The interleaving/multiplexing technique was used to realize a 200?MHz real time data acquisition system. Two 100?MHz ADC modules worked parallelly and every ADC plays out data in ping pang fashion. The design improv...The interleaving/multiplexing technique was used to realize a 200?MHz real time data acquisition system. Two 100?MHz ADC modules worked parallelly and every ADC plays out data in ping pang fashion. The design improved the system conversion rata to 200?MHz and reduced the speed of data transporting and storing to 50?MHz. The high speed HDPLD and ECL logic parts were used to control system timing and the memory address. The multi layer print board and the shield were used to decrease interference produced by the high speed circuit. The system timing was designed carefully. The interleaving/multiplexing technique could improve the system conversion rata greatly while reducing the speed of external digital interfaces greatly. The design resolved the difficulties in high speed system effectively. The experiment proved the data acquisition system is stable and accurate.展开更多
Quadrature Spatial Modulation (QSM) is a high spectral efficiency Multiple-Input Multiple Output (MIMO) technique used to improve the spectral efficiency of wireless communication systems. The main concept of QSM is t...Quadrature Spatial Modulation (QSM) is a high spectral efficiency Multiple-Input Multiple Output (MIMO) technique used to improve the spectral efficiency of wireless communication systems. The main concept of QSM is to extend the spatial constellation of the conventional Spatial Modulation (SM) in both the in-phase and quadrature components of the data symbol. In this paper, because QSM-based on Interleaxdng Division Multiplexing (IDM) has not been introduced in the literature as a multiple antenna system, we introduced a novel scheme, called QSM system based on Interleaving Division Multiplexing (QSM-IDM). The antenna sets are also applied to a spreader, before being used to assign an antenna number for information transmission. Analysis and simulations for a flat fading channel show that the proposed QSM-IDM method significantly outperforms the original QSM system with the same data rate, while maintaining a relatively acceptable complexity. The obtained simulation results show that the conducted analysis yields significant improvements for the accuracy of the proposed scheme, with satisfactory complexity.展开更多
This paper evaluates the effect of decision feedback equalizer( DFE) error propagation for400 Gb/s Ethernet( 400 GbE) electrical link in order to propose some effective methods to improve bit error rate( BER). First,a...This paper evaluates the effect of decision feedback equalizer( DFE) error propagation for400 Gb/s Ethernet( 400 GbE) electrical link in order to propose some effective methods to improve bit error rate( BER). First,an analytical model for DFE burst error length distribution is proposed and simulated based on a NRZ electrical link in which a 5-tap DFE combined with a multiple-tap feed forward equalizer( FFE) is included. Then,a detailed derivation for BER considering DFE error propagation is given based on the distribution of burst error run length and the BER performance with and without forward error correction( FEC) is simulated too. After that,this paper investigates several MUX-based FEC interleaving methods including their complexity and latency in order to improve BER further. At last,three FEC interleaving schemes are compared not only in interleaving gain,but also in hardware complexities and latencies. Simulation results show that pre-interleave bit muxing can obtain good tradeoff between BER and complexity for 400 Gb E electrical link.展开更多
A novel optical analog-to-digital converter based on optical time division multiplexing(OTDM) is described which uses electrooptic sampling and time-demultiplexing together with multiple electronic analog-to-digital c...A novel optical analog-to-digital converter based on optical time division multiplexing(OTDM) is described which uses electrooptic sampling and time-demultiplexing together with multiple electronic analog-to-digital converter(ADC). Compared with the previous scheme, the time-division multiplexer and the time-division demultiplexer are applied in the optical analog-to-digital converter(OADC) at the same time, the design of the OADC is simplified and the performance of the OADC based on time-division demultiplexer is improved. A core optical part of the system is demonstrated with a sample rate of 10 Gs/s. The signals in three channels are demultiplexed from the optical pulses.The result proves our scheme is feasible.展开更多
In microwave communication systems,focusing and imaging have attracted widespread attention due to their application prospects in the information processing and communication fields.Most existing multi-channel focusin...In microwave communication systems,focusing and imaging have attracted widespread attention due to their application prospects in the information processing and communication fields.Most existing multi-channel focusing and imaging are implemented by interleaved metasurfaces.However,the disadvantages of their large size and low efficiency limit their practical applications in large-capacity and low-loss integrated systems.To solve these issues,here,we propose a non-interleaved polarization-frequency multiplexing metasurface for high-efficiency multi-channel focusing and imaging.The meta-atoms of the non-interleaved metasurface are composed of a metallic ground plate,two dielectric layers,a larger cross-shaped metal structure,and a smaller cross-shaped metal structure embedded by a circular metal aperture.By altering the size of two cross-shaped structures,the designed meta-atom can obtain the independent complete 2π phase coverage with high reflection efficiency at two different frequency ranges for two orthogonal linear polarization(LP)incidences,realizing polarization multiplexing and frequency multiplexing.Moreover,two types of metasurfaces based on the above meta-atoms are designed to realize multi-channel focusing and imaging with high efficiency.As a proof,the focusing metasurface is fabricated and measured,and the measured results are well consistent with simulated results.Therefore,the proposed scheme has the advantages of high efficiency,multi-channel,and compact size,which possesses broad application prospects in low-loss and multichannel communication integrated systems.展开更多
An optimal power distribution analysis for an all-optical sampling orthagonal frequency division multiplexing(OFDM) scheme with multiple modulation formats including diferential phase shift keyed(DPSK), diferential qu...An optimal power distribution analysis for an all-optical sampling orthagonal frequency division multiplexing(OFDM) scheme with multiple modulation formats including diferential phase shift keyed(DPSK), diferential quadrature phase shift keyed(DQPSK), and non-return-to-zero(NRZ) is proposed. The noise tolerances of different modulation formats are analyzed, and the optimal input power ratio between phase and intensity modulation formats for the best overall receiving performance is investigated under unchanged total input power. Moreover, this scheme can seamlessly coexist with the traditional WDM channel.展开更多
A novel flat-top and low-dispersion optical interleaver using ring cavities (RCs) in a Mach-Zehnder interferometer (MZI) is proposed. It is composed of eight mirrors and two nested prism pairs. Each prism and the ...A novel flat-top and low-dispersion optical interleaver using ring cavities (RCs) in a Mach-Zehnder interferometer (MZI) is proposed. It is composed of eight mirrors and two nested prism pairs. Each prism and the two mirrors behave as a RC. Phase shift of RC is a periodic function of the frequency of the input light which acts as a phase dispersive mirror. The two phase shifts needed to achieve a flat-top spectral passband are provided by Fresnel reflectivities at the prism-air interface of the two RCs. The optimum interface reflectivities for flat passband, high isolation and low dispersion can be obtained only by choosing an appropriate material for the prism in each RC. The proposed interleaver in a 25 GHz channel spacing application exhibits a 0.5 dB passband greater than 24 GHz (96% of the spacing), a 30 dB stopband greater than 21.2 GHz (84.8% of the spacing), a channel isolation higher than 32 dB and chromatic dispersion ±50 ps/nm within the range of center-frequency :t:2 GHz ITU passband.展开更多
Combining bright-feld and edge-enhanced imaging affords an effective avenue for extracting complex morphological information from objects,which is particularly beneficial for biological imaging.Multiplexing metalenses...Combining bright-feld and edge-enhanced imaging affords an effective avenue for extracting complex morphological information from objects,which is particularly beneficial for biological imaging.Multiplexing metalenses present promising candidates for achieving this functionality.However,current multiplexing meta-lenses lack spectral modulation,and crosstalk between different wavelengths hampers the imaging quality,especilly for biological samples requiring precise wavelength specificity.Here,we experimentally demonstrate the nonlocal Huygens'meta-lens for high-quality-factor spin-multiplexing imaging.Quasi-bound states in the continuum(q-BlCs)are excited to provide a high quality factor of 90 and incident-angle dependence.The generalized Kerker condition,driven by Fano-like interactions between q-BIC and in-plane Mie resonances,breaks the radiation symmetry,resulting in a transmission peak with a geometric phase for polarization-converted light,while unconverted light exhibits a transmission dip without a geometric phase.Enhanced polarization conversion efficiency of 65%is achieved,accompanied by a minimal unconverted value,surpassing the theoretical limit of traditional thin nonlocal metasurfaces.Leveraging these effects,the output polarization-converted state exhibits an efficient wavelengthselective focusing phase profle.The unconverted counterpart serves as an effective spatial frequency filter based on incident-angular dispersion,passing high-frequency edge details.Bright-field imaging and edge detection are thus presented under two output spin states.This work provides a versatile framework for nonlocal metasurfaces,boosting biomedical imaging and sensing applications.展开更多
Optical spatial modulation (OSM) is a multiple-transmitter technique that can provide higher data rates with low system complexity as compared with single-input single-output systems. Orthogonal frequency division m...Optical spatial modulation (OSM) is a multiple-transmitter technique that can provide higher data rates with low system complexity as compared with single-input single-output systems. Orthogonal frequency division multiplexing (OFDM) is widely implemented to achieve better spectral efficiency in wireless channels. Asymmetrically clipped optical OFDM (O-OFDM) and DC-biased O-OFDM are two well-known O-OFDM techniques suitable for intensity-modulation direct-detection optical systems. In this work, sample indexed spatial OFDM (SIS-OFDM) is proposed to combine OSM and O-OFDM in a novel way and achieve significant per- formance gain. By assigning time-domain samples of the O-OFDM transmit symbol to different transmitters, SIS-OFDM achieves much better spectral efficiency and reduces computational complexity at the transmitter as compared with previous work that combines OSM with O-OFDM in the frequency domain. We also consider the impact of optical source biasing on overall performance, and the relative performance of imaging receiver (ImR) versus non-imaging receiver (NImR) design for our proposed SIS-OFDM technique. Results indicate that for an Ntx x Nrx multiple-input multiple-output configuration where Nix = N = 4, SIS-OFDM using ImR can achieve up to 135 dB of signal-to-noise ratio gain over comparable system using a NImR. Also, using Nc number of O-OFDM subcarriers provides up to Nsc × log2(Ntx) additional bits per symbol of spectral efficiency over technioues that combine OSM and O-OFDM in the freollencv domain.展开更多
伴随双摄及多摄技术在消费电子、安防监控等领域的普遍应用,如何在保证图像处理性能的同时,降低硬件成本与功耗成为行业焦点。传统方案中,双核图像信号处理器(image signal processor,ISP)分别处理双路信号,或者依靠外部存储缓冲的帧交...伴随双摄及多摄技术在消费电子、安防监控等领域的普遍应用,如何在保证图像处理性能的同时,降低硬件成本与功耗成为行业焦点。传统方案中,双核图像信号处理器(image signal processor,ISP)分别处理双路信号,或者依靠外部存储缓冲的帧交织时分复用技术,这类技术存在芯片面积大、带宽占用多、功耗过高的情形。提出了一种基于行交织时分复用(time division multiplexing,TDM)的单核ISP架构,依靠数据整流器、TDM处理单元及数据分流器协同设计,无须外部帧缓冲,降低了系统带宽需求与功耗,并且支持任意帧率双路信号耦合处理。阐述了设计原理、关键技术及实现路径,并经过对比验证其优势。展开更多
A sampling switch with an embedded digital-to-skew converter(DSC) is presented.The proposed switch eliminates time-interleaved ADCs' skews by adjusting the boosted voltage.A similar bridged capacitors' charge ...A sampling switch with an embedded digital-to-skew converter(DSC) is presented.The proposed switch eliminates time-interleaved ADCs' skews by adjusting the boosted voltage.A similar bridged capacitors' charge sharing structure is used to minimize the area.The circuit is fabricated in a 0.18μm CMOS process and achieves sub-1 ps resolution and 200 ps timing range at a rate of 100 MS/s.The power consumption is 430μW at maximum.The measurement result also includes a 2-channel 14-bit 100 MS/s time-interleaved ADCs(TI-ADCs) with the proposed DSC switch's demonstration.This scheme is widely applicable for the clock skew and aperture error calibration demanded in TI-ADCs and SHA-less ADCs.展开更多
A 10-bit 250-MSPS two-channel time-interleaved charge-domain(CD) pipelined analog-to-digital converter (ADC) is presented.MOS bucket-brigade device(BBD) based CD pipelined architecture is used to achieve low pow...A 10-bit 250-MSPS two-channel time-interleaved charge-domain(CD) pipelined analog-to-digital converter (ADC) is presented.MOS bucket-brigade device(BBD) based CD pipelined architecture is used to achieve low power consumption.An all digital low power DLL is used to alleviate the timing mismatches and to reduce the aperture jitter.A new bootstrapped MOS switch is designed in the sample and hold circuit to enhance the IF sampling capability.The ADC achieves a spurious free dynamic range(SFDR) of 67.1 dB,signal-to-noise ratio (SNDR) of 55.1 dB for a 10.1 MHz input,and SFDR of 61.6 dB,SNDR of 52.6 dB for a 355 MHz input at full sampling rate.Differential nonlinearity(DNL) is +0.5/-0.4 LSB and integral nonlineariry(INL) is +0.8/-0.75 LSB.Fabricated in a 0.18-μm 1P6M CMOS process,the prototype 10-bit pipelined ADC occupies 1.8×1.3 mm2 of active die area,and consumes only 68 mW at 1.8 V supply.展开更多
文摘The interleaving/multiplexing technique was used to realize a 200?MHz real time data acquisition system. Two 100?MHz ADC modules worked parallelly and every ADC plays out data in ping pang fashion. The design improved the system conversion rata to 200?MHz and reduced the speed of data transporting and storing to 50?MHz. The high speed HDPLD and ECL logic parts were used to control system timing and the memory address. The multi layer print board and the shield were used to decrease interference produced by the high speed circuit. The system timing was designed carefully. The interleaving/multiplexing technique could improve the system conversion rata greatly while reducing the speed of external digital interfaces greatly. The design resolved the difficulties in high speed system effectively. The experiment proved the data acquisition system is stable and accurate.
文摘Quadrature Spatial Modulation (QSM) is a high spectral efficiency Multiple-Input Multiple Output (MIMO) technique used to improve the spectral efficiency of wireless communication systems. The main concept of QSM is to extend the spatial constellation of the conventional Spatial Modulation (SM) in both the in-phase and quadrature components of the data symbol. In this paper, because QSM-based on Interleaxdng Division Multiplexing (IDM) has not been introduced in the literature as a multiple antenna system, we introduced a novel scheme, called QSM system based on Interleaving Division Multiplexing (QSM-IDM). The antenna sets are also applied to a spreader, before being used to assign an antenna number for information transmission. Analysis and simulations for a flat fading channel show that the proposed QSM-IDM method significantly outperforms the original QSM system with the same data rate, while maintaining a relatively acceptable complexity. The obtained simulation results show that the conducted analysis yields significant improvements for the accuracy of the proposed scheme, with satisfactory complexity.
基金Supported by the National Natural Science Foundation of China(No.61471119)
文摘This paper evaluates the effect of decision feedback equalizer( DFE) error propagation for400 Gb/s Ethernet( 400 GbE) electrical link in order to propose some effective methods to improve bit error rate( BER). First,an analytical model for DFE burst error length distribution is proposed and simulated based on a NRZ electrical link in which a 5-tap DFE combined with a multiple-tap feed forward equalizer( FFE) is included. Then,a detailed derivation for BER considering DFE error propagation is given based on the distribution of burst error run length and the BER performance with and without forward error correction( FEC) is simulated too. After that,this paper investigates several MUX-based FEC interleaving methods including their complexity and latency in order to improve BER further. At last,three FEC interleaving schemes are compared not only in interleaving gain,but also in hardware complexities and latencies. Simulation results show that pre-interleave bit muxing can obtain good tradeoff between BER and complexity for 400 Gb E electrical link.
文摘A novel optical analog-to-digital converter based on optical time division multiplexing(OTDM) is described which uses electrooptic sampling and time-demultiplexing together with multiple electronic analog-to-digital converter(ADC). Compared with the previous scheme, the time-division multiplexer and the time-division demultiplexer are applied in the optical analog-to-digital converter(OADC) at the same time, the design of the OADC is simplified and the performance of the OADC based on time-division demultiplexer is improved. A core optical part of the system is demonstrated with a sample rate of 10 Gs/s. The signals in three channels are demultiplexed from the optical pulses.The result proves our scheme is feasible.
基金National Natural Science Foundation of China(62075052,6227419)National Key Research and Development Program of China(2024YFE0108300)+2 种基金Science and Technology Major Project of Guangxi,China(Gui Ke AA21077015,Gui Ke AA24263032)Science Foundation of the National Key Laboratory of Science and Technology on Advanced Composites in Special Environments(JCKYS2020603C009,6142905212711)Project of Innovative and Entrepreneurship Training Program for College Students in Heilongjiang Province(201810214105)。
文摘In microwave communication systems,focusing and imaging have attracted widespread attention due to their application prospects in the information processing and communication fields.Most existing multi-channel focusing and imaging are implemented by interleaved metasurfaces.However,the disadvantages of their large size and low efficiency limit their practical applications in large-capacity and low-loss integrated systems.To solve these issues,here,we propose a non-interleaved polarization-frequency multiplexing metasurface for high-efficiency multi-channel focusing and imaging.The meta-atoms of the non-interleaved metasurface are composed of a metallic ground plate,two dielectric layers,a larger cross-shaped metal structure,and a smaller cross-shaped metal structure embedded by a circular metal aperture.By altering the size of two cross-shaped structures,the designed meta-atom can obtain the independent complete 2π phase coverage with high reflection efficiency at two different frequency ranges for two orthogonal linear polarization(LP)incidences,realizing polarization multiplexing and frequency multiplexing.Moreover,two types of metasurfaces based on the above meta-atoms are designed to realize multi-channel focusing and imaging with high efficiency.As a proof,the focusing metasurface is fabricated and measured,and the measured results are well consistent with simulated results.Therefore,the proposed scheme has the advantages of high efficiency,multi-channel,and compact size,which possesses broad application prospects in low-loss and multichannel communication integrated systems.
基金supported by the National Natural Science Fundation of China(Nos.60932004,61132004,and 61090391)the Program for New Century Excellent Talents in University(No.NCET-10-0520)
文摘An optimal power distribution analysis for an all-optical sampling orthagonal frequency division multiplexing(OFDM) scheme with multiple modulation formats including diferential phase shift keyed(DPSK), diferential quadrature phase shift keyed(DQPSK), and non-return-to-zero(NRZ) is proposed. The noise tolerances of different modulation formats are analyzed, and the optimal input power ratio between phase and intensity modulation formats for the best overall receiving performance is investigated under unchanged total input power. Moreover, this scheme can seamlessly coexist with the traditional WDM channel.
基金Projet supported by the National Natural Science Foundation of China (Grant No.10804070)the Innovation Program of Education Commission of Shanghai Municipality (Grant No.09YZ06)the Shanghai Leading Academic Discipline Project (Grant No.S30108)
文摘A novel flat-top and low-dispersion optical interleaver using ring cavities (RCs) in a Mach-Zehnder interferometer (MZI) is proposed. It is composed of eight mirrors and two nested prism pairs. Each prism and the two mirrors behave as a RC. Phase shift of RC is a periodic function of the frequency of the input light which acts as a phase dispersive mirror. The two phase shifts needed to achieve a flat-top spectral passband are provided by Fresnel reflectivities at the prism-air interface of the two RCs. The optimum interface reflectivities for flat passband, high isolation and low dispersion can be obtained only by choosing an appropriate material for the prism in each RC. The proposed interleaver in a 25 GHz channel spacing application exhibits a 0.5 dB passband greater than 24 GHz (96% of the spacing), a 30 dB stopband greater than 21.2 GHz (84.8% of the spacing), a channel isolation higher than 32 dB and chromatic dispersion ±50 ps/nm within the range of center-frequency :t:2 GHz ITU passband.
基金supported by the University Grants Committee/Research Grants Council of the Hong Kong Special Administrative Region,China[Project No.AoE/P-502/20,CRF Project:C5031-22G,GRF Project:CityU15303521,CityU11305223,CityU11300224]City University of Hong Kong[Project No.9380131 and 7005867]+3 种基金National Natural Science Foundation of China[Grant No.62375232]S.X.acknowledges financial support from National Natural Science Foundation of China(Grant Nos.62125501,and 6233000076)Fundamental Research Funds for the Central Universities(Grant No.2022FRRK030004)Shenzhen Fundamental Research Projects(Grant Nos.JCYJ20220818102218040).
文摘Combining bright-feld and edge-enhanced imaging affords an effective avenue for extracting complex morphological information from objects,which is particularly beneficial for biological imaging.Multiplexing metalenses present promising candidates for achieving this functionality.However,current multiplexing meta-lenses lack spectral modulation,and crosstalk between different wavelengths hampers the imaging quality,especilly for biological samples requiring precise wavelength specificity.Here,we experimentally demonstrate the nonlocal Huygens'meta-lens for high-quality-factor spin-multiplexing imaging.Quasi-bound states in the continuum(q-BlCs)are excited to provide a high quality factor of 90 and incident-angle dependence.The generalized Kerker condition,driven by Fano-like interactions between q-BIC and in-plane Mie resonances,breaks the radiation symmetry,resulting in a transmission peak with a geometric phase for polarization-converted light,while unconverted light exhibits a transmission dip without a geometric phase.Enhanced polarization conversion efficiency of 65%is achieved,accompanied by a minimal unconverted value,surpassing the theoretical limit of traditional thin nonlocal metasurfaces.Leveraging these effects,the output polarization-converted state exhibits an efficient wavelengthselective focusing phase profle.The unconverted counterpart serves as an effective spatial frequency filter based on incident-angular dispersion,passing high-frequency edge details.Bright-field imaging and edge detection are thus presented under two output spin states.This work provides a versatile framework for nonlocal metasurfaces,boosting biomedical imaging and sensing applications.
基金supported by the Engineering Research Centers Program of the National Science Foundation under Grant No.EEC-0812056
文摘Optical spatial modulation (OSM) is a multiple-transmitter technique that can provide higher data rates with low system complexity as compared with single-input single-output systems. Orthogonal frequency division multiplexing (OFDM) is widely implemented to achieve better spectral efficiency in wireless channels. Asymmetrically clipped optical OFDM (O-OFDM) and DC-biased O-OFDM are two well-known O-OFDM techniques suitable for intensity-modulation direct-detection optical systems. In this work, sample indexed spatial OFDM (SIS-OFDM) is proposed to combine OSM and O-OFDM in a novel way and achieve significant per- formance gain. By assigning time-domain samples of the O-OFDM transmit symbol to different transmitters, SIS-OFDM achieves much better spectral efficiency and reduces computational complexity at the transmitter as compared with previous work that combines OSM with O-OFDM in the frequency domain. We also consider the impact of optical source biasing on overall performance, and the relative performance of imaging receiver (ImR) versus non-imaging receiver (NImR) design for our proposed SIS-OFDM technique. Results indicate that for an Ntx x Nrx multiple-input multiple-output configuration where Nix = N = 4, SIS-OFDM using ImR can achieve up to 135 dB of signal-to-noise ratio gain over comparable system using a NImR. Also, using Nc number of O-OFDM subcarriers provides up to Nsc × log2(Ntx) additional bits per symbol of spectral efficiency over technioues that combine OSM and O-OFDM in the freollencv domain.
文摘伴随双摄及多摄技术在消费电子、安防监控等领域的普遍应用,如何在保证图像处理性能的同时,降低硬件成本与功耗成为行业焦点。传统方案中,双核图像信号处理器(image signal processor,ISP)分别处理双路信号,或者依靠外部存储缓冲的帧交织时分复用技术,这类技术存在芯片面积大、带宽占用多、功耗过高的情形。提出了一种基于行交织时分复用(time division multiplexing,TDM)的单核ISP架构,依靠数据整流器、TDM处理单元及数据分流器协同设计,无须外部帧缓冲,降低了系统带宽需求与功耗,并且支持任意帧率双路信号耦合处理。阐述了设计原理、关键技术及实现路径,并经过对比验证其优势。
基金supported by the National Natural Science Foundation of China(No.61006025)the Special Research Funds for Doctoral Program of Higher Education of China(No.20100071110026)
文摘A sampling switch with an embedded digital-to-skew converter(DSC) is presented.The proposed switch eliminates time-interleaved ADCs' skews by adjusting the boosted voltage.A similar bridged capacitors' charge sharing structure is used to minimize the area.The circuit is fabricated in a 0.18μm CMOS process and achieves sub-1 ps resolution and 200 ps timing range at a rate of 100 MS/s.The power consumption is 430μW at maximum.The measurement result also includes a 2-channel 14-bit 100 MS/s time-interleaved ADCs(TI-ADCs) with the proposed DSC switch's demonstration.This scheme is widely applicable for the clock skew and aperture error calibration demanded in TI-ADCs and SHA-less ADCs.
基金supported by the National Science Foundation of China(No.61106027)the 333 Talent Project of Jiangsu Province,China(No. BRA2011115)
文摘A 10-bit 250-MSPS two-channel time-interleaved charge-domain(CD) pipelined analog-to-digital converter (ADC) is presented.MOS bucket-brigade device(BBD) based CD pipelined architecture is used to achieve low power consumption.An all digital low power DLL is used to alleviate the timing mismatches and to reduce the aperture jitter.A new bootstrapped MOS switch is designed in the sample and hold circuit to enhance the IF sampling capability.The ADC achieves a spurious free dynamic range(SFDR) of 67.1 dB,signal-to-noise ratio (SNDR) of 55.1 dB for a 10.1 MHz input,and SFDR of 61.6 dB,SNDR of 52.6 dB for a 355 MHz input at full sampling rate.Differential nonlinearity(DNL) is +0.5/-0.4 LSB and integral nonlineariry(INL) is +0.8/-0.75 LSB.Fabricated in a 0.18-μm 1P6M CMOS process,the prototype 10-bit pipelined ADC occupies 1.8×1.3 mm2 of active die area,and consumes only 68 mW at 1.8 V supply.