期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
A case study on the stability of a big underground powerhouse cavern cut by an interlayer shear zone in the China Baihetan hydropower plant
1
作者 Lifang Zou Guotao Meng +3 位作者 Jiayao Wu Wei Fu Weijiang Chu Weiya Xu 《Deep Underground Science and Engineering》 2025年第2期305-315,共11页
The big underground powerhouse cavern of the China Baihetan hydropower plant is 438m long,34m wide,and 88.7m high.It is cut by a weak interlayer shear zone and its high sidewall poses a huge stability problem.This pap... The big underground powerhouse cavern of the China Baihetan hydropower plant is 438m long,34m wide,and 88.7m high.It is cut by a weak interlayer shear zone and its high sidewall poses a huge stability problem.This paper reports our successful solution of this problem through numerical simulations and a replacement-tunnel scheme in the detailed design stage and close site monitoring in the excavation stage.Particularly,in the detail design stage,mechanical parameters of the shear zone were carefully determined through laboratory experiments and site tests.Then,deformation of the surrounding rocks and the shear zone under high in situ stress conditions was predicted using 3 Dimensional Distinct Element Code(3DEC).Subsequently,a replacement-tunnel scheme was proposed for the treatment on the shear zone to prevent severe unloading relaxation of surrounding rocks.In the construction period,excavation responses were closely monitored on deformations of surrounding rocks and the shear zone.The effect of local cracking in the replacement tunnels on sidewall stability was evaluated using the strength reduction method.These monitoring results were compared with the predicted numerical simulation in the detailed design stage.It is found that the shear zone greatly modified the deformation mode of the cavern surrounding rocks.Without any treatment,rock mass deformation on the downstream sidewall was larger than 125mm and the shearing deformation of the shear zone was 60–70 mm.These preset replacement tunnels can reduce not only the unloading and relaxation of rock masses but also the maximum shearing deformation of the shear zone by 10–20 mm.The predictions by numerical simulation were in good agreement with the monitoring results.The proposed tunnel-replacement scheme can not only restrain the shear zone deformation but also enhance the safety of surrounding rocks and concrete tunnels.This design procedure offers a good reference for interaction between a big underground cavern and a weak layer zone in the future. 展开更多
关键词 3DEC control measures DEFORMATION interlayer shear zone underground powerhouse cavern
原文传递
Characterizing large-scale weak interlayer shear zones using conditional random field theory 被引量:1
2
作者 Gang Han Chuanqing Zhang +5 位作者 Hemant Kumar Singh Rongfei Liu Guan Chen Shuling Huang Hui Zhou Yuting Zhang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第10期2611-2625,共15页
The shear behavior of large-scale weak intercalation shear zones(WISZs)often governs the stability of foundations,rock slopes,and underground structures.However,due to their wide distribution,undulating morphology,com... The shear behavior of large-scale weak intercalation shear zones(WISZs)often governs the stability of foundations,rock slopes,and underground structures.However,due to their wide distribution,undulating morphology,complex fabrics,and varying degrees of contact states,characterizing the shear behavior of natural and complex large-scale WISZs precisely is challenging.This study proposes an analytical method to address this issue,based on geological fieldwork and relevant experimental results.The analytical method utilizes the random field theory and Kriging interpolation technique to simplify the spatial uncertainties of the structural and fabric features for WISZs into the spatial correlation and variability of their mechanical parameters.The Kriging conditional random field of the friction angle of WISZs is embedded in the discrete element software 3DEC,enabling activation analysis of WISZ C2 in the underground caverns of the Baihetan hydropower station.The results indicate that the activation scope of WISZ C2 induced by the excavation of underground caverns is approximately 0.5e1 times the main powerhouse span,showing local activation.Furthermore,the overall safety factor of WISZ C2 follows a normal distribution with an average value of 3.697. 展开更多
关键词 interlayer shear weakness zone Baihetan hydropower station Conditional random field Kriging interpolation technique Activation analysis
在线阅读 下载PDF
Interlayer shear of nanomaterials:Graphene–graphene,boron nitride–boron nitride and graphene–boron nitride 被引量:2
3
作者 Yinfeng Li Weiwei Zhang +1 位作者 Bill Guo Dibakar Dattac 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2017年第3期234-240,共7页
In this paper, the interlayer sliding between graphene and boron nitride (h-BN) is studied by molecular dynamics simulations. The interlayer shear force between h-BN/h-BN is found to be six times higher than that of... In this paper, the interlayer sliding between graphene and boron nitride (h-BN) is studied by molecular dynamics simulations. The interlayer shear force between h-BN/h-BN is found to be six times higher than that of graphene/graphene, while the interlayer shear between graphene/h-BN is approximate to that of graphene/graphene. The graphene/h- BN heterostructure shows several anomalous interlayer shear characteristics compared to its bilayer counterparts. For graphene/graphene and h-BN/h-BN, interlayer shears only exit along the sliding direction while interlayer shear for graphene/h-BN is observed along both the translocation and perpendicular directions. Our results provide significant insight into the interlayer shear characteristics of 2D nanomaterials. 展开更多
关键词 Friction interlayer shear Graphene Hexongal boron nitride Molecular dynamics
原文传递
Dynamic failure modes of large-scale underground caverns with complex geological structures
4
作者 Yingjie Xia Bingchen Liu +3 位作者 Danchen Zhao Chun'an Tang Hai Yang Jian Chen 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第6期3479-3501,共23页
Rock masses are often exposed to dynamic loads such as earthquakes and mechanical disturbances in practical engineering scenarios.The existence of underground caverns and weak geological structures like columnar joint... Rock masses are often exposed to dynamic loads such as earthquakes and mechanical disturbances in practical engineering scenarios.The existence of underground caverns and weak geological structures like columnar jointed rock masses(CJRMs)and interlayer shear weakness zones(ISWZs)with inferior mechanical properties,significantly undermines the overall structural stability.To tackle the dynamic loading issues in the process of constructing subterranean caverns,a programmable modeling approach was utilized to reconstruct a large-scale underground cavern model incorporating ISWZs and columnar joints(CJs).By conducting dynamic simulations with varying load orientations,the analyses focused on the failure patterns,deformation characteristics,and acoustic emission activity within the caverns.Results revealed that the failure modes of the underground caverns under dynamic loading were predominantly tensile failures.Under X-direction loading,the failed elements were mainly distributed parallel to the CJs,while under Y-direction loading,they were distributed parallel to the transverse weak structural planes.Furthermore,the dynamic stability of the overall structure varied with the number of caverns.The dual-cavern model demonstrated the highest stability under X-direction loading,while the single-cavern model was the least stable.Under Y-direction loading,the cavern stability increased with the number of caverns.Importantly,different weak structures affected the dynamic response of caverns in different ways;the CJRMs were the primary contributors to structural failure,while ISWZs could mitigate the rock mass failure induced by CJs.The findings could offer valuable insights for the dynamic stability analysis of caverns containing CJRMs and ISWZs. 展开更多
关键词 Columnar jointed rock mass(CJRM) Underground caverns interlayer shear weakness zone(ISWZ) Numerical simulation Dynamic response
在线阅读 下载PDF
Interlayer friction behavior of molybdenum ditelluride with different structures
5
作者 Lina Zhang Xinfeng Tan +2 位作者 Jianguo Jiao Dan Guo Jianbin Luo 《Nano Research》 SCIE EI CSCD 2023年第8期11375-11382,共8页
The interlayer friction behavior of two-dimensional transition metal dichalcogenides(TMDCs)as crucial solid lubricants has attracted extensive attention in the field of tribology.In this study,the interlayer friction ... The interlayer friction behavior of two-dimensional transition metal dichalcogenides(TMDCs)as crucial solid lubricants has attracted extensive attention in the field of tribology.In this study,the interlayer friction is measured by laterally pushing the MoTe_(2)powder on the MoTe_(2)substrate with the atomic force microscope(AFM)tip,and density functional theory(DFT)simulations are used to rationalize the experimental results.The experimental results indicate that the friction coefficient of the 1T'-MoTe_(2)/1T'-MoTe_(2)interface is 2.025×10^(−4),which is lower than that of the 2H-MoTe_(2)/2H-MoTe_(2)interface(3.086×10^(−4)),while the friction coefficient of the 1T'-MoTe_(2)/2H-MoTe_(2)interface is the lowest at 6.875×10^(−5).The lower interfacial friction of 1T'-MoTe_(2)/1T'-MoTe_(2)compared to 2H-MoTe_(2)/2H-MoTe_(2)interface can be explained by considering the relative magnitudes of the ideal average shear strengths and maximum shear strengths based on the interlayer potential energy.Additionally,the smallest interlayer friction observed at the 1T'-MoTe_(2)/2H-MoTe_(2)heterojunction is attributed to the weak interlayer electrostatic interaction and reduction in potential energy corrugation caused by the incommensurate contact.This work suggests that MoTe_(2)has comparable interlayer friction properties to MoS_(2)and is expected to reduce interlayer friction in the future by inducing the 2H-1T'phase transition. 展开更多
关键词 two-dimensinal materials MoTe_(2) interlayer friction interlayer shear strength
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部