work provides a valuable perspective to elucidate co-defective catalysts in regulating the intermediates for efficient CO_(2)RR.
基金supported by National Natural Science Foundation of China(51876080)the Program for Taishan Scholars of Shandong Province Government,the Agricultural Innovation Program of Shandong Province(SD2019NJ015)+1 种基金the Research and Development program of Shandong Basan Graphite New Material Plant,National Natural Science Foundation of China(52076097)Key projects for inter-governmental cooperation in international science,technology and innovation(2018YFE0127500).
文摘Biochar is a reactive carrier as it may be partially gasified with steam in steam reforming,which could influence the formation of reaction intermediates and modify catalytic behaviors.Herein,the Ni/biochar as well as two comparative catalysts,Ni/Al_(2)O_(3) and Ni/SiO_(2),with low nickel loading(2%(mass))was conducted to probe involvement of the varied carriers in the steam reforming.The results indicated that the Ni/biochar performed excellent catalytic activity than Ni/SiO_(2) and Ni/Al_(2)O_(3),as the biochar carrier facilitated quick conversion of the -OH from dissociation of steam to gasify the oxygen-rich carbonaceous intermediates like C=O and C-O-C,resulting in low coverage while high exposure of nickel species for maintaining the superior catalytic performance.In converse,strong adsorption of aliphatic intermediates over Ni/Al_(2)O_(3) and Ni/SiO_(2) induced serious coking with polymeric coke as the main type(21.5%and 32.1%,respectively),which was significantly higher than that over Ni/biochar(3.9%).The coke over Ni/biochar was mainly aromatic or catalytic type with nanotube morphology and high crystallinity.The high resistivity of Ni/biochar towards coking was due to the balance between formation of coke and gasification of coke and partially biochar with steam,which created developed mesopores in spent Ni/biochar while the coke blocked pores in Ni/Al_(2)O_(3) and Ni/SiO_(2) catalysts.
基金supported by the National Natural Science Foundation of China(Nos.22071144 and 22101169)Shanghai Scientific and Technological Committee(No.22010500300)。
文摘Detection and observation of reactive intermediates is an essential step in investigation of reaction pathways.However,most reactive intermediates are unstable and present at low concentrations;their short lifetimes make them difficult to detect and characterize.Supramolecular containers offer opportunities for the stabilization and characterization of those labile species,through isolation from the media and protection inside the cavity of the host.In this review,we summarize the examples of labile reaction intermediates that are stabilized and characterized with the help of supramolecular containers.The container compounds include carcerands,deep cavitands and amide naphthotubes.We focus on unstable vip species-cyclobutadiene,benzocyclopropenone,o-benzyne,1,2,4,6-cycloheptatetraene,anti-Bredt's olefin,fluorophenoxycarbene,O-acylisoamide,and hemiaminalthat act as intermediates in certain organic reactions.
基金financially supported by the National Key Research and Development Program of China (2018YFA0209404)the Fundamental Research Funds for the Central Universities (DUT22LAB601)
文摘Regulating the intermediates involved in the electrocatalytic nitrate reduction reaction(NO_(3)RR)is crucial for the enhancement of reaction efficiency.However,it remains a great challenge to regulate the reaction intermediates through active site manipulation on the surface of the catalyst.Here,a family of n%-Co_(3)O_(4)/SiC(n=5,8,12,20)catalysts with a delicate percentage of Co^(2+)and Co^(3+)were prepared for NO_(3)RR.We found that Co^(3+)primarily acts as the active site for NO_(3)^(−)reduction to NO_(2)^(−),while Co^(2+)is responsible for the conversion of NO_(2)^(−)to NH_(3).Moreover,the conversion of these intermediates over the active sites is autonomous and separately controllable.Both processes synergistically accomplish the reduction of nitrate ions to synthesize ammonia.Combining the experimental studies and density functional theory(DFT)calculations,it is discovered the pathway(^(*)NHO→^(*)NHOH→^(*)NH_(2)OH→^(*)NH_(2)→^(*)NH_(3))is more favorable due to the lowerΔG value(0.25 eV)for the rate-limiting step(^(*)NO→^(*)NHO).The NH_(3)yield rate of 8%-Co_(3)O_(4)/SiC reached 1.08 mmol/(cm^(2)h)with a Faradaic efficiency of 96.4%at−0.89 V versus the reversible hydrogen electrode(RHE),surpassing those of most reported non-noble NO_(3)RR catalysts.This strategy not only provides an efficient catalyst for NO_(3)RR but also serves as an illustrative model for the regulation of multi-step reaction intermediates through the design of distinct active sites,thereby presenting a new approach to enhance the efficiency of intricate reactions.
文摘The underlying spin-related mechanism remains unclear,and the rational manipulation of spin states is challenging due to various spin configurations under different coordination conditions.Therefore,it is urgent to study spin-dependent oxygen evolution reaction(OER)performance through a controllable method.Herein,we adopt a topochemical reaction method to synthesize a series of selenides with eg occupancies ranging from 1.67 to 1.37.The process begins with monoclinic-CoSeO_(3),featuring a distinct laminar structure and Co-O6 coordination.The topochemical reaction induces significant changes in the crystal field's intensity,leading to spin state transitions.These transitions are driven by topological changes from a Co-O-Se-O-Co to a Co-Se-Co configuration,strengthening the crystalline field and reducing eg orbital occupancy.This reconfiguration of spin states shifts the rate-determining step from desorption to adsorption for both OER and the hydrogen evolution reaction(HER),reducing the potential-determined step barrier and enhancing overall catalytic efficiency.As a result,the synthesized cobalt selenide exhibits significantly enhanced adsorption capabilities.The material demonstrates impressive overpotentials of 35 mV for HER,250 mV for OER,and 270 mV for overall water splitting,indicating superior catalytic activity and efficiency.Additionally,a negative relation between eg filling and OER catalytic performance confirms the spin-dependent nature of OER.Our findings provide crucial insights into the role of spin state transitions in catalytic performance.
文摘先前的固件静态污点分析方案通过识别中间污点源来精确污点分析的起点,过滤部分情况的安全的命令劫持类危险函数调用点以精简污点分析的目标终点,减少了待分析的污点传播路径,缩短了漏洞挖掘的时间。但由于其在识别中间污点源时所用时间过长,以及没有实现充分过滤安全的危险函数调用点,导致固件漏洞挖掘的整体时间依旧较长。为改进这一现状,提出了一种利用精确中间污点源和危险函数定位加速固件漏洞分析方案ALTSDF(Accurate Locating of intermediate Taint Sources and Dangerous Functions)。在快速精确识别中间污点源作为污点分析的起点时,收集每个函数在程序中不同调用点处使用的参数字符串构成每个函数的函数参数字符串集合,并计算此集合在前后端共享关键字集合中的占比,根据占比对所有函数进行降序排列,占比越高,则此函数越有可能是中间污点源。在过滤安全的危险函数调用点时,通过函数参数静态回溯分析参数类型,排除参数来源是常量的复杂情况的安全的命令劫持类危险函数调用点和安全的缓冲区溢出类危险函数调用点。最终缩短定位中间污点源所用时间,减少由中间污点源到危险函数调用点所构成的污点传播路径数量,进而缩短将污点分析应用于污点传播路径所需的分析时间,达到缩短漏洞挖掘时间的目的。对21个真实设备固件的嵌入式Web程序进行测试后得出,ALTSDF相比先进工具FITS,在中间污点源推断方面所用时间大幅缩短;在安全的危险函数调用点过滤方面,相比先进工具CINDY,ALTSDF使污点分析路径减少了8%,最终使漏洞挖掘时间相比SaTC结合FITS与CINDY的整合方案缩短32%。结果表明,ALTSDF可加速识别固件嵌入式Web程序中的漏洞。