期刊文献+
共找到141篇文章
< 1 2 8 >
每页显示 20 50 100
High-precision large-aperture single-frame interferometric surface profile measurement method based on deep learning
1
作者 Liang Tang Mingzhi Han +3 位作者 Shuai Yang Ye Sun Lirong Qiu Weiqian Zhao 《International Journal of Extreme Manufacturing》 2025年第5期481-492,共12页
Large-aperture optical components are of paramount importance in domains such as integrated circuits,photolithography,aerospace,and inertial confinement fusion.However,measuring their surface profiles relies predomina... Large-aperture optical components are of paramount importance in domains such as integrated circuits,photolithography,aerospace,and inertial confinement fusion.However,measuring their surface profiles relies predominantly on the phase-shifting approach,which involves collecting multiple interferograms and imposes stringent demands on environmental stability.These issues significantly hinder its ability to achieve real-time and dynamic high-precision measurements.Therefore,this study proposes a high-precision large-aperture single-frame interferometric surface profile measurement(LA-SFISPM)method based on deep learning and explores its capability to realize dynamic measurements with high accuracy.The interferogram is matched to the phase by training the data measured using the small aperture.The consistency of the surface features of the small and large apertures is enhanced via contrast learning and feature-distribution alignment.Hence,high-precision phase reconstruction of large-aperture optical components can be achieved without using a phase shifter.The experimental results show that for the tested mirror withΦ=820 mm,the surface profile obtained from LA-SFISPM is subtracted point-by-point from the ground truth,resulting in a maximum single-point error of 4.56 nm.Meanwhile,the peak-to-valley(PV)value is 0.0758λ,and the simple repeatability of root mean square(SR-RMS)value is 0.00025λ,which aligns well with the measured results obtained by ZYGO.In particular,a significant reduction in the measurement time(reduced by a factor of 48)is achieved compared with that of the traditional phase-shifting method.Our proposed method provides an efficient,rapid,and accurate method for obtaining the surface profiles of optical components with different diameters without employing a phase-shifting approach,which is highly desired in large-aperture interferometric measurement systems. 展开更多
关键词 large-aperture optical components single-frame interferometric surface profile deep learning dynamic high-precision measurement
在线阅读 下载PDF
Fiber optic high temperature sensor with weak strain sensitivity based on Mach-Zehnder interferometric structure
2
作者 LIU Ming MA Chengju +3 位作者 ZHANG Yixin LIU Qianzhen HU Hui WU Jirui 《Optoelectronics Letters》 2025年第4期199-204,共6页
We proposed a fiber optic high temperature sensor based on the Mach-Zehnder interference(MZI)structure,which is composed of two lengths of multi-mode fibers(MMFs),a length of few-mode fiber(FMF)and two sections of sin... We proposed a fiber optic high temperature sensor based on the Mach-Zehnder interference(MZI)structure,which is composed of two lengths of multi-mode fibers(MMFs),a length of few-mode fiber(FMF)and two sections of single-mode fibers(SMFs).Firstly,the two sections of MMFs were spliced with two sections of SMFs.Then,the MMFs were fused to two ends of FMF to form a symmetrically structured fiber-optic MZI structure.In this structure,the MMF served as the optical mode field coupling element,and the cladding and core of the FMF are the interference arm and the reference arm of the MZI structure,respectively.We investigated the sensor's response characteristics of the temperature and strain.The experimental results indicate that the sensor is sensitive to temperature variation,and the temperature response sensitivity is up to 61.4 pm/℃ in the range of 40-250℃,while the sensor has weak strain sensitivity,its strain sensitivity is only-0.72 pm/μe in the strain range of 0-1400μe.Moreover,the sensor has good stability and repeatability.In brief,the proposed fiber optic high temperature sensor has good properties,such as high sensitivity,compact structure,good stability and repeatability,which can be used for monitoring the temperature of submerged oil electric pump units under oil wells. 展开更多
关键词 fiber optic sensor weak strain sensitivity optical mode field coupling elementand multi mode fiber Mach Zehnder interferometric structure temperature sensing single mode fiber few mode fiber
原文传递
Numerical simulation for large baseline interferometric imaging altimeter
3
作者 Jie Liu Bo Liu +2 位作者 Xiaonan An Haifeng Kou Bing Li 《Geodesy and Geodynamics》 2025年第1期111-126,共16页
Sea topography information holds significant importance in oceanic research and the climate change detection.Radar imaging altimetry has emerged as the leading approach for global ocean observation,employing synthetic... Sea topography information holds significant importance in oceanic research and the climate change detection.Radar imaging altimetry has emerged as the leading approach for global ocean observation,employing synthetic aperture radar(SAR)interferometry to enhance the spatial resolution of Sea topography.Nevertheless,current payload capacity and satellite hardware limitations prevent the extension of the interferometric baseline by enlarging the physical antenna size.This constraint hinders achieving centimeter-level accuracy in interferometric altimetry.To address this challenge,we conducted a numerical simulation to assess the viability of a large baseline interferometric imaging altimeter(LB-IIA).By controlling the baseline within the range of 600-1000 m through spiral orbit design in two satellites and mitigating baseline de-correlation with the carrier frequency shift(CFS)technique,we aimed to overcome the above limitations.Our findings demonstrate the efficacy of the CFS technique in compensating for baseline decoherence,elevating coherence from less than 0.1 to over 0.85.Concurrently.The height difference accuracy between neighboring sea surfaces reaches 1 cm within a 1 km resolution.This study is anticipated to serve as a foundational reference for future interferometric imaging altimeter development,catering to the demand for high-precision sea topography data in accurate global bathymetry inversion. 展开更多
关键词 Sea topography Numerical simulation Carrier frequency shift(CFS) Large baseline interferometric imaging altimeter(LB-IIA)
原文传递
Sudden change of interferometric power for X-shape states
4
作者 Dian Zhu Fu-Lin Zhang Jing-Ling Chen 《Chinese Physics B》 2025年第2期133-139,共7页
Quantum interferometric power(IP), a discordlike measure, plays an important role in quantum metrology. We study the dynamics of IP for two-qubit X-shape states under different noisy environments. Our study shows that... Quantum interferometric power(IP), a discordlike measure, plays an important role in quantum metrology. We study the dynamics of IP for two-qubit X-shape states under different noisy environments. Our study shows that IP exhibits sudden change, and one side quantum channel is enough for the occurrence of a sudden change of IP. In particular, we show that the initial state having no sudden change of quantum discord exhibits a sudden change of IP under the dynamics of amplitude noise, but the converse is not true. Besides, we also investigate the dynamics of IP under two different kinds of composite noises. Our results also confirm that sudden change of IP occurs under such composite noises. 展开更多
关键词 quantum interferometric power quantum noise sudden change
原文传递
Stimulated Brillouin scattering-induced phase noise in an interferometric fiber sensing system 被引量:4
5
作者 陈伟 孟洲 +1 位作者 周会娟 罗洪 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第3期256-261,共6页
Stimulated Brillouin scattering-induced phase noise is harmful to interferometric fiber sensing systems. The localized fluctuating model is used to study the intensity noise caused by the stimulated Brillouin scatteri... Stimulated Brillouin scattering-induced phase noise is harmful to interferometric fiber sensing systems. The localized fluctuating model is used to study the intensity noise caused by the stimulated Brillouin scattering in a single-mode fiber. The phase noise structure is analyzed for an interferometric fiber sensing system, and an unbalanced Michelson interferometer with an optical path difference of 1 m, as well as the phase-generated carrier technique, is used to measure the phase noise. It is found that the phase noise is small when the input power is below the stimulated Brillouin scattering threshold, increases dramatically at first and then gradually becomes flat when the input power is above the threshold, which is similar to the variation in relative intensity noise. It can be inferred that the increase in phase noise is mainly due to the broadening of the laser linewidth caused by stimulated Brillouin scattering, which is verified through linewidth measurements in the absence and presence of the stimulated Brillouin scattering. 展开更多
关键词 stimulated Brillouin scattering phase noise interferometric fiber sensing intensity noise
原文传递
Design of Demodulation System of Interferometric Sensor Based on Labview 被引量:3
6
作者 XU Wei WANG Jin-hai +2 位作者 CHEN Cai-he ZHENG Yu ZHANG Cheng 《Semiconductor Photonics and Technology》 CAS 2008年第2期115-120,共6页
For the modified demodulation arithmetic of 3×3 coupler, the processing software built on the basis of Labview is able to demodulate asymmetric 3×3 coupler signal and do further spectrum analysis. It shows t... For the modified demodulation arithmetic of 3×3 coupler, the processing software built on the basis of Labview is able to demodulate asymmetric 3×3 coupler signal and do further spectrum analysis. It shows that the measured frequency ranges from 10 Hz to 1 000 Hz and phase range is covered by -10 rad^10 rad. The phase sensitivity is 0.5 V/rad. This system is proved to show high resolution and wide dynamic range. 展开更多
关键词 asymmetric 3×3 coupler phase demodulation LABVIEW software demodulation interferometric sensor
在线阅读 下载PDF
Speckle-interferometric Study of Close Visual Binary System HIP 11253(HD 14874)using Gaia(DR2 and EDR3) 被引量:1
7
作者 Hussam Aljboor Ali Taani 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2023年第7期221-228,共8页
We present a comprehensive set of physical and geometrical parameters for each of the components of the close visual binary system HIP 11253(HD 14874).We present an analysis for the binary and multiple stellar systems... We present a comprehensive set of physical and geometrical parameters for each of the components of the close visual binary system HIP 11253(HD 14874).We present an analysis for the binary and multiple stellar systems with the aim to obtain a match between the overall observational spectral energy distribution of the system and the spectral synthesis created from model atmospheres using Al-Wardat's method for analyzing binary and multiple stellar systems.The epoch positions are used to determine the orbital parameters and the total mass.The parameters of both components are derived as:T_(eff)^(a)=6025,T_(eff)^(b)=4710,logg_(a)=4.55,logg_(b)=4.60,R_(a)=1.125 R_(⊙),R_(b)=0.88R_(⊙),L_(a)=1.849 L_(⊙),L_(b)=0.342 L_(⊙).Our analysis shows that the spectral types of the components are F9 and K3.By combining the orbital solution with the parallax measurements of Gaia DR2 and EDR3,we estimate the individual masses using the H-R diagram as M_(a)=1.09 M_(⊙)and M_(b)=0.59 M_(⊙)for using Gaia DR2 parallax and M_(a)=1.10 M_(⊙)and M_(b)=0.61 M_(⊙)for using Gaia EDR3 parallax.Finally,the location of both system's components on the stellar evolutionary tracks is presented. 展开更多
关键词 (stars:)binaries:visual stars:kinematics and dynamics (stars:)binaries(including multiple):close techniques:interferometric techniques:spectroscopic
在线阅读 下载PDF
Phase-Shifting-Free Interferometric Cryptosystem
8
作者 李拓 史祎诗 《Chinese Physics Letters》 SCIE CAS CSCD 2017年第3期34-37,共4页
Conventional phase-shifting interferometry-based (PSI-based) cryptosystem needs at least two-step phase-shifting. In this work, we propose a phase-shifting-free interferometric cryptosystem, which needs only one int... Conventional phase-shifting interferometry-based (PSI-based) cryptosystem needs at least two-step phase-shifting. In this work, we propose a phase-shifting-free interferometric cryptosystem, which needs only one interferogram recording. Since the phase-shifting step is not required in the proposed cryptosystem, not only the low encryption speed which is a bottleneck problem of the conventional PSI-based one is solved, but also the setup of the cryptosystem is simplified. A series of simulation experimental results demonstrate the validity and robustness of the proposed cryptosystem. 展开更多
关键词 Phase-Shifting-Free interferometric Cryptosystem PSI MSE CCD FIGURE PZT
原文传递
Quantum correlations and entanglement in coupled optomechanical resonators with photon hopping via Gaussian interferometric power analysis
9
作者 Y.Lahlou B.Maroufi M.Daoud 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第5期204-211,共8页
Quantum correlations that surpass entanglement are of great importance in the realms of quantum information processing and quantum computation.Essentially,for quantum systems prepared in pure states,it is difficult to... Quantum correlations that surpass entanglement are of great importance in the realms of quantum information processing and quantum computation.Essentially,for quantum systems prepared in pure states,it is difficult to differentiate between quantum entanglement and quantum correlation.Nonetheless,this indistinguishability is no longer holds for mixed states.To contribute to a better understanding of this differentiation,we have explored a simple model for both generating and measuring these quantum correlations.Our study concerns two macroscopic mechanical resonators placed in separate Fabry–Pérot cavities,coupled through the photon hopping process.this system offers a comprehensively way to investigate and quantify quantum correlations beyond entanglement between these mechanical modes.The key ingredient in analyzing quantum correlation in this system is the global covariance matrix.It forms the basis for computing two essential metrics:the logarithmic negativity(E_(N)^(m))and the Gaussian interferometric power(P_(G)^(m)).These metrics provide the tools to measure the degree of quantum entanglement and quantum correlations,respectively.Our study reveals that the Gaussian interferometric power(P_(G)^(m))proves to be a more suitable metric for characterizing quantum correlations among the mechanical modes in an optomechanical quantum system,particularly in scenarios featuring resilient photon hopping. 展开更多
关键词 quantum correlations ENTANGLEMENT Gaussian interferometric power logarithmic negativity optomechanics photon hopping
原文传递
A Hierarchical Method for Locating the Interferometric Fringes of Celestial Sources in the Visibility Data
10
作者 Rong Ma Ruiqing Yan +7 位作者 Hanshuai Cui Xiaochun Cheng Jixia Li Fengquan Wu Zongyao Yin Hao Wang Wenyi Zeng Xianchuan Yu 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2024年第3期110-128,共19页
In source detection in the Tianlai project,locating the interferometric fringe in visibility data accurately will influence downstream tasks drastically,such as physical parameter estimation and weak source exploratio... In source detection in the Tianlai project,locating the interferometric fringe in visibility data accurately will influence downstream tasks drastically,such as physical parameter estimation and weak source exploration.Considering that traditional locating methods are time-consuming and supervised methods require a great quantity of expensive labeled data,in this paper,we first investigate characteristics of interferometric fringes in the simulation and real scenario separately,and integrate an almost parameter-free unsupervised clustering method and seeding filling or eraser algorithm to propose a hierarchical plug and play method to improve location accuracy.Then,we apply our method to locate single and multiple sources’interferometric fringes in simulation data.Next,we apply our method to real data taken from the Tianlai radio telescope array.Finally,we compare with unsupervised methods that are state of the art.These results show that our method has robustness in different scenarios and can improve location measurement accuracy effectively. 展开更多
关键词 methods data analysis-techniques image processing-techniques interferometric
在线阅读 下载PDF
3D displacement time series prediction of a north-facing reservoir landslide powered by InSAR and machine learning 被引量:1
11
作者 Fengnian Chang Shaochun Dong +4 位作者 Hongwei Yin Xiao Ye Zhenyun Wu Wei Zhang Honghu Zhu 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第7期4445-4461,共17页
Active landslides pose a significant threat globally,endangering lives and property.Effective monitoring and forecasting of displacements are essential for the timely warnings and mitigation of these events.Interferom... Active landslides pose a significant threat globally,endangering lives and property.Effective monitoring and forecasting of displacements are essential for the timely warnings and mitigation of these events.Interferometric synthetic aperture radar(InSAR)stands out as an efficient and prevalent tool for monitoring landslide deformation and offers new prospects for displacement prediction.However,challenges such as inherent limitation of satellite viewing geometry,long revisit cycles,and limited data volume hinder its application in displacement forecasting,notably for landslides with near-north-south deformation less detectable by InSAR.To address these issues,we propose a novel strategy for predicting three-dimensional(3D)landslide displacement,integrating InSAR and global navigation satellite system(GNSS)measurements with machine learning(ML).This framework first synergizes InSAR line-of-sight(LOS)results with GNSS horizontal data to reconstruct 3D displacement time series.It then employs ML models to capture complex nonlinear relationships between external triggers,landslide evolutionary states,and 3D displacements,thus enabling accurate future deformation predictions.Utilizing four advanced ML algorithms,i.e.random forest(RF),support vector machine(SVM),long short-term memory(LSTM),and gated recurrent unit(GRU),with Bayesian optimization(BO)for hyperparameter tuning,we applied this innovative approach to the north-facing,slow-moving Xinpu landslide in the Three Gorges Reservoir Area(TGRA)of China.Leveraging over 6.5 years of Sentinel-1 satellite data and GNSS measurements,our framework demonstrates satisfactory and robust prediction performance,with an average root mean square deviation(RMSD)of 9.62 mm and a correlation coefficient(CC)of 0.996.This study presents a promising strategy for 3D displacement prediction,illustrating the efficacy of integrating InSAR monitoring with ML forecasting in enhancing landslide early warning capabilities. 展开更多
关键词 Reservoir landslide Displacement prediction Machine learning interferometric synthetic aperture radar(InSAR)time series Three-dimensional(3D)displacement
在线阅读 下载PDF
An Iteration Method for Astronomical Image Deconvolution and Reconstruction
12
作者 F.Sine M.Lu L.Zhang 《Research in Astronomy and Astrophysics》 2025年第6期49-61,共13页
Imaging is an important method for astronomy research.In practice,original images acquired by a telescope are often convolved and blurred by the point-spread function(PSF),which is a very unfavorable situation for man... Imaging is an important method for astronomy research.In practice,original images acquired by a telescope are often convolved and blurred by the point-spread function(PSF),which is a very unfavorable situation for many scientific studies including astronomy.This paper introduced a single equation iterative method for solving complex linear equations,and this method can deconvolute dirty images,eliminate the effects of the PSF well.With different PSFs,this algorithm shows very good results in deconvolution.Also,with a giant PSF of aperture synthesis imaging,this algorithm improves the peak signal-to-noise ratio and structural similarity of the dirty images by 41.0%and 33.9%on average.In addition,this paper proves that the algorithm can deconvolute the dirty image by making full use of the information of each pixel in the image,even if the dirty image has salt and pepper noise or even lost areas;by its excellent properties of flexible operation to a single pixel,all these bad situations can be dealt with and the image can be restored. 展开更多
关键词 methods numerical-techniques image processing-techniques interferometric
在线阅读 下载PDF
TSC:Efficient FRB Signal Search by a Two-stage Cascade Deep Learning Model on FAST
13
作者 Ronghuan Yan Junlin Li +1 位作者 Weixin Tian Nyasha Mkwanda 《Research in Astronomy and Astrophysics》 2025年第3期57-66,共10页
Fast Radio Bursts(FRBs)have emerged as one of the most intriguing and enigmatic phenomena in the field of radio astronomy.The key of current related research is to obtain enough FRB signals.Computer-aided search is ne... Fast Radio Bursts(FRBs)have emerged as one of the most intriguing and enigmatic phenomena in the field of radio astronomy.The key of current related research is to obtain enough FRB signals.Computer-aided search is necessary for that task.Considering the scarcity of FRB signals and massive observation data,the main challenge is about searching speed,accuracy and recall.in this paper,we propose a new FRB search method based on Commensal Radio Astronomy FAST Survey(CRAFTS)data.The CRAFTS drift survey data provide extensive sky coverage and high sensitivity,which significantly enhance the probability of detecting transient signals like FRBs.The search process is separated into two stages on the knowledge of the FRB signal with the structural isomorphism,while a different deep learning model is adopted in each stage.To evaluate the proposed method,FRB signal data sets based on FAST observation data are developed combining simulation FRB signals and real FRB signals.Compared with the benchmark method,the proposed method F-score achieved 0.951,and the associated recall achieved 0.936.The method has been applied to search for FRB signals in raw FAST data.The code and data sets used in the paper are available at github.com/aoxipo. 展开更多
关键词 TECHNIQUES image processing-techniques high angular resolution-techniques interferometric
在线阅读 下载PDF
Towards Optimization and Assessment of the Chinese New-generation VLBI Network for Earth Orientation Parameters Monitoring
14
作者 Hao Xiang Zhong-Kai Zhang +2 位作者 Lan Du Ze-Jun Liu Xu-Qiao Wang 《Research in Astronomy and Astrophysics》 2025年第2期254-266,共13页
The Earth Orientation Parameters(EOP)provide a time-varying transition relationship between the International Terrestrial Reference Frame and the International Celestial Reference Frame.To support deep space explorati... The Earth Orientation Parameters(EOP)provide a time-varying transition relationship between the International Terrestrial Reference Frame and the International Celestial Reference Frame.To support deep space exploration and the Beidou Navigation Satellite System,the Chinese New-generation Very Long Baseline Interferometry Network(CNVN)is under construction for independent monitoring of the EOP.This paper evaluates the performance of existing 4-antenna CNVN through a batch generated observation schedules followed by extensive Monte Carlo simulations.The optimal positions of the fifth and sixth antennas of CNVN are found from 24hypothetical antenna positions uniformly distributed in China.In this process,the weighted parameters are optimized,which not only reduce the possibility of large error of EOP estimation accuracy due to unreasonable combination,but also greatly reduce the calculation cost. 展开更多
关键词 methods:analytical techniques:interferometric reference systems
在线阅读 下载PDF
High Precision and Robust UVW Calculation for SKA1 Based on Katpoint
15
作者 Yijun Xu Yangfan Xie +6 位作者 Feng Wang Hui Deng Yin Mei Johannes Allotey Ying-He Celeste Lü Gabriella Hodosán Oleg Smirnov 《Research in Astronomy and Astrophysics》 2025年第4期173-182,共10页
The Square Kilometre Array(SKA)has the potential to revolutionize astronomical research through its unparalleled precision.A critical aspect of SKA imaging is the computation of the UVW coordinates,which must be accur... The Square Kilometre Array(SKA)has the potential to revolutionize astronomical research through its unparalleled precision.A critical aspect of SKA imaging is the computation of the UVW coordinates,which must be accurate and reliable for the development of the SKA scientific data processor.Katpoint is the current method used to calculate UVW in Meer KAT.Using a pseudo-source,we employ a simple cross-product method to determine UVWs.In this study,we explore the applicability of Katpoint for SKA1-low and SKA1-mid and evaluate its precision.The conventional method,CALC/Omni UV,and Katpoint were quantitatively assessed through simulations.The results indicate that Katpoint exhibits substantial accuracy with MeerKAT compared to traditional techniques.However,its precision is slightly inadequate for the long baselines of SKA1.We improved the precision of Katpoint by identifying optimal offset values for pseudo-sources on the SKA1 telescope through simulation,finding a 0°.11 offset suitable for SKA1-Mid and a 0°.045 offset for SKA1-Low.Final result validations demonstrate that these adjustments render the computational accuracy fully comparable to the standard CALC/Omni UV method,which would meet the requirements of SKA high-precision imaging and offer a solution for high-precision imaging in radio interferometers. 展开更多
关键词 techniques:interferometric methods:data analysis techniques:image processing
在线阅读 下载PDF
Weighted-elastic-wave interferometric imaging of microseismic source location 被引量:4
16
作者 李磊 陈浩 王秀明 《Applied Geophysics》 SCIE CSCD 2015年第2期221-234,275,共15页
Knowledge of the locations of seismic sources is critical for microseismic monitoring. Time-window-based elastic wave interferometric imaging and weighted- elastic-wave (WEW) interferometric imaging are proposed and... Knowledge of the locations of seismic sources is critical for microseismic monitoring. Time-window-based elastic wave interferometric imaging and weighted- elastic-wave (WEW) interferometric imaging are proposed and used to locate modeled microseismic sources. The proposed method improves the precision and eliminates artifacts in location profiles. Numerical experiments based on a horizontally layered isotropic medium have shown that the method offers the following advantages: It can deal with Iow-SNR microseismic data with velocity perturbations as well as relatively sparse receivers and still maintain relatively high precision despite the errors in the velocity model. Furthermore, it is more efficient than conventional traveltime inversion methods because interferometric imaging does not require traveltime picking. Numerical results using a 2D fault model have also suggested that the weighted-elastic-wave interferometric imaging can locate multiple sources with higher location precision than the time-reverse imaging method. 展开更多
关键词 Microseismic monitoring seismic source location elastic wave interferometric imaging time-reverse imaging
在线阅读 下载PDF
Application of Seismic Interferometric Migration for Shallow Seismic High Precision Data Processing: A Case Study in the Shenhu Area 被引量:3
17
作者 WEI Jia LIU Huaishan +1 位作者 XING Lei DU Dong 《Journal of Ocean University of China》 SCIE CAS CSCD 2018年第1期46-52,共7页
The stability of submarine geological structures has a crucial influence on the construction of offshore engineering projects and the exploitation of seabed resources. Marine geologists should possess a detailed under... The stability of submarine geological structures has a crucial influence on the construction of offshore engineering projects and the exploitation of seabed resources. Marine geologists should possess a detailed understanding of common submarine geological hazards. Current marine seismic exploration methods are based on the most effective detection technologies. Therefore, current research focuses on improving the resolution and precision of shallow stratum structure detection methods. In this article, the feasibility of shallow seismic structure imaging is assessed by building a complex model, and differences between the seismic interferometry imaging method and the traditional imaging method are discussed. The imaging effect of the model is better for shallow layers than for deep layers because coherent noise produced by this method can result in an unsatisfactory imaging effect for deep layers. The seismic interference method has certain advantages for geological structural imaging of shallow submarine strata, which indicates continuous horizontal events, a high resolution, a clear fault, and an obvious structure boundary. The effects of the actual data applied to the Shenhu area can fully illustrate the advantages of the method. Thus, this method has the potential to provide new insights for shallow submarine strata imaging in the area. 展开更多
关键词 SEISMIC interferometric MIGRATION SHALLOW STRATA Shenhu area MIGRATION IMAGING
在线阅读 下载PDF
High sidelobe effects on interferometric coherence for circular SAR imaging geometry 被引量:2
18
作者 Leilei Kou Xiaoqing Wang +1 位作者 Maosheng Xiang Minhui Zhu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2013年第1期76-83,共8页
The coherence is a measure for the accuracy of the interferometric phase, and the synthetic aperture radar (SAR) inter- ferometric coherence is affected by several sources of the decor- relation noise. For the circu... The coherence is a measure for the accuracy of the interferometric phase, and the synthetic aperture radar (SAR) inter- ferometric coherence is affected by several sources of the decor- relation noise. For the circular SAR (CSAR) imaging geometry, the system response function is in the form of the Bessel function which brings a high sidelobe, and the high sidelobe of CSAR will be an important factor influencing the interferometric coherence. The effect of the high sidelobe on the coherence is analyzed and deduced. Based on the interferometric characteristics of the slight difference in the viewing angles and the potential pixel off- set in the interferometric SAR (InSAR) images, a relation between the radar impulse response and the coherence loss function is derived. From the relational model, the coherence loss function due to the high sidelobe of CSAR is then deduced, and compared with that of the conventional SAR. It is shown that the high sidelobe of CSAR focusing signal will severely affect the baseline decorre- lation and coregistration decorrelation. Simulation results confirm the theoretical analysis and quantitatively show the baseline and coregistration decorrelation degradation due to the high sidelobes of CSAR. 展开更多
关键词 interferometric coherence circular SAR (CSAR) high sidelobe interferometric SAR (InSAR) baseline decorrelation coregistration decorrelation.
在线阅读 下载PDF
A broadband digital receiving system with large dynamic range for solar radio observation 被引量:3
19
作者 Fa-Bao Yan Yang Liu +5 位作者 Ke Xu Zi-Qian Shang Yan-Rui Su Guang Lu Yao Chen Zhao Wu 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2020年第9期358-366,共9页
Solar radio spectra and their temporal evolution provide important clues to understand the energy release and electron acceleration process in the corona,and are commonly used to diagnose critical parameters such as t... Solar radio spectra and their temporal evolution provide important clues to understand the energy release and electron acceleration process in the corona,and are commonly used to diagnose critical parameters such as the magnetic field strength.However,previous solar radio telescopes cannot provide high-quality data with complete frequency coverage.Aiming to develop a generalized solar radio observing system,in this study,we designed a digital receiving system that could capture solar radio bursts with a broad bandwidth and a large dynamic range.A dual-channel analog-to-digital converter(ADC)printed circuit board assembly(PCBA)with a sampling rate of 14-bit,1.25 Giga samples per second(GSPS)cooperates with the field-programmable-gate-array(FPGA)chip XC7K410T in the design.This receiver could realize the real-time acquisition and preprocessing of high-speed data of up to 5 GB s^(-1),which ensures high time and spectral resolutions in observations.This receiver has been used in the solar radio spectrometer working in the frequency range of 35 to 40 GHz in Chashan Solar Observatory(CSO)established by Shandong University,and will be further developed and used in the solar radio interferometers.The full-power bandwidth of the PCBA in this receiving system could reach up to 1.5 GHz,and the performance parameters(DC–1.5 GHz)are obtained as follows:spur free dynamic range(SFDR)of 64.7–78.4 dB,signal-to-noise and distortion(SINAD)of 49.1–57.2 dB,and effective number of bits(ENOB)of>7.86 bit.Based on the receiver that we designed,real-time solar microwave dynamic spectra have been acquired and more solar microwave bursts with fine spectral structures are hopeful to be detected in the coming solar maximum. 展开更多
关键词 instrumentation:spectrographs techniques:spectroscopic techniques:interferometric
在线阅读 下载PDF
Frequency Domain Filtering SAR Interferometric Phase Noise Using the Amended Matrix Pencil Model 被引量:1
20
作者 Yandong Gao Shubi Zhang +1 位作者 Kefei Zhang Shijin Li 《Computer Modeling in Engineering & Sciences》 SCIE EI 2019年第5期349-363,共15页
Interferometric phase filtering is one of the key steps in interferometricsynthetic aperture radar (InSAR/SAR). However, the ideal filtering results are difficult toobtain due to dense fringe and low coherence regions... Interferometric phase filtering is one of the key steps in interferometricsynthetic aperture radar (InSAR/SAR). However, the ideal filtering results are difficult toobtain due to dense fringe and low coherence regions. Moreover, the InSAR/SAR datarange is relatively large, so the efficiency of interferential phase filtering is one of themajor problems. In this letter, we proposed an interferometric phase filtering methodbased on an amended matrix pencil and linear window mean filter. The combination ofthe matrix pencil and the linear mean filter are introduced to the interferometric phasefiltering for the first time. First, the interferometric signal is analyzed, and theinterferometric phase filtering is transformed into a local frequency estimation problem.Then, the local frequency is estimated using an amended matrix pencil at a window. Thelocal frequency can represent terrain changes, thus suggesting that the frequency can beaccurately estimated even in dense fringe regions. Finally, the local frequency is filteredby using a linear window mean filter, and the filtered phase is recovered. The proposedmethod is calculated by some matrices. Therefore, the computational complexity isreduced, and the efficiency of the interferometric phase filtering is improved.Experiments are conducted with simulated and real InSAR data. The proposed methodexhibits a better filtering effect and an ideal efficiency as compared with the traditionalfiltering method. 展开更多
关键词 interferometric phase FILTERING interferometric synthetic APERTURE radar local frequency estimation amended matrix PENCIL linear WINDOW mean filter
在线阅读 下载PDF
上一页 1 2 8 下一页 到第
使用帮助 返回顶部