期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Effect of Metallurgical Behaviour at the Interface between Ceramic and Interlayer on the Si_3N_4/1.25Cr-0.5Mo Steel Joint Strength
1
作者 Huaping XIONG (Dept. of Materials Science and Engineering, Jilin University of Technology, Changchun 130025, China) 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1998年第1期20-24,共5页
By using newly developed CuNi5~25Ti16~28 B rapldly solidifled brazing filler the joining of Si3 N4/1.25Cr-0.5Mo steel has been carried out with interlayer method. If employing the interlayer structure of steel (0.2 mm... By using newly developed CuNi5~25Ti16~28 B rapldly solidifled brazing filler the joining of Si3 N4/1.25Cr-0.5Mo steel has been carried out with interlayer method. If employing the interlayer structure of steel (0.2 mm)/W (2.0 mm)/Ni(0.2 mm), the joint strength can be increased greatly compared with employing that of Ni/W/Ni, and the three point bend strength of the Joint shows the value of 261 MPa. The metallurgical behaviour at the interface between Si3N4 and the interlayer has been studied. It is found that Fe participated in the interfacial reactions between Si3N4 and the brazing filler at the Si3N4/steel (0.2 mm) interface and the compound Fe5Si3 was produced. However, since the reactions of Fe with the active Ti are weaker than those of Ni with Ti, the normal inter facial reactions were still assured at the interface of Si3N4/steel (0.2 mm) instead of Si3N4/Ni (0.2 mm), resulting in the improvement of the joint strength. The mechanism of the formation of Fe5Si3 is also discussed. Finally, some ideas to further ameliorate and simplify the interlayer structure are put forward. 展开更多
关键词 SI Effect of Metallurgical Behaviour at the interface between Ceramic and interlayer on the Si3N4/1.25Cr-0.5Mo Steel Joint Strength Ni Cr Mo
在线阅读 下载PDF
A novel perylene diimide-based ionene polymer and its mixed cathode interlayer strategy for efficient and stable inverted perovskite solar cells 被引量:1
2
作者 Daizhe Wang Cong Kang +5 位作者 Tengling Ye Dongqing He Shan Jin Xiaoru Zhang Xiaochen Sun Yong Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第7期334-342,I0008,共10页
Inverted(p-i-n)perovskite solar cells(PerSCs)have attracted much attention owing to their low temperature processability,less hysteresis effect and easy integration as a subunit for the tandem device.The unsatisfactor... Inverted(p-i-n)perovskite solar cells(PerSCs)have attracted much attention owing to their low temperature processability,less hysteresis effect and easy integration as a subunit for the tandem device.The unsatisfactory interface contacts and energy level barrier between adjacent interlayers on the cathode side are one of the key challenges for the development of p-i-n PerSCs.Herein,perylene diimidebased(PDI)ionene polymer was synthesized and developed as a cathode interlayer(CIL)to enhance interface contact,reduce the energy level barrier and prevent the migration of I-ions.The compact PNPDI CIL with high conductivity and appropriate lowest unoccupied molecular orbital(LUMO)level,resulted in a high efficiency device(20.03%),which is higher than the control device with bathophenanthroline(Bphen)(19.48%).Bphen-based CIL shows better adjusting ability of the work function of cathode metal but exhibits poor film-forming property.So,the synergistic effect of 1+1>2 can be obtained by combining Bphen and PNPDI into one CIL.As expected,the device performance was further improved by using the mixed CIL of Bphen and PNPDI,and 21.46%power conversion efficiency(PCE)was achieved.What’s more,the compact and hydrophobic mixed CIL dramatically enhanced the resistance to I-ions and moisture,which led to much enhanced device stability. 展开更多
关键词 Perylene diimide-based polymer Ionene Perovskite solar cells interface engineeringCathode interlayer
在线阅读 下载PDF
Horizontal Push Plate Test and Simulation of CRTS II Slab Ballastless Track
3
作者 LIU Xuewen GU Yonglei LIU Yu 《Chinese Railways》 2022年第2期3-11,共9页
Good interlayer interface performance is the key to maintaining the stability of CRTSⅡslab ballastless track structure.In a project,the tangential cohesion parameters of CRTSⅡslab ballastless track structure are gen... Good interlayer interface performance is the key to maintaining the stability of CRTSⅡslab ballastless track structure.In a project,the tangential cohesion parameters of CRTSⅡslab ballastless track structure are generally measured by horizontal push plate test,so as to measure the interlayer interface performance.Horizontal push plate contraction scale and full scale tests of CRTSⅡslab ballastless track structure are carried out to obtain the tangential force-displacement relation curve of the interlayer interface,thus obtaining the parameters of cohesion model.A threedimensional progressive damage analysis model for CRTSⅡslab ballastless track structure is established,the whole process inversion of the horizontal push plate test is carried out,and the reliability of the contraction scale test results is verified by means of simulation and comparative analysis of test results.The results show that the greater the tangential stiffness of the interlayer interface of the track structure,the weaker the interlayer deformation coordination capability;the more significant the non-uniformity of the interface damage,the more likely the stress concentration;the greater the fracture toughness,the less likely the disjoint in the interlayer interface of the track structure. 展开更多
关键词 Beijing-Shanghai HSR CRTSⅡ slab ballastless track interlayer interface push plate test cohesion model progressive damage
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部