The interleaving/multiplexing technique was used to realize a 200?MHz real time data acquisition system. Two 100?MHz ADC modules worked parallelly and every ADC plays out data in ping pang fashion. The design improv...The interleaving/multiplexing technique was used to realize a 200?MHz real time data acquisition system. Two 100?MHz ADC modules worked parallelly and every ADC plays out data in ping pang fashion. The design improved the system conversion rata to 200?MHz and reduced the speed of data transporting and storing to 50?MHz. The high speed HDPLD and ECL logic parts were used to control system timing and the memory address. The multi layer print board and the shield were used to decrease interference produced by the high speed circuit. The system timing was designed carefully. The interleaving/multiplexing technique could improve the system conversion rata greatly while reducing the speed of external digital interfaces greatly. The design resolved the difficulties in high speed system effectively. The experiment proved the data acquisition system is stable and accurate.展开更多
Quadrature Spatial Modulation (QSM) is a high spectral efficiency Multiple-Input Multiple Output (MIMO) technique used to improve the spectral efficiency of wireless communication systems. The main concept of QSM is t...Quadrature Spatial Modulation (QSM) is a high spectral efficiency Multiple-Input Multiple Output (MIMO) technique used to improve the spectral efficiency of wireless communication systems. The main concept of QSM is to extend the spatial constellation of the conventional Spatial Modulation (SM) in both the in-phase and quadrature components of the data symbol. In this paper, because QSM-based on Interleaxdng Division Multiplexing (IDM) has not been introduced in the literature as a multiple antenna system, we introduced a novel scheme, called QSM system based on Interleaving Division Multiplexing (QSM-IDM). The antenna sets are also applied to a spreader, before being used to assign an antenna number for information transmission. Analysis and simulations for a flat fading channel show that the proposed QSM-IDM method significantly outperforms the original QSM system with the same data rate, while maintaining a relatively acceptable complexity. The obtained simulation results show that the conducted analysis yields significant improvements for the accuracy of the proposed scheme, with satisfactory complexity.展开更多
Advancements in mode-division multiplexing(MDM)techniques,aimed at surpassing the Shannon limit and augmenting transmission capacity,have garnered significant attention in optical fiber communica-tion,propelling the d...Advancements in mode-division multiplexing(MDM)techniques,aimed at surpassing the Shannon limit and augmenting transmission capacity,have garnered significant attention in optical fiber communica-tion,propelling the demand for high-quality multiplexers and demultiplexers.However,the criteria for ideal-mode multiplexers/demultiplexers,such as performance,scalability,compatibility,and ultra-compactness,have only partially been achieved using conventional bulky devices(e.g.,waveguides,grat-ings,and free space optics)—an issue that will substantially restrict the application of MDM techniques.Here,we present a neuro-meta-router(NMR)optimized through deep learning that achieves spatial multi-mode division and supports multi-channel communication,potentially offering scalability,com-patibility,and ultra-compactness.An MDM communication system based on an NMR is theoretically designed and experimentally demonstrated to enable simultaneous and independent multi-dataset transmission,showcasing a capacity of up to 100 gigabits per second(Gbps)and a symbol error rate down to the order of 104,all achieved without any compensation technologies or correlation devices.Our work presents a paradigm that merges metasurfaces,fiber communications,and deep learning,with potential applications in intelligent metasurface-aided optical interconnection,as well as all-optical pat-tern recognition and classification.展开更多
A 32-channel wavelength division multiplexer with 100 GHz spacing is designed and fabricated by interleaving two silicon arrayed waveguide gratings(AWGs).It has a parallel structure consisting of two silicon 16-channe...A 32-channel wavelength division multiplexer with 100 GHz spacing is designed and fabricated by interleaving two silicon arrayed waveguide gratings(AWGs).It has a parallel structure consisting of two silicon 16-channel AWGs with200 GHz spacing and a Mach-Zehnder interferometer(MZI)with 200 GHz free spectral range.The 16 channels of one silicon AWG are interleaved with those of the other AWG in spectrum,but with an identical spacing of 200 GHz.For the composed wavelength division multiplexer,the experiment results reveal 32 wavelength channels in C-band,a wavelength spacing of 100 GHz,and a channel crosstalk lower than-15 dB.展开更多
Dynamically tunable terahertz(THz)beam focusing plays a critical role in emerging applications including reconfigurable imaging,localized spectral analysis,and micro-machining.Conventional methods,however,frequently e...Dynamically tunable terahertz(THz)beam focusing plays a critical role in emerging applications including reconfigurable imaging,localized spectral analysis,and micro-machining.Conventional methods,however,frequently employ complex wavefront modulators and external control algorithms,resulting in increased system footprint and limited tuning efficiency.In this work,we present an all-silicon mechanically rotatable cascaded metasurface capable of dynamic THz beam focusing.By independently adjusting the relative rotation angles between the two metasurface layers,real-time repositioning of the focal spot is achieved for orthogonal circular polarization channels.The proposed design facilitates polarization-division multiplexing without requiring external algorithms or active materials while preserving high focusing efficiency and beam quality across a predefined focal plane.Numerical simulations reveal a quasi-linear shift of the focal position with the rotation angle,with stable focusing efficiency and full-width at half-maximum observed in both polarization channels.This strategy offers an efficient and reliable approach to dynamic wavefront control for compact,reconfigurable THz imaging,sensing,and communication systems.展开更多
Multiple quantum well(MQW) Ⅲ-nitride diodes that can simultaneously emit and detect light feature an overlapping region between their electroluminescence and responsivity spectra, which allows them to be simultaneous...Multiple quantum well(MQW) Ⅲ-nitride diodes that can simultaneously emit and detect light feature an overlapping region between their electroluminescence and responsivity spectra, which allows them to be simultaneously used as both a transmitter and a receiver in a wireless light communication system. Here, we demonstrate a mobile light communication system using a time-division multiplexing(TDM) scheme to achieve bidirectional data transmission via the same optical channel.Two identical blue MQW diodes are defined by software as a transmitter or a receiver. To address the light alignment issue, an image identification module integrated with a gimbal stabilizer is used to automatically detect the locations of moving targets;thus, underwater audio communication is realized via a mobile blue-light TDM communication mode. This approach not only uses a single link but also integrates mobile nodes in a practical network.展开更多
A novel interleaving based selected mapping (SLM) scheme to depress the relatively high peak power of transmit signals in multicarrier communications is proposed. In the scheme, a group of bit-level interleavers spa...A novel interleaving based selected mapping (SLM) scheme to depress the relatively high peak power of transmit signals in multicarrier communications is proposed. In the scheme, a group of bit-level interleavers spanning only a few bits are used to produce multiple sequences representing the same information, and one of the sequences resulting in the lowest peak-to-average power ratio (PAPR) is selected for transmission. The implementation of the scheme including the structure of the short-span interleaver is illustrated. The performance of this PAPR reduction scheme is investigated by simulations. This scheme exhibits a good PAPR reduction performance, and for signals of high level modulation, such as 16QAM and 64QAM, it approaches the best performance of all SLM schemes. Compared to the conventional interleaving SLM, this short-span interleaving SLM results in a very short time delay, requires very few register units for buffering, and can be easily implemented by hardware.展开更多
The problem of scheduling radar dwells in multifunction phased array radar systems is addressed. A novel dwell scheduling algorithm is proposed. The whole scheduling process is based on an online pulse interleaving te...The problem of scheduling radar dwells in multifunction phased array radar systems is addressed. A novel dwell scheduling algorithm is proposed. The whole scheduling process is based on an online pulse interleaving technique. It takes the system timing and energy constraints into account. In order to adapt the dynamic task load, the algorithm considers both the priorities and deadlines of tasks. The simulation results demonstrate that compared with the conventional adaptive dwell scheduling algorithm, the proposed one can improve the task drop rate and system resource utility effectively.展开更多
Herein,an attention-grabbing and up-to-date review related to major multiplexing techniques is presented which in-cludes wavelength division multiplexing(WDM),polarization division multiplexing(PDM),space division mul...Herein,an attention-grabbing and up-to-date review related to major multiplexing techniques is presented which in-cludes wavelength division multiplexing(WDM),polarization division multiplexing(PDM),space division multiplexing(SDM),mode division multiplexing(MDM)and orbital angular momentum multiplexing(OAMM).Multiplexing is a mech-anism by which multiple signals are combined into a shared channel used to showcase the maximum capacity of the op-tical links.However,it is critical to develop hybrid multiplexing methods to allow enhanced channel numbers.In this re-view,we have also included hybrid multiplexing techniques such as WDM-PDM,WDM-MDM and PDM-MDM.It is prob-able to attain N×M channels by utilizing N wavelengths and M guided-modes by simply utilizing hybrid WDM-MDM(de)multiplexers.To the best of our knowledge,this review paper is one of its kind which has highlighted the most prom-inent and recent signs of progress in multiplexing techniques in one place.展开更多
An online pulse interleaving scheduling algorithm is proposed for a solution to the task scheduling problem in the digital array radar(DAR). The full DAR task structure is explicitly considered in a way that the waiti...An online pulse interleaving scheduling algorithm is proposed for a solution to the task scheduling problem in the digital array radar(DAR). The full DAR task structure is explicitly considered in a way that the waiting duration is able to be utilized to transmit or receive subtasks, namely the pulse interleaving,as well as the receiving durations of different tasks are able to be overlapped. The algorithm decomposes the pulse interleaving scheduling analysis into the time constraint check and the energy constraint check, and schedules online all kinds of tasks that are able to be interleaved. Thereby the waiting duration and the receiving duration in the DAR task are both fully utilized. The simulation results verify the performance improvement and the high efficiency of the proposed algorithm compared with the existing ones.展开更多
Flat optical elements have attracted enormous attentions and act as promising candidates for the next generation of optical components.As one of the most outstanding representatives,liquid crystal(LC)has been widely a...Flat optical elements have attracted enormous attentions and act as promising candidates for the next generation of optical components.As one of the most outstanding representatives,liquid crystal(LC)has been widely applied in flat panel display industries and inspires the wavefront modulation with the development of LC alignment techniques.However,most LC elements perform only one type of optical manipulation and are difficult to realize the multifunctionality and light integration.Here,flat multifunctional liquid crystal elements(FMLCEs),merely composed of anisotropic LC molecules with space-variant orientations,are presented for multichannel information manipulation by means of polarization,space and wavelength multiplexing.Specifically,benefiting from the unique light response with the change of the incident polarization,observation plane,and working wavelength,a series of FMLCEs are demonstrated to achieve distinct near-and far-field display functions.The proposed strategy takes full advantage of basic optical parameters as the decrypted keys to improve the information capacity and security,and we expect it to find potential applications in information encryption,optical anti-counterfeiting,virtual/augmented reality,etc.展开更多
According to the signal processing characteristic of MIMO radars,an adaptive dwell scheduling algorithm is proposed.It is based on a novel pulse interleaving technique,which makes full use of transmitting,waiting and ...According to the signal processing characteristic of MIMO radars,an adaptive dwell scheduling algorithm is proposed.It is based on a novel pulse interleaving technique,which makes full use of transmitting,waiting and receiving durations of radar dwells.The utilization of transmitting duration is unique for MIMO radars and is realized through transmitting duration overlapping.Simulation results show that,compared with the conventional scheduling algorithm,the scheduling performance of MIMO radars can be improved effectively by the proposed algorithm,and the scheduling rule can be chosen arbitrarily when using the proposed algorithm.展开更多
The multiplexing ability of a novel multiplexing fiber Bragg grating(FBG)method based on Optical Time Domain Reflecto meter(OTDR)and Time Division Multiplexing TDM technologies has been theoretically analyzed and stud...The multiplexing ability of a novel multiplexing fiber Bragg grating(FBG)method based on Optical Time Domain Reflecto meter(OTDR)and Time Division Multiplexing TDM technologies has been theoretically analyzed and studied.This method permits the interrogation of hundreds of identical FBGs with low reflectivity in a single fiber,making the FBG sensors more applicable in the aerospace health monitoring engineering.The analysis shows that the multiplexing ability can be greatly improved if the FBG reflectivity is sufficiently low.And hence,an inexpensive large-scale distributed sensing system based on this method can be realized,When evaluating the multiplexing ability of this system,we propose for the first time that the interference effect of multi-reflections among FBGs should be taken into consideration.展开更多
Color metasurface holograms are powerful and versatile platforms for modulating the amplitude,phase,polarization,and other properties of light at multiple operating wavelengths.However,the current color metasurface ho...Color metasurface holograms are powerful and versatile platforms for modulating the amplitude,phase,polarization,and other properties of light at multiple operating wavelengths.However,the current color metasurface holography can only realize static manipulation.In this study,we propose and demonstrate a multiplexing metasurface technique combined with multiwavelength code-division multiplexing(CDM)to realize dynamic manipulation.Multicolor code references are utilized to record information within a single metasurface and increase the information capacity and security for anticracks.A total of 48 monochrome images consisting of pure color characters and multilevel color video frames were reconstructed in dual polarization channels of the birefringent metasurface to exhibit high information density,and a video was displayed via sequential illumination of the corresponding code patterns to verify the ability of dynamic manipulation.Our approach demonstrates significant application potential in optical data storage,optical encryption,multiwavelengthversatile diffractive optical elements,and stimulated emission depletion microscopy.展开更多
To suppress the interference in the ultra-wideband (AI-UWB) system is a challenging problem. An anti-interference multiband orthogonal frequency-division multiplexing ultra-wideband (AI-UWB) system, based on sprea...To suppress the interference in the ultra-wideband (AI-UWB) system is a challenging problem. An anti-interference multiband orthogonal frequency-division multiplexing ultra-wideband (AI-UWB) system, based on spreading and interleaving is addressed. It will exploit the frequency diversity across the subcarriers and provide the robustness to narrow-band interference, by spreading the coded bit streams within each sub-band and interleaving across all sub-bands. Simulating results show that the spreading and interleaving provide about 5 dB to 10 dB advantages over the conventional multiband orthogonal frequency-division multiplexing ultra-wideband system in signal-to-interference ratio. Spreading and interleaving is an effective cure for enhancing the robustness to narrowband interference.展开更多
As a promising counterpart of two-dimensional metamaterials,metasurfaces enable to arbitrarily control the wavefront of light at subwavelength scale and hold promise for planar holography and applicable multiplexing d...As a promising counterpart of two-dimensional metamaterials,metasurfaces enable to arbitrarily control the wavefront of light at subwavelength scale and hold promise for planar holography and applicable multiplexing devices.Nevertheless,the degrees of freedom(DoF)to orthogonally multiplex data have been almost exhausted.Compared with state-of-theart methods that extensively employ the orthogonal basis such as wavelength,polarization or orbital angular momentum,we propose an unprecedented method of peristrophic multiplexing by combining the spatial frequency orthogonality with the subwavelength detour phase principle.The orthogonal relationship between the spatial frequency of incident light and the locally shifted building blocks of metasurfaces can be regarded as an additional DoF.We experimentally demonstrate the viability of the multiplexed holograms.Moreover,this newly-explored orthogonality is compatible with conventional DoFs.Our findings will contribute to the development of multiplexing metasurfaces and provide a novel solution to nanophotonics,such as large-capacity chip-scale devices and highly integrated communication.展开更多
In this paper, the bit synchronization algorithms in GNSS receiver are introduced, including the traditional histogram method, K-P algorithm and Viterbi algorithm. The FPGA implementation is also included. A novel tim...In this paper, the bit synchronization algorithms in GNSS receiver are introduced, including the traditional histogram method, K-P algorithm and Viterbi algorithm. The FPGA implementation is also included. A novel time division multiplexing technology (TDM) based on multi-channel shared synchronizer is proposed in this paper to solve the constrained hardware resource problem of multi-system satellite navigation receiver. Through the using of control state machine and data register structure, we realize the multiplexing of bit synchronizer of navigation receiver, which saves the hardware resource. After the experiment, it can be verified that the receiver based on the bit synchronization and multiplexing technology can correctly restore the navigation information.展开更多
In this paper, we propose a packet-interleaving scheme (PIS) for increasing packet reliability under burst errors in wireless sensor networks (WSN). In a WSN, packet errors could occur due to weak signal strength or i...In this paper, we propose a packet-interleaving scheme (PIS) for increasing packet reliability under burst errors in wireless sensor networks (WSN). In a WSN, packet errors could occur due to weak signal strength or interference. These erroneous packets have to be retransmitted, which will increase network load substantially. The proposed PIS, encoding data using Reed-Solomon (RS) codes, can classify data into two different types: high-reliability-required (HRR) data and non-HRR data. An HRR packet is encoded with a short RS symbol, while a non-HRR packet with a long RS symbol. When an HRR and a non-HRR packet arrive at a sensor, they are interleaved on a symbol-by-symbol basis. Thus, the effect of burst errors (BE) is dispersed and consequently the uncorrectable HRR packets can be reduced. For the purpose of evaluation, two models, the uniform bit-error model (UBEM) and the on-off bit-error model (OBEM), are built to analyze the packet uncorrectable probability. In the evaluation, we first change the lengths of BE, then we vary the shift positions in a BE period, and finally we increase the number of correctable symbols to observe the superiority of the proposed PIS in reducing packet uncorrectable probability.展开更多
文摘The interleaving/multiplexing technique was used to realize a 200?MHz real time data acquisition system. Two 100?MHz ADC modules worked parallelly and every ADC plays out data in ping pang fashion. The design improved the system conversion rata to 200?MHz and reduced the speed of data transporting and storing to 50?MHz. The high speed HDPLD and ECL logic parts were used to control system timing and the memory address. The multi layer print board and the shield were used to decrease interference produced by the high speed circuit. The system timing was designed carefully. The interleaving/multiplexing technique could improve the system conversion rata greatly while reducing the speed of external digital interfaces greatly. The design resolved the difficulties in high speed system effectively. The experiment proved the data acquisition system is stable and accurate.
文摘Quadrature Spatial Modulation (QSM) is a high spectral efficiency Multiple-Input Multiple Output (MIMO) technique used to improve the spectral efficiency of wireless communication systems. The main concept of QSM is to extend the spatial constellation of the conventional Spatial Modulation (SM) in both the in-phase and quadrature components of the data symbol. In this paper, because QSM-based on Interleaxdng Division Multiplexing (IDM) has not been introduced in the literature as a multiple antenna system, we introduced a novel scheme, called QSM system based on Interleaving Division Multiplexing (QSM-IDM). The antenna sets are also applied to a spreader, before being used to assign an antenna number for information transmission. Analysis and simulations for a flat fading channel show that the proposed QSM-IDM method significantly outperforms the original QSM system with the same data rate, while maintaining a relatively acceptable complexity. The obtained simulation results show that the conducted analysis yields significant improvements for the accuracy of the proposed scheme, with satisfactory complexity.
基金supported by the National Key Research and Development Program of China(2023YFB2804704)the National Natural Science Foundation of China(12174292,12374278,and 62105250).
文摘Advancements in mode-division multiplexing(MDM)techniques,aimed at surpassing the Shannon limit and augmenting transmission capacity,have garnered significant attention in optical fiber communica-tion,propelling the demand for high-quality multiplexers and demultiplexers.However,the criteria for ideal-mode multiplexers/demultiplexers,such as performance,scalability,compatibility,and ultra-compactness,have only partially been achieved using conventional bulky devices(e.g.,waveguides,grat-ings,and free space optics)—an issue that will substantially restrict the application of MDM techniques.Here,we present a neuro-meta-router(NMR)optimized through deep learning that achieves spatial multi-mode division and supports multi-channel communication,potentially offering scalability,com-patibility,and ultra-compactness.An MDM communication system based on an NMR is theoretically designed and experimentally demonstrated to enable simultaneous and independent multi-dataset transmission,showcasing a capacity of up to 100 gigabits per second(Gbps)and a symbol error rate down to the order of 104,all achieved without any compensation technologies or correlation devices.Our work presents a paradigm that merges metasurfaces,fiber communications,and deep learning,with potential applications in intelligent metasurface-aided optical interconnection,as well as all-optical pat-tern recognition and classification.
基金Project supported by the National Key Research and Development Program of China(Grant No.2019YFB2203600)。
文摘A 32-channel wavelength division multiplexer with 100 GHz spacing is designed and fabricated by interleaving two silicon arrayed waveguide gratings(AWGs).It has a parallel structure consisting of two silicon 16-channel AWGs with200 GHz spacing and a Mach-Zehnder interferometer(MZI)with 200 GHz free spectral range.The 16 channels of one silicon AWG are interleaved with those of the other AWG in spectrum,but with an identical spacing of 200 GHz.For the composed wavelength division multiplexer,the experiment results reveal 32 wavelength channels in C-band,a wavelength spacing of 100 GHz,and a channel crosstalk lower than-15 dB.
基金supported by the National Natural Science Foundation of China(Grants U22A2008,12404484,12464016,and 62405219)the Double First Class Joint Special Key Project of Yunnan Science and Technology Department and Yunnan University(Grant 202401BF070001-012)Sichuan Provincial Science and Technology Support Program(Grant 25QNJJ2419).
文摘Dynamically tunable terahertz(THz)beam focusing plays a critical role in emerging applications including reconfigurable imaging,localized spectral analysis,and micro-machining.Conventional methods,however,frequently employ complex wavefront modulators and external control algorithms,resulting in increased system footprint and limited tuning efficiency.In this work,we present an all-silicon mechanically rotatable cascaded metasurface capable of dynamic THz beam focusing.By independently adjusting the relative rotation angles between the two metasurface layers,real-time repositioning of the focal spot is achieved for orthogonal circular polarization channels.The proposed design facilitates polarization-division multiplexing without requiring external algorithms or active materials while preserving high focusing efficiency and beam quality across a predefined focal plane.Numerical simulations reveal a quasi-linear shift of the focal position with the rotation angle,with stable focusing efficiency and full-width at half-maximum observed in both polarization channels.This strategy offers an efficient and reliable approach to dynamic wavefront control for compact,reconfigurable THz imaging,sensing,and communication systems.
基金jointly supported by the National Natural Science Foundation of China (U21A20495)Natural Science Foundation of Jiangsu Province (BG2024023)+1 种基金National Key Research and Development Program of China (2022YFE0112000)111 Project (D17018)。
文摘Multiple quantum well(MQW) Ⅲ-nitride diodes that can simultaneously emit and detect light feature an overlapping region between their electroluminescence and responsivity spectra, which allows them to be simultaneously used as both a transmitter and a receiver in a wireless light communication system. Here, we demonstrate a mobile light communication system using a time-division multiplexing(TDM) scheme to achieve bidirectional data transmission via the same optical channel.Two identical blue MQW diodes are defined by software as a transmitter or a receiver. To address the light alignment issue, an image identification module integrated with a gimbal stabilizer is used to automatically detect the locations of moving targets;thus, underwater audio communication is realized via a mobile blue-light TDM communication mode. This approach not only uses a single link but also integrates mobile nodes in a practical network.
文摘A novel interleaving based selected mapping (SLM) scheme to depress the relatively high peak power of transmit signals in multicarrier communications is proposed. In the scheme, a group of bit-level interleavers spanning only a few bits are used to produce multiple sequences representing the same information, and one of the sequences resulting in the lowest peak-to-average power ratio (PAPR) is selected for transmission. The implementation of the scheme including the structure of the short-span interleaver is illustrated. The performance of this PAPR reduction scheme is investigated by simulations. This scheme exhibits a good PAPR reduction performance, and for signals of high level modulation, such as 16QAM and 64QAM, it approaches the best performance of all SLM schemes. Compared to the conventional interleaving SLM, this short-span interleaving SLM results in a very short time delay, requires very few register units for buffering, and can be easily implemented by hardware.
文摘The problem of scheduling radar dwells in multifunction phased array radar systems is addressed. A novel dwell scheduling algorithm is proposed. The whole scheduling process is based on an online pulse interleaving technique. It takes the system timing and energy constraints into account. In order to adapt the dynamic task load, the algorithm considers both the priorities and deadlines of tasks. The simulation results demonstrate that compared with the conventional adaptive dwell scheduling algorithm, the proposed one can improve the task drop rate and system resource utility effectively.
基金financially supported by the Russian Foundation for Basic Research(grant No.18-29-20045)for WDM,MDM and hybrid WDM-MDM,WDM-PDM sectionsthe Russian Science Foundation(grant No.21-79-20075)for PDM,OAMM and hybrid PDM-MDM sectionsthe Ministry of Science and Higher Education of the Russian Federation under the FSRC"Crystallography and Photonics"of the Russian Academy of Sciences(the state task No.007-GZ/Ch3363/26)for comparative analysis.
文摘Herein,an attention-grabbing and up-to-date review related to major multiplexing techniques is presented which in-cludes wavelength division multiplexing(WDM),polarization division multiplexing(PDM),space division multiplexing(SDM),mode division multiplexing(MDM)and orbital angular momentum multiplexing(OAMM).Multiplexing is a mech-anism by which multiple signals are combined into a shared channel used to showcase the maximum capacity of the op-tical links.However,it is critical to develop hybrid multiplexing methods to allow enhanced channel numbers.In this re-view,we have also included hybrid multiplexing techniques such as WDM-PDM,WDM-MDM and PDM-MDM.It is prob-able to attain N×M channels by utilizing N wavelengths and M guided-modes by simply utilizing hybrid WDM-MDM(de)multiplexers.To the best of our knowledge,this review paper is one of its kind which has highlighted the most prom-inent and recent signs of progress in multiplexing techniques in one place.
文摘An online pulse interleaving scheduling algorithm is proposed for a solution to the task scheduling problem in the digital array radar(DAR). The full DAR task structure is explicitly considered in a way that the waiting duration is able to be utilized to transmit or receive subtasks, namely the pulse interleaving,as well as the receiving durations of different tasks are able to be overlapped. The algorithm decomposes the pulse interleaving scheduling analysis into the time constraint check and the energy constraint check, and schedules online all kinds of tasks that are able to be interleaved. Thereby the waiting duration and the receiving duration in the DAR task are both fully utilized. The simulation results verify the performance improvement and the high efficiency of the proposed algorithm compared with the existing ones.
基金the supports from the National Natural Science Foundation of China (61905073, 61835004, 62134001, 61905031, 62105263, 62275077)Fundamental Research Fund for the Central Universities (531118010189, 310202011qd002)+1 种基金the support from Xi’an Science and Technology Association Youth Talent Support Project (095920211306)the Postdoctoral Innovation Talent Support Program of China (BX20220388)
文摘Flat optical elements have attracted enormous attentions and act as promising candidates for the next generation of optical components.As one of the most outstanding representatives,liquid crystal(LC)has been widely applied in flat panel display industries and inspires the wavefront modulation with the development of LC alignment techniques.However,most LC elements perform only one type of optical manipulation and are difficult to realize the multifunctionality and light integration.Here,flat multifunctional liquid crystal elements(FMLCEs),merely composed of anisotropic LC molecules with space-variant orientations,are presented for multichannel information manipulation by means of polarization,space and wavelength multiplexing.Specifically,benefiting from the unique light response with the change of the incident polarization,observation plane,and working wavelength,a series of FMLCEs are demonstrated to achieve distinct near-and far-field display functions.The proposed strategy takes full advantage of basic optical parameters as the decrypted keys to improve the information capacity and security,and we expect it to find potential applications in information encryption,optical anti-counterfeiting,virtual/augmented reality,etc.
基金supported by the National Natural Science Foundation of China(6110117161032010)
文摘According to the signal processing characteristic of MIMO radars,an adaptive dwell scheduling algorithm is proposed.It is based on a novel pulse interleaving technique,which makes full use of transmitting,waiting and receiving durations of radar dwells.The utilization of transmitting duration is unique for MIMO radars and is realized through transmitting duration overlapping.Simulation results show that,compared with the conventional scheduling algorithm,the scheduling performance of MIMO radars can be improved effectively by the proposed algorithm,and the scheduling rule can be chosen arbitrarily when using the proposed algorithm.
基金Foundation item:National Natural Science Foundation of China(10376001)
文摘The multiplexing ability of a novel multiplexing fiber Bragg grating(FBG)method based on Optical Time Domain Reflecto meter(OTDR)and Time Division Multiplexing TDM technologies has been theoretically analyzed and studied.This method permits the interrogation of hundreds of identical FBGs with low reflectivity in a single fiber,making the FBG sensors more applicable in the aerospace health monitoring engineering.The analysis shows that the multiplexing ability can be greatly improved if the FBG reflectivity is sufficiently low.And hence,an inexpensive large-scale distributed sensing system based on this method can be realized,When evaluating the multiplexing ability of this system,we propose for the first time that the interference effect of multi-reflections among FBGs should be taken into consideration.
基金the National Key R&D Program of China(2021YFA1401200)Beijing Outstanding Young Scientist Program(BJJWZYJH01201910007022)+2 种基金National Natural Science Foundation of China(No.U21A20140,No.92050117)Beijing Municipal Science&Technology Commission,Administrative Commission of Zhongguancun Science Park(No.Z211100004821009)X.Li acknowledges the support from Beijing Institute of Technology Research Fund Program for Young Scholars(XSQD-201904005).
文摘Color metasurface holograms are powerful and versatile platforms for modulating the amplitude,phase,polarization,and other properties of light at multiple operating wavelengths.However,the current color metasurface holography can only realize static manipulation.In this study,we propose and demonstrate a multiplexing metasurface technique combined with multiwavelength code-division multiplexing(CDM)to realize dynamic manipulation.Multicolor code references are utilized to record information within a single metasurface and increase the information capacity and security for anticracks.A total of 48 monochrome images consisting of pure color characters and multilevel color video frames were reconstructed in dual polarization channels of the birefringent metasurface to exhibit high information density,and a video was displayed via sequential illumination of the corresponding code patterns to verify the ability of dynamic manipulation.Our approach demonstrates significant application potential in optical data storage,optical encryption,multiwavelengthversatile diffractive optical elements,and stimulated emission depletion microscopy.
基金the National "863" High Technology Research Program of China (2005AA123320)Universities Natural Science Research Project of Jiangsu Province (05KJB510101).
文摘To suppress the interference in the ultra-wideband (AI-UWB) system is a challenging problem. An anti-interference multiband orthogonal frequency-division multiplexing ultra-wideband (AI-UWB) system, based on spreading and interleaving is addressed. It will exploit the frequency diversity across the subcarriers and provide the robustness to narrow-band interference, by spreading the coded bit streams within each sub-band and interleaving across all sub-bands. Simulating results show that the spreading and interleaving provide about 5 dB to 10 dB advantages over the conventional multiband orthogonal frequency-division multiplexing ultra-wideband system in signal-to-interference ratio. Spreading and interleaving is an effective cure for enhancing the robustness to narrowband interference.
基金supported by the Science and Technology Projects of Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province(IKKEM)No.HRTP202231partially supported by the Agency for Science,Technology,and Research(A*STAR)under AME IRG Grant Nos.A20E5c0095,and CDF Grant No.C210112044。
文摘As a promising counterpart of two-dimensional metamaterials,metasurfaces enable to arbitrarily control the wavefront of light at subwavelength scale and hold promise for planar holography and applicable multiplexing devices.Nevertheless,the degrees of freedom(DoF)to orthogonally multiplex data have been almost exhausted.Compared with state-of-theart methods that extensively employ the orthogonal basis such as wavelength,polarization or orbital angular momentum,we propose an unprecedented method of peristrophic multiplexing by combining the spatial frequency orthogonality with the subwavelength detour phase principle.The orthogonal relationship between the spatial frequency of incident light and the locally shifted building blocks of metasurfaces can be regarded as an additional DoF.We experimentally demonstrate the viability of the multiplexed holograms.Moreover,this newly-explored orthogonality is compatible with conventional DoFs.Our findings will contribute to the development of multiplexing metasurfaces and provide a novel solution to nanophotonics,such as large-capacity chip-scale devices and highly integrated communication.
基金the National Natural Science Foundation of China under Grant,the China Postdoctoral Science Foundation under Grant No.2013M530526,the Fundamental Research Funds for the Central Universities under Grant No.FRF-TP-14-046A2
文摘In this paper, the bit synchronization algorithms in GNSS receiver are introduced, including the traditional histogram method, K-P algorithm and Viterbi algorithm. The FPGA implementation is also included. A novel time division multiplexing technology (TDM) based on multi-channel shared synchronizer is proposed in this paper to solve the constrained hardware resource problem of multi-system satellite navigation receiver. Through the using of control state machine and data register structure, we realize the multiplexing of bit synchronizer of navigation receiver, which saves the hardware resource. After the experiment, it can be verified that the receiver based on the bit synchronization and multiplexing technology can correctly restore the navigation information.
文摘In this paper, we propose a packet-interleaving scheme (PIS) for increasing packet reliability under burst errors in wireless sensor networks (WSN). In a WSN, packet errors could occur due to weak signal strength or interference. These erroneous packets have to be retransmitted, which will increase network load substantially. The proposed PIS, encoding data using Reed-Solomon (RS) codes, can classify data into two different types: high-reliability-required (HRR) data and non-HRR data. An HRR packet is encoded with a short RS symbol, while a non-HRR packet with a long RS symbol. When an HRR and a non-HRR packet arrive at a sensor, they are interleaved on a symbol-by-symbol basis. Thus, the effect of burst errors (BE) is dispersed and consequently the uncorrectable HRR packets can be reduced. For the purpose of evaluation, two models, the uniform bit-error model (UBEM) and the on-off bit-error model (OBEM), are built to analyze the packet uncorrectable probability. In the evaluation, we first change the lengths of BE, then we vary the shift positions in a BE period, and finally we increase the number of correctable symbols to observe the superiority of the proposed PIS in reducing packet uncorrectable probability.