0 INTRODUCTION During the geological evolution process,tectonic activities coupled with anthropogenic engineering disturbances have collectively contributed to the development of complex fracture-filling networks with...0 INTRODUCTION During the geological evolution process,tectonic activities coupled with anthropogenic engineering disturbances have collectively contributed to the development of complex fracture-filling networks within rock masses(Feng et al.,2024;Tan et al.,2020;Li et al.,2019).The particle size distribution of infilling materials within fractures is susceptible to multiple controlling factors,including material composition,seepage-induced erosion,and tectonic disturbances(Zhang et al.,2024;Tan et al.,2023).展开更多
The potential of the vertical-horizontal well hybrid SAGD technique for developing shallow heavy oil reservoirs is gradually being realized.However,challenges remain in terms of low thermal efficiency and high carbon ...The potential of the vertical-horizontal well hybrid SAGD technique for developing shallow heavy oil reservoirs is gradually being realized.However,challenges remain in terms of low thermal efficiency and high carbon emissions in reservoirs with interlayers.Currently,there is limited research on the low-carbon strategy of coupling exhaust gas from steam boilers with the VH-SAGD technique.Herein,considering heterogeneity,a series of flue gas-assisted VH-SAGD experiments were conducted employing a high-performance 2D visualization model.The mechanism of enhanced recovery of flue gas in VH-SAGD and the effect of its injection methods were studied,with a focus on steam chamber development and oil saturation distribution.Crucially,the interlayer length was optimized to enhance oil recovery,providing a new perspective for well location design in heavy oil reservoirs with interlayers.The results showed that flue gas,as an additive,could fully exploit the well-type advantage of VH-SAGD.By supplementing energy at the reservoir top,flue gas effectively promoted steam chamber development,expanded the oil drainage area of VH-SAGD,and increased the oil recovery from 58.9%to 71.7%.The flow channels formed by pre-injection flue gas accelerated the early-stage expansion of the steam chamber while also inducing lateral migration of steam,slowing steam rise,and consequently increasing the heating range within the low-permeability layer.When the distance between the vertical and horizontal wells was set to twice the interlayer length,the negative effects of the interlayer were more effectively turned into advantages.Because when the lateral development distance of the steam chamber in the low-permeability layer slightly exceeds the interlayer,enhanced heating of the lower part of the reservoir occurred through vertical convection of rising steam and returning condensate.The research results contribute to reducing carbon emissions from steam-based heavy oil extraction while advancing the maturity of VH-SAGD.展开更多
Weak interlayers play a crucial role in the seismic performance of bedding slopes;however,the effects of structural surface development within these layers remain underexplored.This study presents two scaled models of...Weak interlayers play a crucial role in the seismic performance of bedding slopes;however,the effects of structural surface development within these layers remain underexplored.This study presents two scaled models of bedding slopes,each with different weak interlayers:one with a homogeneous weak layer and another with discontinuous interfaces.Shaking table tests were conducted to compare their seismic performance.The results show that the peak ground acceleration(PGA)values above the weak interlayer in model A were significantly higher than those in model B,with the differences increasing as the input wave amplitude increased.The peak earth pressure(PEP)values at the tensile failure boundary at the rear edge of model A were also higher,whereas those within the weak layer at the toe of model A were lower than those in model B.Deformation analysis revealed that the maximum principal strain in model A initially appeared at the upper part of the tensile failure boundary,while the maximum shear strain was concentrated near the rear edge within the weak layer.In contrast,model B exhibited the opposite strain distribution.These findings provide insight into the impact of weak interlayers on the dynamic response and deformation of bedding slopes,highlighting the importance of considering this factor in seismic landslide investigations and failure mode predictions.展开更多
The development of lithium-sulfur(Li-S)batteries is hindered by the disadvantages of shuttling of polysulfides and the sluggish redox kinetics of the conversion of sulfur species during discharge and charge.Herein,the...The development of lithium-sulfur(Li-S)batteries is hindered by the disadvantages of shuttling of polysulfides and the sluggish redox kinetics of the conversion of sulfur species during discharge and charge.Herein,the crystallinities of a titanium nitride(TiN)film on copper-embedded carbon nanofibers(Cu-CNFs)are regulated and the nanofibers are used as interlayers to resolve the aforementioned crucial issues.A low-crystalline TiN-coated Cu-CNF(L-TiN-Cu-CNF)interlayer is compared with its highly crystalline counterpart(H-TiN-Cu-CNFs).It is demonstrated that the L-TiN coating not only strengthens the chemical adsorption toward polysulfides but also greatly accelerates the electrochemical conversion of polysulfides.Due to robust carbon frameworks and enhanced kinetics,impressive highrate performance at 2 C(913 mAh g^(-1)based on sulfur)as well as remarkable cyclic stability up to 300 cycles(626 mAh g^(-1))with capacity retention of 46.5%is realized for L-TiN-Cu-CNF interlayer-configured Li-S batteries.Even under high loading(3.8 mg cm^(-2))of sulfur and relatively lean electrolyte(10μL electrolyte per milligram sulfur)conditions,the Li-S battery equipped with L-TiN-Cu-CNF interlayers delivers a high capacity of 1144 mAh g^(-1)with cathodic capacity of 4.25 mAh cm^(-2)at 0.1 C,providing a potential pathway toward the design of multifunctional interlayers for highly efficient Li-S batteries.展开更多
The practical application of Li metal anodes(LMAs)is limited by uncontrolled dendrite growth and side reactions.Herein,we propose a new friction-induced strategy to produce high-performance thin Li anode(Li@CFO).By vi...The practical application of Li metal anodes(LMAs)is limited by uncontrolled dendrite growth and side reactions.Herein,we propose a new friction-induced strategy to produce high-performance thin Li anode(Li@CFO).By virtue of the in situ friction reaction between fluoropolymer grease and Li strips during rolling,a robust organic/inorganic hybrid interlayer(lithiophilic LiF/LiC_(6)framework hybridized-CF_(2)-O-CF_(2)-chains)was formed atop Li metal.The derived interface contributes to reversible Li plating/stripping behaviors by mitigating side reactions and decreasing the solvation degree at the interface.The Li@CFO||Li@CFO symmetrical cell exhibits a remarkable lifespan for 5,600 h(1.0 mA cm^(-2)and 1.0 mAh cm^(-2))and 1,350 cycles even at a harsh condition(18.0 mA cm^(-2)and 3.0 mAh cm^(-2)).When paired with high-loading LiFePO4 cathodes,the full cell lasts over 450 cycles at 1C with a high-capacity retention of 99.9%.This work provides a new friction-induced strategy for producing high-performance thin LMAs.展开更多
The in situ zircon U-Pb-Lu-Hf isotope records from end-Permian volcanic interlayers in southwest China,integrated with previous studies,restructure the evolutionary history of the Yangtze Craton from Precambrian to La...The in situ zircon U-Pb-Lu-Hf isotope records from end-Permian volcanic interlayers in southwest China,integrated with previous studies,restructure the evolutionary history of the Yangtze Craton from Precambrian to Late Paleozoic.This includes early continental crust formation before 3.0 Ga and massive juvenile crustal growth at 2.6-2.4 Ga;large-scale crustal reworking at 2.1-1.7 Ga;Neoproterozoic crust addition at 1.1 to 0.7 Ga;collision and subduction along the craton margin between 700-541 Ma;Early Ordovician to Late Silurian magmatism;and large tectono-thermal events in the Middle Carboniferous to end-Permian.Some zircons with T(MD2)ages from 4.40 to 4.01 Ga and lower initial176Hf/177Hf values of 0.280592 to 0.280726 may imply the existence of Hadean crust relics beneath the Yangtze Craton and their provenances could be associated with Hadean crustal remelting.This study further clarifies that the Precambrian-age zircons between the end-Permian volcanic interlayers,the complexes in the western margin of the Yangtze Craton,and the sedimentary Kangdian Basin,may share an affinity based on similar U-Pb age spectra and Hf isotope features.It also shows that the Neoproterozoic tectono-thermal event may be associated with large-scale tectono-rifting activity,which is different from the Grenville-age continental collision between Yangtze and Cathaysia blocks in South China.The above findings support the inference of a widespread Archean basement extending to the western Yangtze Craton and a provenance in the Kangdian Basin that is derived from the weathering and erosion of Paleoproterozoic continental crust.展开更多
Ti foil and Ti/Ni/Ti multiple interlayers were selected for the bonding of tungsten to copper and CuCrZr alloy.Theeffects of processing conditions on the microstructures and shear strength of the joints were investiga...Ti foil and Ti/Ni/Ti multiple interlayers were selected for the bonding of tungsten to copper and CuCrZr alloy.Theeffects of processing conditions on the microstructures and shear strength of the joints were investigated.When Tifoil is used for bonding of tungsten to pure copper but not transformed into liquid solution during the holding time,the strength of the joints is relatively low because of the multiple compound layers with brittleness formed in thebonding zone.The strength of the joints increases significantly if the Ti foil is transformed into liquid solution and ismostly extruded out of the bonding zone.The same phenomena are found in the case when Ti/Ni/Ti multi-interlayersare used for bonding tungsten to CuCrZr alloy.展开更多
A wheel tracking test was modelled to gain better understanding of the deflection and stress-strain distribution in an overlaid cracked pavements with and without membrane interlayer (SAMI). For this purpose, commer...A wheel tracking test was modelled to gain better understanding of the deflection and stress-strain distribution in an overlaid cracked pavements with and without membrane interlayer (SAMI). For this purpose, commercial finite element software Abaqus 6.7-1 was used. Two different models were considered, one incorporating stress absorbing membrane interlayers (SAMIs) and the other without SAMI. In the study, full bond condition was assumed for the boundaries between the layers, and a linear elastic model was used for the analysis. The results show that introduction of SAMI caused greater deflection of the pavement. It is found that although with SAMIs, low stiffness is required, a very low stiffness may yield undesirable results. The results show that the introduction of SAMIs results in high strain concentration around the crack region, whilst the strain in the overlay is smaller than the values predicted in the models without SAMIs.展开更多
Ti-6Al-4V and QAl 10-3-1.5 diffusion bonding has been carried out with Ni/Cu interlayers. The diffusionbonded joints are evaluated by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and mi...Ti-6Al-4V and QAl 10-3-1.5 diffusion bonding has been carried out with Ni/Cu interlayers. The diffusionbonded joints are evaluated by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and microhardness test. Intermetallic compounds at the interface zone are detected by X-ray diffraction (XRD). Interracial microstructure of TiNi+CuTi3+α-Ti forms at the Ni/Ti-6Al-4V transition zone and Cu (ss. Ni) solid solution forms between Ni/Cu interlayers. The thickness of reaction layer (TiNi) increases with bonding time by a parabolic law: y^2=Koexp(-150000/RT)t, and K0=2.g×10^-7 m^2/s is figured out from the experiment data.展开更多
We report a novel structure of A1GaN/GaN heterostructure field effect transistors (HFETs) with a Si and Mg pair- doped interlayer grown on Si substrate. By optimizing the doping concentrations of the pair-doped inte...We report a novel structure of A1GaN/GaN heterostructure field effect transistors (HFETs) with a Si and Mg pair- doped interlayer grown on Si substrate. By optimizing the doping concentrations of the pair-doped interlayers, the mobility of 2DEG increases by twice for the conventional structure under 5 K due to the improved crystalline quality of the conduction channel. The proposed HFET shows a four orders lower off-state leakage current, resulting in a much higher on/off ratio ( - 10^9). Further temperature-dependent performance of Schottky diodes revealed that the inhibition of shallow surface traps in proposed HFETs should be the main reason for the suppression of leakage current.展开更多
Comparative study of high and low temperature AlN interlayers and their roles in the properties of GaN epilayers prepared by means of metal organic chemical vapour deposition on (0001) plane sapphire substrates is c...Comparative study of high and low temperature AlN interlayers and their roles in the properties of GaN epilayers prepared by means of metal organic chemical vapour deposition on (0001) plane sapphire substrates is carried out by high resolution x-ray diffraction, photoluminescence and Raman spectroscopy. It is found that the crystalline quality of GaN epilayers is improved significantly by using the high temperature A1N interlayers, which prevent the threading dislocations from extending, especially for the edge type dislocation. The analysis results based on photoluminescence and Ruman measurements demonstrate that there exists more compressive stress in GaN epilayers with high temperature AlN interlayers. The band edge emission energy increases from 3.423 eV to 3.438 eV and the frequency of the Raman shift of E2(TO) moves from 571.3 cm-1 to 572.9 cm-1 when the temperature of AlN interlayers increases from 700 ℃ to 1050 ℃. It is believed that the temperature of AlN interlayers effectively determines the size, the density and the coalescence rate of the islands, and the high temperature AlN interlayers provide large size and low density islands for GaN epilayer growth and the threading dislocations are bent and interactive easily. Due to the threading dislocation reduction in GaN epilayers with high temperature AlN interlayers, the approaches of strain relaxation reduce drastically, and thus the compressive stress in GaN epilayers with high temperature AlN interlayers is high compared with that in GaN epilayers with low temperature AlN interlayers.展开更多
Amorphous Si O2(a-Si O2) films were synthesized on WC-Co substrates with H2 and tetraethoxysilane(TEOS) via pyrolysis of molecular precursor.X-ray diffraction(XRD) pattern shows that silicon-cobalt compounds for...Amorphous Si O2(a-Si O2) films were synthesized on WC-Co substrates with H2 and tetraethoxysilane(TEOS) via pyrolysis of molecular precursor.X-ray diffraction(XRD) pattern shows that silicon-cobalt compounds form at the interface between a-Si O2 films and WC-Co substrates.Moreover,it is observed by transmission electron microscope(TEM) that the a-Si O2 films are composed of hollow mirco-spheroid a-Si O2 particles.Subsequently,the a-Si O2 films are used as intermediate films and chemical vapor deposition(CVD) diamond films are deposited on them.Indentation tests were performed to evaluate the adhesion of bi-layer(a-Si O2 + diamond) films on cemented carbide substrates.And the cutting performance of bi-layer(a-Si O2 + diamond) coated inserts was evaluated by machining the glass fiber reinforced plastic(GFRP).The results show that a-Si O2 interlayers can greatly improve the adhesive strength of diamond films on cemented carbide inserts;furthermore,thickness of the a-Si O2 interlayers plays a significant role in their effectiveness on adhesion enhancement of diamond films.展开更多
Aluminum 5052(Al 5052)-stainless steel 316(SS 316)plates were explosively cladded with Al 1100,pure copper and SS 304 interlayers.The operational parameters viz.,standoff distance,explosive mass ratio(mass ratio of th...Aluminum 5052(Al 5052)-stainless steel 316(SS 316)plates were explosively cladded with Al 1100,pure copper and SS 304 interlayers.The operational parameters viz.,standoff distance,explosive mass ratio(mass ratio of the explosive to the flyer plate)and inclination angle were varied and the results were presented.The advent of interlayer relocates the lower boundary of the welding window,and enhances the welding regime by 40%.A triaxial welding window,considering the influence of the third operational parameter,was developed as well.Use of interlayer transforms the continuous molten layer formed in the traditional Al 5052-SS 316 explosive clad interfaces into a smooth interface devoid or with a slender presence of intermetallic compounds.The microhardness,ram tensile and shear strengths of the interlayered clads are higher than those of the traditional explosive clads,and the maximum values are witnessed for stainless steel interlaced Al 5052-SS 316 explosive clads.展开更多
Ore particles,especially fine interlayers,commonly segregate in heap stacking,leading to undesirable flow paths and changeable flow velocity fields of packed beds.Computed tomography(CT),COMSOL Multiphysics,and MATLAB...Ore particles,especially fine interlayers,commonly segregate in heap stacking,leading to undesirable flow paths and changeable flow velocity fields of packed beds.Computed tomography(CT),COMSOL Multiphysics,and MATLAB were utilized to quantify pore structures and visualize flow behavior inside packed beds with segregated fine interlayers.The formation of fine interlayers was accompanied with the segregation of particles in packed beds.Fine particles reached the upper position of the packed beds during stacking.CT revealed that the average porosity of fine interlayers(24.21%)was significantly lower than that of the heap packed by coarse ores(37.42%),which directly affected the formation of flow paths.Specifically,the potential flow paths in the internal regions of fine interlayers were undeveloped.Fluid flowed and bypassed the fine interlayers and along the sides of the packed beds.Flow velocity also indicated that the flow paths easily gathered in the pore throat where flow velocity(1.8×10^-5 m/s)suddenly increased.Fluid stagnant regions with a flow velocity lower than 0.2×10^-5 m/s appeared in flow paths with a large diameter.展开更多
In this research,2205/Q235 B clad plates were prepared by a vacuum hot rolling composite process.The effects of adding Fe,Ni,and Nb interlayers on the bonding interface structures and the shear strengths of the clad s...In this research,2205/Q235 B clad plates were prepared by a vacuum hot rolling composite process.The effects of adding Fe,Ni,and Nb interlayers on the bonding interface structures and the shear strengths of the clad steel plates were studied.The results showed that 2205 duplex stainless steel and the three interlayers produced a large amount of plastic deformation and low-angle boundaries,and the main structures were the recrystallized and deformed grains.There were many recrystallized grains in the microstructure of the Q235 B low-carbon steel due to the low deformation in the rolling process.The Fe interlayer had better wettability with the two kinds of steel,but the lower strength led to the reduction of shear strength by about14 MPa compared with the original clad steel plate.The C element in the Q235 B low-carbon steel easily diffused into the Fe interlayer,and the clad steel plate attained a poor corrosion resistance because a large decarburization area was formed.The Nb interlayer reacted with the Mo element in the 2205 duplex stainless steel to form an Nb-Mo binary alloy,which generated long-banded ferrite.The decarburization area was also produced because the Nb reacted with the C element in the Q235 B to form hard and brittle NbCx.As a result,the shear strength was significantly reduced by about 282 MPa,and the corrosion resistance of the bonding surface was deteriorated.The Ni interlayer did not react with the alloy elements in both sides,and therefore effectively prevented element diffusion and improved the corrosion resistance of the bonding surface.Due to the low strength of the Ni interlayer and the increased number of bonding surfaces of the clad steel plates,the shear strength was reduced to some extent(about 40 MPa),but it still met the engineering application standards.展开更多
Terminal fans have formed the sedimentary system of the 2+3 sands of the upper second member, Shahejie formation in the west of the Pucheng Oilfield, Bohai Bay Basin, East China. Based on well logging data and physic...Terminal fans have formed the sedimentary system of the 2+3 sands of the upper second member, Shahejie formation in the west of the Pucheng Oilfield, Bohai Bay Basin, East China. Based on well logging data and physical properties of the reservoir beds, the 2+3 sands were divided into 16 sublayers. The heterogeneity of reservoir beds and distribution of interlayers and seal layers in the 2+3 sands were investigated. The intra-layer heterogeneity and inter-layer heterogeneity primarily belong to the severely heterogeneous classification. The spatial differentiation of sedimentary microfacies resulted in a change of reservoir bed heterogeneity, strong in the middle and southern parts, weak in the northern part. Spatial distribution of interlayers and seal layers is dominated by sedimentary microfacies, and they are thick in north-eastern and middle parts, thin in the south-western part.展开更多
Aqueous zinc-iodine(Zn-I_(2))batteries are promising candidates for low-cost grid-scale energy storage systems.However,the long-term stability and energy density of the Zn-I_(2)batteries are largely hindered by the la...Aqueous zinc-iodine(Zn-I_(2))batteries are promising candidates for low-cost grid-scale energy storage systems.However,the long-term stability and energy density of the Zn-I_(2)batteries are largely hindered by the lack of feasible and scalable methods that coherently suppress polyiodide shuttling and Zn dendrites growth,especially at high current densities.Herein,a flexible,thin and lightweight poly(3,4-ethy lenedioxythiophene):polystyrene sulfonate(PEDOT:PSS)nanopaper is designed as an“anion-cation regulation”synergistic interlayer to tackle the above issues.The PEDOT:PSS interlayer exhibits a 3D nanofibrous network with uniformly distributed mesopores,abundant polar groups and intrinsic conductivity,which renders an even Zn^(2+)flux at Zn anode and facilitates homogeneous current distributions at I_(2)cathode.Meanwhile,such interlayer can act as physiochemical shield to enhance the utilization of I_(2)cathode via the coulombic repulsion and chemical adsorption effect against polyiodide shuttling.Thus,long-term dendrite-free Zn plating/stripping is achieved at simultaneous high current density and high areal capacity(550 h at 10 m A cm^(-2)/5 m Ah cm^(-2)).Zn-I_(2)batteries harvest a high capacity(230 m Ah g^(-1)at 0.1 A g^(-1))and an ultralong lifespan(>20000 cycles)even at 10 A g^(-1).This work demonstrates the potential use of the multifunctional interlayers for Zn-I_(2)battery configuration innovation by synergistic regulation of cations and anions at the electrodes/electrolyte interface.展开更多
Deep-water oil and gas is currently the hot spot and difficulty of global oil and gas exploration,and the complexflow process inside the turbidite channels of deep-water canyons makes it difficult to characterize rese...Deep-water oil and gas is currently the hot spot and difficulty of global oil and gas exploration,and the complexflow process inside the turbidite channels of deep-water canyons makes it difficult to characterize reservoir structures,identify barriers and interlayers and clarify the spatial distribution laws of reservoirs,which restricts the development of deep-water oil and gas.Taking the Central Canyon of the Qiongdongnan Basin as an example,this paper identifies and characterizes the barriers and interlayers of composite channel scale by means of seismic sedi-mentology,based on three-dimensional seismic and core data.Then,based on the turbiditefilling process,barriers and interlayers are classified,and their genesis and control factors are analyzed.Finally,a development model of deep-water barriers and interlayers is established based on the quantitative analysis of sediment transportation system parameters.And the following research results are obtained.First,based on sedimentary genesis,barriers and interlayers are classified into four types,namely mudstone interlayers of lateral(aggradational)turbidite channel genesis(type A),mudstone interlayers offine-grained turbidite channel genesis(type B),barriers of hemipelagic deep-water sediment genesis(type C),and calcareous petrophysical interlayers(type D).Second,based on thefilling stage,barriers and interlayers are divided into four combination sequences,i.e.,the initial canyon formation stage with strong sediment supply conditions(type A+type C and type B+type C),the initial canyon formation stage with weak sediment supply conditions(type B+type C),the stable canyon development/late reworking stage with strong sediment supply conditions(types A+type D),and the stable canyon development/late reworking stage with weak sediment supply conditions(type D).Third,the development types and combination sequences of barriers and interlayers are controlled by the change of sediment trans-portation volume and terrain slope in the canyon.In the initial canyon formation stage,there is sufficient space for the development of turbidite,and the development of thin barriers and interlayers is controlled by sediment dischage volume,while the development of thick barriers and interlayers is controlled by terrain slope change.In the stable canyon development/late reworking stage,turbidite undergoes superimposed development and overbank.The sediment supply is the primary control factor of barrier and interlayer thickness,and the terrain slope change is the secondary factor.In conclusion,the development model of barriers and interlayers can be used to describe and predict the reservoir structure models under the same sedimentary background and provides a technical support for the exploration and development of deep-water oil and gas.展开更多
The load transfer characteristics of a tensile anchor in the rock mass with weak interlayers were investigated,considering the nonuniform stress of the horizontally layered rock mass along anchors.An improved shear-sl...The load transfer characteristics of a tensile anchor in the rock mass with weak interlayers were investigated,considering the nonuniform stress of the horizontally layered rock mass along anchors.An improved shear-slipping model was proposed to describe the stress evolution characteristics of the bolt-rock interface.Based on the improved model,analytical solutions of the axial force,shear stress distribution and load-displacement relationship considering the residual stress stage were established.The effects of the stratigraphic sequence,pulling force and bolt diameter on the stress distribution of the anchorage interface were evaluated by using analytical solutions.The results were verified by applying the finite difference numerical simulation method.The sensitivity of each parameter to the axial force and shear stress of the rock bolt was determined based on calculation of the sensitivity coefficient.The study results show that the axial force and shear stress tend to decrease nonuniformly along the rock bolt towards the anchorage depth.Due to the existence of weak interlayers,the shear stress mutates at the weak and hard rock interface,and the axial force appears to“rebound”at the bottom of the anchored section.Lithology has more significant effects on the axial force and shear stress at the bottom of the anchor than at the top of the anchor.The pulling force is more sensitive to the anchor stress than stratigraphic sequence when the bolt diameter is determined.This study provides a theoretical framework for the fundamental problem of tensile bolts in horizontally or vertically laminated rock masses,providing a theoretical basis for anchor design.展开更多
Perovskite photoconductor-type photodetector with metal–semiconductor–metal(MSM) structure is a basic device for photodetection applications. However, the role of electrode interlayer in MSM-type perovskite devices ...Perovskite photoconductor-type photodetector with metal–semiconductor–metal(MSM) structure is a basic device for photodetection applications. However, the role of electrode interlayer in MSM-type perovskite devices is less investigated compared to that of the pin diode structure. Here, a systematic investigation on the influence of phenyl-C_(61)-butyric acid methyl ester(PCBM) and indene-C_(60) bisadduct(ICBA) interfacial layers for MSM perovskite photodetectors is reported.It is found that the fullerene-based interlayer significantly enhances the photocurrent of the MSM photodetectors. On one hand, the PCBM interlayer is more suitable for CH_3 NH_3 PbI_3 photodetector, with the responsivity two times higher than that of the device with ICBA interlayer. The ICBA layer, on the other hand, becomes more effective when the band gap of perovskite is enlarged with bromine composition, denoted as CH_3 NH_3 Pb(I_(1-x)Br_x)_3(0 ≤ x ≤1). It is further found that the specific detectivity of photodetectors with ICBA interlayer becomes even higher than those with PCBM when the bromine compositional percentage reaches 0.6(x > 0.6).展开更多
基金supported by the National Natural Science Foundation of China(No.42090054)。
文摘0 INTRODUCTION During the geological evolution process,tectonic activities coupled with anthropogenic engineering disturbances have collectively contributed to the development of complex fracture-filling networks within rock masses(Feng et al.,2024;Tan et al.,2020;Li et al.,2019).The particle size distribution of infilling materials within fractures is susceptible to multiple controlling factors,including material composition,seepage-induced erosion,and tectonic disturbances(Zhang et al.,2024;Tan et al.,2023).
基金support for this work is received from the National Natural Science Foundation of China(Grant No.U22B20144).
文摘The potential of the vertical-horizontal well hybrid SAGD technique for developing shallow heavy oil reservoirs is gradually being realized.However,challenges remain in terms of low thermal efficiency and high carbon emissions in reservoirs with interlayers.Currently,there is limited research on the low-carbon strategy of coupling exhaust gas from steam boilers with the VH-SAGD technique.Herein,considering heterogeneity,a series of flue gas-assisted VH-SAGD experiments were conducted employing a high-performance 2D visualization model.The mechanism of enhanced recovery of flue gas in VH-SAGD and the effect of its injection methods were studied,with a focus on steam chamber development and oil saturation distribution.Crucially,the interlayer length was optimized to enhance oil recovery,providing a new perspective for well location design in heavy oil reservoirs with interlayers.The results showed that flue gas,as an additive,could fully exploit the well-type advantage of VH-SAGD.By supplementing energy at the reservoir top,flue gas effectively promoted steam chamber development,expanded the oil drainage area of VH-SAGD,and increased the oil recovery from 58.9%to 71.7%.The flow channels formed by pre-injection flue gas accelerated the early-stage expansion of the steam chamber while also inducing lateral migration of steam,slowing steam rise,and consequently increasing the heating range within the low-permeability layer.When the distance between the vertical and horizontal wells was set to twice the interlayer length,the negative effects of the interlayer were more effectively turned into advantages.Because when the lateral development distance of the steam chamber in the low-permeability layer slightly exceeds the interlayer,enhanced heating of the lower part of the reservoir occurred through vertical convection of rising steam and returning condensate.The research results contribute to reducing carbon emissions from steam-based heavy oil extraction while advancing the maturity of VH-SAGD.
基金funding support from the National Nature Science Foundation of China(Grant No.41931296)the Open Research Project of Sichuan Provincial Key Laboratory for Major Hazard Source Monitoring and Control(Grant No.KFKT2023-4)the 57#Project(Grant No.JH2024015).
文摘Weak interlayers play a crucial role in the seismic performance of bedding slopes;however,the effects of structural surface development within these layers remain underexplored.This study presents two scaled models of bedding slopes,each with different weak interlayers:one with a homogeneous weak layer and another with discontinuous interfaces.Shaking table tests were conducted to compare their seismic performance.The results show that the peak ground acceleration(PGA)values above the weak interlayer in model A were significantly higher than those in model B,with the differences increasing as the input wave amplitude increased.The peak earth pressure(PEP)values at the tensile failure boundary at the rear edge of model A were also higher,whereas those within the weak layer at the toe of model A were lower than those in model B.Deformation analysis revealed that the maximum principal strain in model A initially appeared at the upper part of the tensile failure boundary,while the maximum shear strain was concentrated near the rear edge within the weak layer.In contrast,model B exhibited the opposite strain distribution.These findings provide insight into the impact of weak interlayers on the dynamic response and deformation of bedding slopes,highlighting the importance of considering this factor in seismic landslide investigations and failure mode predictions.
基金China Scholarship Council,Grant/Award Number:201806950083Advanced Materials research program of the Zernike National Research CentreFaculty of Science and Engineering(FSE),University of Groningen。
文摘The development of lithium-sulfur(Li-S)batteries is hindered by the disadvantages of shuttling of polysulfides and the sluggish redox kinetics of the conversion of sulfur species during discharge and charge.Herein,the crystallinities of a titanium nitride(TiN)film on copper-embedded carbon nanofibers(Cu-CNFs)are regulated and the nanofibers are used as interlayers to resolve the aforementioned crucial issues.A low-crystalline TiN-coated Cu-CNF(L-TiN-Cu-CNF)interlayer is compared with its highly crystalline counterpart(H-TiN-Cu-CNFs).It is demonstrated that the L-TiN coating not only strengthens the chemical adsorption toward polysulfides but also greatly accelerates the electrochemical conversion of polysulfides.Due to robust carbon frameworks and enhanced kinetics,impressive highrate performance at 2 C(913 mAh g^(-1)based on sulfur)as well as remarkable cyclic stability up to 300 cycles(626 mAh g^(-1))with capacity retention of 46.5%is realized for L-TiN-Cu-CNF interlayer-configured Li-S batteries.Even under high loading(3.8 mg cm^(-2))of sulfur and relatively lean electrolyte(10μL electrolyte per milligram sulfur)conditions,the Li-S battery equipped with L-TiN-Cu-CNF interlayers delivers a high capacity of 1144 mAh g^(-1)with cathodic capacity of 4.25 mAh cm^(-2)at 0.1 C,providing a potential pathway toward the design of multifunctional interlayers for highly efficient Li-S batteries.
基金This work was supported by the National Natural Science Foundation of China(U1904216 and U22A20141)the Natural Science Foundation of Changsha City(kq2208258).
文摘The practical application of Li metal anodes(LMAs)is limited by uncontrolled dendrite growth and side reactions.Herein,we propose a new friction-induced strategy to produce high-performance thin Li anode(Li@CFO).By virtue of the in situ friction reaction between fluoropolymer grease and Li strips during rolling,a robust organic/inorganic hybrid interlayer(lithiophilic LiF/LiC_(6)framework hybridized-CF_(2)-O-CF_(2)-chains)was formed atop Li metal.The derived interface contributes to reversible Li plating/stripping behaviors by mitigating side reactions and decreasing the solvation degree at the interface.The Li@CFO||Li@CFO symmetrical cell exhibits a remarkable lifespan for 5,600 h(1.0 mA cm^(-2)and 1.0 mAh cm^(-2))and 1,350 cycles even at a harsh condition(18.0 mA cm^(-2)and 3.0 mAh cm^(-2)).When paired with high-loading LiFePO4 cathodes,the full cell lasts over 450 cycles at 1C with a high-capacity retention of 99.9%.This work provides a new friction-induced strategy for producing high-performance thin LMAs.
基金supported by the National Natural Science Foundation of China(Grant Nos.40739903 and 41872137)。
文摘The in situ zircon U-Pb-Lu-Hf isotope records from end-Permian volcanic interlayers in southwest China,integrated with previous studies,restructure the evolutionary history of the Yangtze Craton from Precambrian to Late Paleozoic.This includes early continental crust formation before 3.0 Ga and massive juvenile crustal growth at 2.6-2.4 Ga;large-scale crustal reworking at 2.1-1.7 Ga;Neoproterozoic crust addition at 1.1 to 0.7 Ga;collision and subduction along the craton margin between 700-541 Ma;Early Ordovician to Late Silurian magmatism;and large tectono-thermal events in the Middle Carboniferous to end-Permian.Some zircons with T(MD2)ages from 4.40 to 4.01 Ga and lower initial176Hf/177Hf values of 0.280592 to 0.280726 may imply the existence of Hadean crust relics beneath the Yangtze Craton and their provenances could be associated with Hadean crustal remelting.This study further clarifies that the Precambrian-age zircons between the end-Permian volcanic interlayers,the complexes in the western margin of the Yangtze Craton,and the sedimentary Kangdian Basin,may share an affinity based on similar U-Pb age spectra and Hf isotope features.It also shows that the Neoproterozoic tectono-thermal event may be associated with large-scale tectono-rifting activity,which is different from the Grenville-age continental collision between Yangtze and Cathaysia blocks in South China.The above findings support the inference of a widespread Archean basement extending to the western Yangtze Craton and a provenance in the Kangdian Basin that is derived from the weathering and erosion of Paleoproterozoic continental crust.
文摘Ti foil and Ti/Ni/Ti multiple interlayers were selected for the bonding of tungsten to copper and CuCrZr alloy.Theeffects of processing conditions on the microstructures and shear strength of the joints were investigated.When Tifoil is used for bonding of tungsten to pure copper but not transformed into liquid solution during the holding time,the strength of the joints is relatively low because of the multiple compound layers with brittleness formed in thebonding zone.The strength of the joints increases significantly if the Ti foil is transformed into liquid solution and ismostly extruded out of the bonding zone.The same phenomena are found in the case when Ti/Ni/Ti multi-interlayersare used for bonding tungsten to CuCrZr alloy.
文摘A wheel tracking test was modelled to gain better understanding of the deflection and stress-strain distribution in an overlaid cracked pavements with and without membrane interlayer (SAMI). For this purpose, commercial finite element software Abaqus 6.7-1 was used. Two different models were considered, one incorporating stress absorbing membrane interlayers (SAMIs) and the other without SAMI. In the study, full bond condition was assumed for the boundaries between the layers, and a linear elastic model was used for the analysis. The results show that introduction of SAMI caused greater deflection of the pavement. It is found that although with SAMIs, low stiffness is required, a very low stiffness may yield undesirable results. The results show that the introduction of SAMIs results in high strain concentration around the crack region, whilst the strain in the overlay is smaller than the values predicted in the models without SAMIs.
基金The financial supports from the National Natural Science Foundation of China(NSFC)under Grant No.50375065the National Key Laboratory of Advanced Welding Production Technology are acknowledged.
文摘Ti-6Al-4V and QAl 10-3-1.5 diffusion bonding has been carried out with Ni/Cu interlayers. The diffusionbonded joints are evaluated by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and microhardness test. Intermetallic compounds at the interface zone are detected by X-ray diffraction (XRD). Interracial microstructure of TiNi+CuTi3+α-Ti forms at the Ni/Ti-6Al-4V transition zone and Cu (ss. Ni) solid solution forms between Ni/Cu interlayers. The thickness of reaction layer (TiNi) increases with bonding time by a parabolic law: y^2=Koexp(-150000/RT)t, and K0=2.g×10^-7 m^2/s is figured out from the experiment data.
基金supported by the National Natural Science Foundation of China(Grant Nos.51177175 and 61274039)the National Basic Research Project of China(Grant Nos.2010CB923200 and 2011CB301903)+4 种基金the Ph.D.Program Foundation of Ministry of Education of China(Grant No.20110171110021)the International Sci.&Tech.Collaboration Program of China(Grant No.2012DFG52260)the National High-tech R&D Program of China(Grant No.2014AA032606)the Science and Technology Plan of Guangdong Province,China(Grant No.2013B010401013)the Opened Fund of the State Key Laboratory on Integrated Optoelectronics(Grant No.IOSKL2014KF17)
文摘We report a novel structure of A1GaN/GaN heterostructure field effect transistors (HFETs) with a Si and Mg pair- doped interlayer grown on Si substrate. By optimizing the doping concentrations of the pair-doped interlayers, the mobility of 2DEG increases by twice for the conventional structure under 5 K due to the improved crystalline quality of the conduction channel. The proposed HFET shows a four orders lower off-state leakage current, resulting in a much higher on/off ratio ( - 10^9). Further temperature-dependent performance of Schottky diodes revealed that the inhibition of shallow surface traps in proposed HFETs should be the main reason for the suppression of leakage current.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 60736033 and 60676048)
文摘Comparative study of high and low temperature AlN interlayers and their roles in the properties of GaN epilayers prepared by means of metal organic chemical vapour deposition on (0001) plane sapphire substrates is carried out by high resolution x-ray diffraction, photoluminescence and Raman spectroscopy. It is found that the crystalline quality of GaN epilayers is improved significantly by using the high temperature A1N interlayers, which prevent the threading dislocations from extending, especially for the edge type dislocation. The analysis results based on photoluminescence and Ruman measurements demonstrate that there exists more compressive stress in GaN epilayers with high temperature AlN interlayers. The band edge emission energy increases from 3.423 eV to 3.438 eV and the frequency of the Raman shift of E2(TO) moves from 571.3 cm-1 to 572.9 cm-1 when the temperature of AlN interlayers increases from 700 ℃ to 1050 ℃. It is believed that the temperature of AlN interlayers effectively determines the size, the density and the coalescence rate of the islands, and the high temperature AlN interlayers provide large size and low density islands for GaN epilayer growth and the threading dislocations are bent and interactive easily. Due to the threading dislocation reduction in GaN epilayers with high temperature AlN interlayers, the approaches of strain relaxation reduce drastically, and thus the compressive stress in GaN epilayers with high temperature AlN interlayers is high compared with that in GaN epilayers with low temperature AlN interlayers.
基金Project(20130073110036)supported by the Research Fund for the Doctoral Program of Higher Education of China
文摘Amorphous Si O2(a-Si O2) films were synthesized on WC-Co substrates with H2 and tetraethoxysilane(TEOS) via pyrolysis of molecular precursor.X-ray diffraction(XRD) pattern shows that silicon-cobalt compounds form at the interface between a-Si O2 films and WC-Co substrates.Moreover,it is observed by transmission electron microscope(TEM) that the a-Si O2 films are composed of hollow mirco-spheroid a-Si O2 particles.Subsequently,the a-Si O2 films are used as intermediate films and chemical vapor deposition(CVD) diamond films are deposited on them.Indentation tests were performed to evaluate the adhesion of bi-layer(a-Si O2 + diamond) films on cemented carbide substrates.And the cutting performance of bi-layer(a-Si O2 + diamond) coated inserts was evaluated by machining the glass fiber reinforced plastic(GFRP).The results show that a-Si O2 interlayers can greatly improve the adhesive strength of diamond films on cemented carbide inserts;furthermore,thickness of the a-Si O2 interlayers plays a significant role in their effectiveness on adhesion enhancement of diamond films.
文摘Aluminum 5052(Al 5052)-stainless steel 316(SS 316)plates were explosively cladded with Al 1100,pure copper and SS 304 interlayers.The operational parameters viz.,standoff distance,explosive mass ratio(mass ratio of the explosive to the flyer plate)and inclination angle were varied and the results were presented.The advent of interlayer relocates the lower boundary of the welding window,and enhances the welding regime by 40%.A triaxial welding window,considering the influence of the third operational parameter,was developed as well.Use of interlayer transforms the continuous molten layer formed in the traditional Al 5052-SS 316 explosive clad interfaces into a smooth interface devoid or with a slender presence of intermetallic compounds.The microhardness,ram tensile and shear strengths of the interlayered clads are higher than those of the traditional explosive clads,and the maximum values are witnessed for stainless steel interlaced Al 5052-SS 316 explosive clads.
基金financially supported by the National Science Fund for Excellent Young Scholars(No.51722401)the Fundamental Research Funds for the Central Universities(No.FRF-TP-18-003C1)the Key Program of the National Natural Science Foundation of China(No.51734001)。
文摘Ore particles,especially fine interlayers,commonly segregate in heap stacking,leading to undesirable flow paths and changeable flow velocity fields of packed beds.Computed tomography(CT),COMSOL Multiphysics,and MATLAB were utilized to quantify pore structures and visualize flow behavior inside packed beds with segregated fine interlayers.The formation of fine interlayers was accompanied with the segregation of particles in packed beds.Fine particles reached the upper position of the packed beds during stacking.CT revealed that the average porosity of fine interlayers(24.21%)was significantly lower than that of the heap packed by coarse ores(37.42%),which directly affected the formation of flow paths.Specifically,the potential flow paths in the internal regions of fine interlayers were undeveloped.Fluid flowed and bypassed the fine interlayers and along the sides of the packed beds.Flow velocity also indicated that the flow paths easily gathered in the pore throat where flow velocity(1.8×10^-5 m/s)suddenly increased.Fluid stagnant regions with a flow velocity lower than 0.2×10^-5 m/s appeared in flow paths with a large diameter.
基金financially supported by the Shandong Taishan Industry Leading Talents Project(SF1503302301)
文摘In this research,2205/Q235 B clad plates were prepared by a vacuum hot rolling composite process.The effects of adding Fe,Ni,and Nb interlayers on the bonding interface structures and the shear strengths of the clad steel plates were studied.The results showed that 2205 duplex stainless steel and the three interlayers produced a large amount of plastic deformation and low-angle boundaries,and the main structures were the recrystallized and deformed grains.There were many recrystallized grains in the microstructure of the Q235 B low-carbon steel due to the low deformation in the rolling process.The Fe interlayer had better wettability with the two kinds of steel,but the lower strength led to the reduction of shear strength by about14 MPa compared with the original clad steel plate.The C element in the Q235 B low-carbon steel easily diffused into the Fe interlayer,and the clad steel plate attained a poor corrosion resistance because a large decarburization area was formed.The Nb interlayer reacted with the Mo element in the 2205 duplex stainless steel to form an Nb-Mo binary alloy,which generated long-banded ferrite.The decarburization area was also produced because the Nb reacted with the C element in the Q235 B to form hard and brittle NbCx.As a result,the shear strength was significantly reduced by about 282 MPa,and the corrosion resistance of the bonding surface was deteriorated.The Ni interlayer did not react with the alloy elements in both sides,and therefore effectively prevented element diffusion and improved the corrosion resistance of the bonding surface.Due to the low strength of the Ni interlayer and the increased number of bonding surfaces of the clad steel plates,the shear strength was reduced to some extent(about 40 MPa),but it still met the engineering application standards.
文摘Terminal fans have formed the sedimentary system of the 2+3 sands of the upper second member, Shahejie formation in the west of the Pucheng Oilfield, Bohai Bay Basin, East China. Based on well logging data and physical properties of the reservoir beds, the 2+3 sands were divided into 16 sublayers. The heterogeneity of reservoir beds and distribution of interlayers and seal layers in the 2+3 sands were investigated. The intra-layer heterogeneity and inter-layer heterogeneity primarily belong to the severely heterogeneous classification. The spatial differentiation of sedimentary microfacies resulted in a change of reservoir bed heterogeneity, strong in the middle and southern parts, weak in the northern part. Spatial distribution of interlayers and seal layers is dominated by sedimentary microfacies, and they are thick in north-eastern and middle parts, thin in the south-western part.
基金supported by the Outstanding Youth Scientist Foundation of Hunan Province(Grant No.2021JJ10017)the National Natural Science Foundation of China(Grant No.52173229)。
文摘Aqueous zinc-iodine(Zn-I_(2))batteries are promising candidates for low-cost grid-scale energy storage systems.However,the long-term stability and energy density of the Zn-I_(2)batteries are largely hindered by the lack of feasible and scalable methods that coherently suppress polyiodide shuttling and Zn dendrites growth,especially at high current densities.Herein,a flexible,thin and lightweight poly(3,4-ethy lenedioxythiophene):polystyrene sulfonate(PEDOT:PSS)nanopaper is designed as an“anion-cation regulation”synergistic interlayer to tackle the above issues.The PEDOT:PSS interlayer exhibits a 3D nanofibrous network with uniformly distributed mesopores,abundant polar groups and intrinsic conductivity,which renders an even Zn^(2+)flux at Zn anode and facilitates homogeneous current distributions at I_(2)cathode.Meanwhile,such interlayer can act as physiochemical shield to enhance the utilization of I_(2)cathode via the coulombic repulsion and chemical adsorption effect against polyiodide shuttling.Thus,long-term dendrite-free Zn plating/stripping is achieved at simultaneous high current density and high areal capacity(550 h at 10 m A cm^(-2)/5 m Ah cm^(-2)).Zn-I_(2)batteries harvest a high capacity(230 m Ah g^(-1)at 0.1 A g^(-1))and an ultralong lifespan(>20000 cycles)even at 10 A g^(-1).This work demonstrates the potential use of the multifunctional interlayers for Zn-I_(2)battery configuration innovation by synergistic regulation of cations and anions at the electrodes/electrolyte interface.
文摘Deep-water oil and gas is currently the hot spot and difficulty of global oil and gas exploration,and the complexflow process inside the turbidite channels of deep-water canyons makes it difficult to characterize reservoir structures,identify barriers and interlayers and clarify the spatial distribution laws of reservoirs,which restricts the development of deep-water oil and gas.Taking the Central Canyon of the Qiongdongnan Basin as an example,this paper identifies and characterizes the barriers and interlayers of composite channel scale by means of seismic sedi-mentology,based on three-dimensional seismic and core data.Then,based on the turbiditefilling process,barriers and interlayers are classified,and their genesis and control factors are analyzed.Finally,a development model of deep-water barriers and interlayers is established based on the quantitative analysis of sediment transportation system parameters.And the following research results are obtained.First,based on sedimentary genesis,barriers and interlayers are classified into four types,namely mudstone interlayers of lateral(aggradational)turbidite channel genesis(type A),mudstone interlayers offine-grained turbidite channel genesis(type B),barriers of hemipelagic deep-water sediment genesis(type C),and calcareous petrophysical interlayers(type D).Second,based on thefilling stage,barriers and interlayers are divided into four combination sequences,i.e.,the initial canyon formation stage with strong sediment supply conditions(type A+type C and type B+type C),the initial canyon formation stage with weak sediment supply conditions(type B+type C),the stable canyon development/late reworking stage with strong sediment supply conditions(types A+type D),and the stable canyon development/late reworking stage with weak sediment supply conditions(type D).Third,the development types and combination sequences of barriers and interlayers are controlled by the change of sediment trans-portation volume and terrain slope in the canyon.In the initial canyon formation stage,there is sufficient space for the development of turbidite,and the development of thin barriers and interlayers is controlled by sediment dischage volume,while the development of thick barriers and interlayers is controlled by terrain slope change.In the stable canyon development/late reworking stage,turbidite undergoes superimposed development and overbank.The sediment supply is the primary control factor of barrier and interlayer thickness,and the terrain slope change is the secondary factor.In conclusion,the development model of barriers and interlayers can be used to describe and predict the reservoir structure models under the same sedimentary background and provides a technical support for the exploration and development of deep-water oil and gas.
基金supported by the National Key R&D Program of China(Nos.2018YFC1505300,2017YFC1501304)National Natural Science Foundation of China(Grout Nos.42090054,41922055 and 41931295)+2 种基金the Fundamental Research Funds for the Central Universities,China University of Geosciences(Wuhan)(No.CUGGC09)Research Project of China Three Gorges Corporation(No.2019073)the Zhejiang Huadong Construction Engineering Co.,Ltd.(No.KY2019-HDJS-07)。
文摘The load transfer characteristics of a tensile anchor in the rock mass with weak interlayers were investigated,considering the nonuniform stress of the horizontally layered rock mass along anchors.An improved shear-slipping model was proposed to describe the stress evolution characteristics of the bolt-rock interface.Based on the improved model,analytical solutions of the axial force,shear stress distribution and load-displacement relationship considering the residual stress stage were established.The effects of the stratigraphic sequence,pulling force and bolt diameter on the stress distribution of the anchorage interface were evaluated by using analytical solutions.The results were verified by applying the finite difference numerical simulation method.The sensitivity of each parameter to the axial force and shear stress of the rock bolt was determined based on calculation of the sensitivity coefficient.The study results show that the axial force and shear stress tend to decrease nonuniformly along the rock bolt towards the anchorage depth.Due to the existence of weak interlayers,the shear stress mutates at the weak and hard rock interface,and the axial force appears to“rebound”at the bottom of the anchored section.Lithology has more significant effects on the axial force and shear stress at the bottom of the anchor than at the top of the anchor.The pulling force is more sensitive to the anchor stress than stratigraphic sequence when the bolt diameter is determined.This study provides a theoretical framework for the fundamental problem of tensile bolts in horizontally or vertically laminated rock masses,providing a theoretical basis for anchor design.
基金Project supported by the National Key Research and Development Program of China(Grant No.2016YFA0202002)the Natural Science Foundation of Guangdong Province,China(Grant No.2018A030313332)the Fund from Shenzhen Science and Technology Innovation Commission,China(Grant No.JCYJ20160229122349365,High Sensitivity Perovskite Image Sensor Program)
文摘Perovskite photoconductor-type photodetector with metal–semiconductor–metal(MSM) structure is a basic device for photodetection applications. However, the role of electrode interlayer in MSM-type perovskite devices is less investigated compared to that of the pin diode structure. Here, a systematic investigation on the influence of phenyl-C_(61)-butyric acid methyl ester(PCBM) and indene-C_(60) bisadduct(ICBA) interfacial layers for MSM perovskite photodetectors is reported.It is found that the fullerene-based interlayer significantly enhances the photocurrent of the MSM photodetectors. On one hand, the PCBM interlayer is more suitable for CH_3 NH_3 PbI_3 photodetector, with the responsivity two times higher than that of the device with ICBA interlayer. The ICBA layer, on the other hand, becomes more effective when the band gap of perovskite is enlarged with bromine composition, denoted as CH_3 NH_3 Pb(I_(1-x)Br_x)_3(0 ≤ x ≤1). It is further found that the specific detectivity of photodetectors with ICBA interlayer becomes even higher than those with PCBM when the bromine compositional percentage reaches 0.6(x > 0.6).