According to the measurement principle of the traditional interferometer,a narrowband signal model is established and used,however,for wideband signals or multiple signals,this model is invalid.For the problems of dir...According to the measurement principle of the traditional interferometer,a narrowband signal model is established and used,however,for wideband signals or multiple signals,this model is invalid.For the problems of direction finding with interferometer for wideband signals and multiple signals scene,a frequency domain phase interferometer is proposed and the concrete implementation scheme is given.The proposed method computes the phase difference in frequency domain,and finds multi-target results with judging the spectrum amplitude changing,and uses the frequency phase difference to compute the arrival angle.Theoretical analysis and simulation results show that the proposed method effectively solves the problem of the angle estimation with phase interferometer for wideband signals,and has good performance in multiple signals scene with nonoverlapping spectrum or partially overlapping.In addition,the wider the signal bandwidth,the better direction finding performance of this algorithm.展开更多
A novel near-infrared all-fiber mode monitor based on a mini-two-path Mach-Zehnder interferometer(MTP-MZI)is proposed.The MTP-MZI mode monitor is created by fusing a section of(no-core fiber,NCF)and a(single-mode fibe...A novel near-infrared all-fiber mode monitor based on a mini-two-path Mach-Zehnder interferometer(MTP-MZI)is proposed.The MTP-MZI mode monitor is created by fusing a section of(no-core fiber,NCF)and a(single-mode fiber,SMF)together with an optical fiber fusion splicer,establishing two distinct centimeter-level optical transmission paths.Since the high-order modes in NCF transmit near-infrared light more sensitively to curvature-induced energy leakage than the fundamental mode in SMF,the near-infrared high-order mode light leaks out of NCF when the curvature changes,causing the MTP-MZI transmission spectrum to change.By ana⁃lyzing the relationship between the curvature,transmission spectrum,and spatial frequency spectrum,the modes involved in the interference can be studied,thereby revealing the mode transmission characteristics of near-infra⁃red light in optical fibers.In the verification experiments,higher-order modes were excited by inserting a novel hollow-core fiber(HCF)into the MTP-MZI.When the curvature of the MTP-MZI changes,the near-infrared light high-order mode introduced into the device leaks out,causing the transmission spectrum to return to its origi⁃nal state before bending and before the HCF was spliced.The experimental results demonstrate that the MTP-MZI mode monitor can monitor the fiber modes introduced from the external environment,providing both theoretical and experimental foundations for near-infrared all-fiber mode monitoring in optical information systems.展开更多
The gravitational memory effect manifests gravitational nonlinearity,degenerate vacua,and asymptotic symmetries;its detection is considered challenging.We propose using a space-borne interferometer to detect memory si...The gravitational memory effect manifests gravitational nonlinearity,degenerate vacua,and asymptotic symmetries;its detection is considered challenging.We propose using a space-borne interferometer to detect memory signals from stellar-mass binary black holes(BBHs),typically targeted by ground-based detectors.We use DECIGO detector as an example.Over 5 years,DECIGO is estimated to detect approximately 2,036 memory signals(SNRs>3)from stellar-mass BBHs.Simulations used frequency-domain memory waveforms for direct SNR estimation.Predictions utilized a GWTC-3 constrained BBH population model(Power law+Peak mass,DEFAULT spin,Madau-Dickinson merger rate).The analysis used conservative lower merger rate limits and considered orbital eccentricity.The high detection rate stems from strong memory signals within DECIGO’s bandwidth and the abundance of stellar-mass BBHs.This substantial and conservative detection count enables statistical use of the memory effect for fundamental physics and astrophysics.DECIGO exemplifies that space interferometers may better detect memory signals from smaller mass binaries than their typical targets.Detectors in lower frequency bands are expected to find strong memory signals from∼10^(4)M⊙binaries.展开更多
In x-ray dark-field imaging using dual phase grating interferometer,multi-contrast signals are extracted from a set of acquired phase-stepping data by using the least-squares fitting algorithm.The extracted mean inten...In x-ray dark-field imaging using dual phase grating interferometer,multi-contrast signals are extracted from a set of acquired phase-stepping data by using the least-squares fitting algorithm.The extracted mean intensity,amplitude and visibility signals may be intrinsically biased.However,it is still unclear how large these biases are and how the data acquisition parameters influence the biases in the extracted signals.This work set out to address these questions.Analytical expressions of the biases of the extracted signals were theoretically derived by using a second-order Taylor series expansion.Extensive numerical simulations were performed to validate the theoretical results.It is illustrated that while the estimated mean intensity signal is always unbiased,the estimated amplitude and visibility signals are both positively biased.While the biases of the estimated amplitude signals are proportional to the inverse of the total number of phase steps,the biases of the estimated visibility signals are inversely proportional to the product of the total number of phase steps and the mean number of photons counted per phase step.Meanwhile,it is demonstrated that the dependence of the biases on the mean visibility is quite different from that of Talbot-Lau interferometer due to the difference in the intensity model.We expect that these results can be useful for data acquisition optimizations and interpretation of x-ray dark-field images.展开更多
A compact and highly sensitive gas pressure and temperature sensor based on Fabry-Pérot interferometer(FPI)and fiber Bragg grating(FBG)is proposed and demonstrated experimentally in this paper.The theoretical mod...A compact and highly sensitive gas pressure and temperature sensor based on Fabry-Pérot interferometer(FPI)and fiber Bragg grating(FBG)is proposed and demonstrated experimentally in this paper.The theoretical model for pressure and temperature sensing is established.Building on this foundation,a novel micro silicon cavity sensor structure sensitive to pressure is devised downstream of an FBG.The concept of separate measurement and the mechanisms enhancing pressure sensitivity are meticulously analyzed,and the corresponding samples are fabricated.The experimental results indicate that the pressure sensitivity of the sensor is-747.849 nm/MPa in 0—100 k Pa and its linearity is 99.7%and it maintains good stability in 150 min.The sensor offers the advantages of compact size,robust construction,easy fabrication,and high sensitivity,making it potentially valuable for micro-pressure application.展开更多
Temporal optics,which enables lossless manipulation of ultrafast pulses,offers a new dimension for the regulation of quantum optical fields.In this paper,we established a temporal Fourier transform(TF)system based on ...Temporal optics,which enables lossless manipulation of ultrafast pulses,offers a new dimension for the regulation of quantum optical fields.In this paper,we established a temporal Fourier transform(TF)system based on a four-wave mixing(FWM)time lens and constructed a full quantum theoretical model for the resulting temporal SU(1,1)interferometer.This interferometer has high temporal resolution,can impose interference in both time and frequency domains,and is sensitive to the phase derivative.By introducing linear time-varying phase modulation,we achieved sub-picosecond precision in temporal autocorrelation measurements and generatedan optical frequency comb with a fixed interval based on a feedback iteration mechanism.Theoretical analysis revealsthe crucial regulatory role of time-frequency coupling in quantum interference,providing novel solutions for ultrafast quantum imaging,temporal mode encoding,and the generation of optical frequency quantization.展开更多
The mathematical model of 4He quantum interferometer gyroscope is presented. The model includes the driven equation, the current equation and the position equation. Therefore, it can sufficiently describe the gyro- sc...The mathematical model of 4He quantum interferometer gyroscope is presented. The model includes the driven equation, the current equation and the position equation. Therefore, it can sufficiently describe the gyro- scope system. The driven equation shows the thermally driven gyroscope can work for a long time but the pres- sure driven one cannot. From the current equation, the superfluid currents passing through the weak link contain the AC currents which show the rotation flux, and other currents caused by drive. As shown in the position equa- tion, the displacement of diaphragm is the only detectable parameter in the gyroscope system. The model is tested by the simulations based on experimental parameters, and can be used to research performance of the gyroscope and analyse the gyroscope error.展开更多
A distributed optical fiber disturbance detection system consisted of a Sagnac interferometer and a Mach-Zehnder interferometer is demonstrated. Two interferometers outputs are connected to an electric band-pass filte...A distributed optical fiber disturbance detection system consisted of a Sagnac interferometer and a Mach-Zehnder interferometer is demonstrated. Two interferometers outputs are connected to an electric band-pass filter via a detector respectively. The central frequencies of the two filters are selected adaptively according to the disturbance frequency. The disturbance frequency is obtained by either frequency spectrum of the two interferometers outputs. An alarm is given out only when the Sagnac interferometer output is changed. A disturbance position is determined by calculating a time difference with a cross-correlation method between the filter output connected to the Sagnac interferometer and derivative of the filter output connected to the Mach-Zehnder interferometer. The frequency spectrum, derivative and cross-correlation are obtained by a signal processing system. Theory analysis and simulation results are presented. They show that the system structure and location method are effective, accurate, and immune to environmental variations.展开更多
A wide-range and phase-locked Michelson interferometer technique is described. This technique combined with femtosecond laser is used to measure the spectrum of the rare-earth ion Nd:YVO4, which presents very high si...A wide-range and phase-locked Michelson interferometer technique is described. This technique combined with femtosecond laser is used to measure the spectrum of the rare-earth ion Nd:YVO4, which presents very high signal to noise ratio of interferometric intensity output and higher spectral resolution than traditional grating spectrophotometer.展开更多
A three-wave based laser polarimeter/interferometer and a CO_(2)laser dispersion interferometer are used to determine the electron and current density profiles on a Chinese fusion engineering test reactor(CFETR).Radia...A three-wave based laser polarimeter/interferometer and a CO_(2)laser dispersion interferometer are used to determine the electron and current density profiles on a Chinese fusion engineering test reactor(CFETR).Radiation shielding is designed for the combination of polarimeter/interferometer and CO_(2)dispersion interferometer.Furthermore,neutronics models of the two systems are developed based on the engineering-integrated design of CFETR polarimeter/interferometer and CO_(2)dispersion interferometer and the major material components of CFETR.The polarimeter/interferometer and CO_(2)dispersion interferometer's neutron and photon transport simulations were performed using the Monte Carlo neutral transport code to determine the energy deposition and neutron energy spectrum of the optical mirrors.The energy depositions of the first mirrors on the polarimeter/interferometer are reduced by three orders with the whole shielding.Since the mirrors of CO_(2)dispersion interferometer are very close to the diagnostic first wall,shielding space is limited and the CO_(2)dispersion interferometer energy deposition is higher than that of the polarimeter/interferometer.The dose rate after shutdown106s in the back-drawer structure has been estimated to be 83μSv h^(-1)when the radiation shield is filled in the diagnostic shielding modules,which is below the design threshold of 100μSv h^(-1).Radiation shielding design plays a key role in successfully applying polarimeter/interferometer and CO_(2)dispersive interferometer in CFETR.展开更多
A polarization-maintaining (PM) fiber Mach-Zehnder (MZ) interferometer has been established to measure the EO effect of very thin film materials with optical anisotropy. Unlike a common MZ interferometer, all the ...A polarization-maintaining (PM) fiber Mach-Zehnder (MZ) interferometer has been established to measure the EO effect of very thin film materials with optical anisotropy. Unlike a common MZ interferometer, all the components are connected via polarization-maintaining fibers. At the same time, a polarized DFB laser with a maximum power output of 10mW is adopted as the light source to induce a large extinction ratio. Here,we take it to determine the electro-optical coefficients of a very thin superlattice structure with GaAs, KTP, and GaN as comparative samples. The measured EO coefficients show good comparability with the others.展开更多
A distinct method to show a quantum object behaving both as wave and as particle is proposed and described in some detail. We make a systematic analysis using the elementary methodology of quantum mechanics upon Young...A distinct method to show a quantum object behaving both as wave and as particle is proposed and described in some detail. We make a systematic analysis using the elementary methodology of quantum mechanics upon Young's two-slit interferometer and the Mach-Zehnder two-arm interferometer with the focus placed on how to measure the interference pattern (wave nature) and the which-way information (particle nature) of quantum objects. We design several schemes to simultaneously acquire the which-way information for an individual quantum object and the high-contrast interference pattern for an ensemble of these quantum objects by placing two sets of measurement instruments that are well separated in space and whose perturbation of each other is negligibly small within the interferometer at the same time. Yet, improper arrangement and cooperation of these two sets of measurement instruments in the interferometer would lead to failure of simultaneous observation of wave and particle behaviors. The internal freedoms of quantum objects could be harnessed to probe both the which-way information and the interference pattern for the center-of-mass motion. That quantum objects can behave beyond the wave-particle duality and the complementarity principle would stimulate new conceptual examination and exploration of quantum theory at a deeper level.展开更多
A novel fiber optic moiréinterferometer has been developed and demonstrated.A He-Ne laser and three high birefringence fibers were used to configurate a fiber optic interferometer.The moiréfringe patterns fo...A novel fiber optic moiréinterferometer has been developed and demonstrated.A He-Ne laser and three high birefringence fibers were used to configurate a fiber optic interferometer.The moiréfringe patterns formed by the interferometer depend on the arrangement of three fiber ends.The experiment results and the intensity distribution function of the interference patterns are given.展开更多
Accurate prediction of hypersonic boundary-layer transition plays an important role in thermal protection system design of hypersonic vehicles.Restricted by the capability of spatial diagnostics for hypersonic boundar...Accurate prediction of hypersonic boundary-layer transition plays an important role in thermal protection system design of hypersonic vehicles.Restricted by the capability of spatial diagnostics for hypersonic boundary-layer study,quite a lot of problems of hypersonic boundary-layer transition,such as nonlinearity and receptivity,remain outstanding.This work reports the application of focused laser differential interferometer to instability wave development across hypersonic boundary-layer on a flared cone model.To begin with,the focused laser differential interferometer is designed and set up in a Mach number 6 hypersonic quiet wind tunnel with the focal point in the laminar boundary-layer of a 5 degree half-angle flared cone model.Afterwards,instability experiments are carried out by traversing the focal point throughout the hypersonic boundary-layer and the density fluctuation along the boundary-layer profile is measured and analyzed.The results show that three types of instability waves ranging from 10 k Hz to over 1 MHz are co-existing in the hypersonic boundary-layer,indicating the powerful capability of focused laser differential interferometer in dynamic response resolution for instability wave study in hypersonic flow regime;furthermore,quantitative analyses including spectra and bicoherence analysis of instability waves throughout the hypersonic boundary-layer for both cold and heated cone models are performed.展开更多
X-ray Talbot-Lau interferometer has been used most widely to perform x-ray phase-contrast imaging with a con- ventional low-brilliance x-ray source, and it yields high-sensitivity phase and dark-field images of sample...X-ray Talbot-Lau interferometer has been used most widely to perform x-ray phase-contrast imaging with a con- ventional low-brilliance x-ray source, and it yields high-sensitivity phase and dark-field images of samples producing low absorption contrast, thus beating tremendous potential for future clinical diagnosis. In this work, by changing the accel- erating voltage of the x-ray tube from 35 kV to 45 kV, x-ray phase-contrast imaging of a test sample is performed at each integer value of the accelerating voltage to investigate the characteristic of an x-ray Talbot-Lau interferometer (located in the Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Japan) versus tube voltage. Ex- perimental results and data analysis show that within a range this x-ray Talbot-Lau interferometer is not sensitive to the accelerating voltage of the tube with a constant fringe visibility of ~ 44%. This x-ray Talbot-Lau interferometer research demonstrates the feasibility of a new dual energy phase-contrast x-ray imaging strategy and the possibility to collect a refraction spectrum.展开更多
A phase-sensitive optical time domain reflectometer (φ-OTDR) based on a 120°-phase-difference Michelson in- terferometer is proposed. The Michelson interferometer with arm difference of 4m is used to test the ...A phase-sensitive optical time domain reflectometer (φ-OTDR) based on a 120°-phase-difference Michelson in- terferometer is proposed. The Michelson interferometer with arm difference of 4m is used to test the phase difference between the Rayleigh scattering from two sections of the fiber. A new demodulation method called the inverse transmission matrix demodulation scheme is utilized to demodulate the distributed phase from the backward scattering along the long fiber, The experimental results show that the 120°-phase-difference inter- ferometer φ-OTDR can detect the phase along the 3km fiber, and the acoustic signal within the whole human hearing range of 20 Hz-20 kHz is reproduced accurately and quickly.展开更多
In this paper, magnetic fluid(MF), a new type of optical functional nanomaterial with interesting optical characteristics under the external magnetic field, is adopted to form a novel fiber-optic magnetic field sensor...In this paper, magnetic fluid(MF), a new type of optical functional nanomaterial with interesting optical characteristics under the external magnetic field, is adopted to form a novel fiber-optic magnetic field sensor. The proposed sensor is based on Mach-Zehnder interferometer (MZI) and has a multimode-singlemode-multimode(MSM) fiber structure. The MSM structure was fabricated by splicing a section of uncoated single mode fiber (SMF) between two short sections of multimode fibers(MMFs) using a fiber fusion splicer. The magnetic field sensing probe was made by inserting the fiberoptic structure in an MF-filled capillary tube. Variations in an external magnetic field is seen to cause changes in the refractive index of MF. This tunable change in the refractive index with magnetic field strengths between 0.6 mT to 21.4 mT produces a shift in the peak position of the wavelength. The shift of the valley wavelength with magnetic field intensity has a good linearity of up to 99.6%. The achieved sensitivity of the proposed magnetic field sensor is 0.123 nm/mT, which is improved by several folds compared with those of most of the other reported MF-based magnetic field sensors. Furthermore, we build the corresponding circuit-based measurement system, and the experimental results show that the voltage change indirectly reflects the change of the external magnetic field strength. Therefore, this provides the potential to fiber-based magnetic field sensing applications.展开更多
An ultrasonic sensitivity-improved fiber-optic Fabry-Perot interferometer (FPI) is proposed and employed for ultra- sonic imaging of seismic physical models (SPMs). The FPI comprises a flexible ultra-thin gold fil...An ultrasonic sensitivity-improved fiber-optic Fabry-Perot interferometer (FPI) is proposed and employed for ultra- sonic imaging of seismic physical models (SPMs). The FPI comprises a flexible ultra-thin gold film and the end face of a graded-index multimode fiber (MMF), both of which are enclosed in a ceramic tube. The MMF in a specified length can collimate the diverged light beam and compensate for the light loss inside the air cavity, leading to an increased spectral fringe visibility and thus a steeper spectral slope. By using the spectral sideband filtering technique, the collimated FP1 shows an improved ultrasonic response. Moreover, two-dimensional images of two SPMs are achieved in air by recon- structing the pulse-echo signals through using the time-of-flight approach. The proposed sensor with easy fabrication and compact size can be a good candidate for high-sensitivity and high-precision nondestructive testing of SPMs.展开更多
A Sagnac fiber interferometer with the population grating formed in saturable erbium-doped fiber(EDF)for fiber Bragg grating(FBG)dynamic strain sensing is proposed.In this configuration,a semiconductor optical amplifi...A Sagnac fiber interferometer with the population grating formed in saturable erbium-doped fiber(EDF)for fiber Bragg grating(FBG)dynamic strain sensing is proposed.In this configuration,a semiconductor optical amplifier(SOA)-based fiber ring laser with an FBG reflector is employed in the sensing part and a Sagnac interferometer based on transient two-wave mixing(TWM)via dynamic population gratings in single-mode polarization maintaining erbium-doped fiber(PM-EDF)is used in this detecting part.Experimental results show that the Sagnac fiber interferometer detection system can stably respond to dynamic strains at high frequencies.As an example of application,the response of the sensor system to continuous sinusoidal ultrasonic signals is presented.The proposed simple and robust configuration has an all-fiber design based on commercially available elements,which makes it promising for applications in fiber optic ultrasonic sensors.展开更多
A self-mixing interferometer(SMI)with resolution twenty times higher than that of a conventional interferometer is developed by multiple reflections.Only by employing a simple external reflecting mirror,the multiple-p...A self-mixing interferometer(SMI)with resolution twenty times higher than that of a conventional interferometer is developed by multiple reflections.Only by employing a simple external reflecting mirror,the multiple-pass optical configuration can be constructed.The advantage of the configuration is simple and easy to make the light re-injected back into the laser cavity.Theoretical analysis shows that the resolution of measurement is scalable by adjusting the number of reflections.The experiment shows that the proposed method has the optical resolution of approximateλ/40.The influence of displacement sensitivity gain(G)is further analyzed and discussed in practical experiments.展开更多
文摘According to the measurement principle of the traditional interferometer,a narrowband signal model is established and used,however,for wideband signals or multiple signals,this model is invalid.For the problems of direction finding with interferometer for wideband signals and multiple signals scene,a frequency domain phase interferometer is proposed and the concrete implementation scheme is given.The proposed method computes the phase difference in frequency domain,and finds multi-target results with judging the spectrum amplitude changing,and uses the frequency phase difference to compute the arrival angle.Theoretical analysis and simulation results show that the proposed method effectively solves the problem of the angle estimation with phase interferometer for wideband signals,and has good performance in multiple signals scene with nonoverlapping spectrum or partially overlapping.In addition,the wider the signal bandwidth,the better direction finding performance of this algorithm.
基金Supported by the Central Government Guidance on Local Science and Technology Development Funds(2023ZY1023)the Six Talent Peaks Project in Jiangsu Province(KTHY-052).
文摘A novel near-infrared all-fiber mode monitor based on a mini-two-path Mach-Zehnder interferometer(MTP-MZI)is proposed.The MTP-MZI mode monitor is created by fusing a section of(no-core fiber,NCF)and a(single-mode fiber,SMF)together with an optical fiber fusion splicer,establishing two distinct centimeter-level optical transmission paths.Since the high-order modes in NCF transmit near-infrared light more sensitively to curvature-induced energy leakage than the fundamental mode in SMF,the near-infrared high-order mode light leaks out of NCF when the curvature changes,causing the MTP-MZI transmission spectrum to change.By ana⁃lyzing the relationship between the curvature,transmission spectrum,and spatial frequency spectrum,the modes involved in the interference can be studied,thereby revealing the mode transmission characteristics of near-infra⁃red light in optical fibers.In the verification experiments,higher-order modes were excited by inserting a novel hollow-core fiber(HCF)into the MTP-MZI.When the curvature of the MTP-MZI changes,the near-infrared light high-order mode introduced into the device leaks out,causing the transmission spectrum to return to its origi⁃nal state before bending and before the HCF was spliced.The experimental results demonstrate that the MTP-MZI mode monitor can monitor the fiber modes introduced from the external environment,providing both theoretical and experimental foundations for near-infrared all-fiber mode monitoring in optical information systems.
基金supported by the National Natural Science Foundation of China(Grant Nos.11633001,11920101003,and 12205222 for S.H.)the Key Program of the National Natural Science Foundation of China(Grant No.12433001)+1 种基金the Strate-gic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB23000000)the National Key Research and Development Program of China(Grant No.2021YFC2203001 for Z.C.Z.).
文摘The gravitational memory effect manifests gravitational nonlinearity,degenerate vacua,and asymptotic symmetries;its detection is considered challenging.We propose using a space-borne interferometer to detect memory signals from stellar-mass binary black holes(BBHs),typically targeted by ground-based detectors.We use DECIGO detector as an example.Over 5 years,DECIGO is estimated to detect approximately 2,036 memory signals(SNRs>3)from stellar-mass BBHs.Simulations used frequency-domain memory waveforms for direct SNR estimation.Predictions utilized a GWTC-3 constrained BBH population model(Power law+Peak mass,DEFAULT spin,Madau-Dickinson merger rate).The analysis used conservative lower merger rate limits and considered orbital eccentricity.The high detection rate stems from strong memory signals within DECIGO’s bandwidth and the abundance of stellar-mass BBHs.This substantial and conservative detection count enables statistical use of the memory effect for fundamental physics and astrophysics.DECIGO exemplifies that space interferometers may better detect memory signals from smaller mass binaries than their typical targets.Detectors in lower frequency bands are expected to find strong memory signals from∼10^(4)M⊙binaries.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.U1532113,11475170,11905041)Anhui Provincial Natural Science Foundation(Grant No.2208085MA18)Fundamental Research Funds for the Central Universities(Grant No.JZ2022HGTB0244)。
文摘In x-ray dark-field imaging using dual phase grating interferometer,multi-contrast signals are extracted from a set of acquired phase-stepping data by using the least-squares fitting algorithm.The extracted mean intensity,amplitude and visibility signals may be intrinsically biased.However,it is still unclear how large these biases are and how the data acquisition parameters influence the biases in the extracted signals.This work set out to address these questions.Analytical expressions of the biases of the extracted signals were theoretically derived by using a second-order Taylor series expansion.Extensive numerical simulations were performed to validate the theoretical results.It is illustrated that while the estimated mean intensity signal is always unbiased,the estimated amplitude and visibility signals are both positively biased.While the biases of the estimated amplitude signals are proportional to the inverse of the total number of phase steps,the biases of the estimated visibility signals are inversely proportional to the product of the total number of phase steps and the mean number of photons counted per phase step.Meanwhile,it is demonstrated that the dependence of the biases on the mean visibility is quite different from that of Talbot-Lau interferometer due to the difference in the intensity model.We expect that these results can be useful for data acquisition optimizations and interpretation of x-ray dark-field images.
基金supported in part by the National Natural Science Foundation of China(Nos.61735014 and 61927812)the Shaanxi Provincial Education Department(No.18JS093)+2 种基金the Natural Science Basic Research Program of Shaanxi Province(No.2024JC-YBMS-530)the Operation Fund of Logging Key Laboratory of Group Company(No.2021DQ0107-11)the Graduate Student Innovation Fund of Xi’an Shiyou University(No.YCS23213193)。
文摘A compact and highly sensitive gas pressure and temperature sensor based on Fabry-Pérot interferometer(FPI)and fiber Bragg grating(FBG)is proposed and demonstrated experimentally in this paper.The theoretical model for pressure and temperature sensing is established.Building on this foundation,a novel micro silicon cavity sensor structure sensitive to pressure is devised downstream of an FBG.The concept of separate measurement and the mechanisms enhancing pressure sensitivity are meticulously analyzed,and the corresponding samples are fabricated.The experimental results indicate that the pressure sensitivity of the sensor is-747.849 nm/MPa in 0—100 k Pa and its linearity is 99.7%and it maintains good stability in 150 min.The sensor offers the advantages of compact size,robust construction,easy fabrication,and high sensitivity,making it potentially valuable for micro-pressure application.
文摘Temporal optics,which enables lossless manipulation of ultrafast pulses,offers a new dimension for the regulation of quantum optical fields.In this paper,we established a temporal Fourier transform(TF)system based on a four-wave mixing(FWM)time lens and constructed a full quantum theoretical model for the resulting temporal SU(1,1)interferometer.This interferometer has high temporal resolution,can impose interference in both time and frequency domains,and is sensitive to the phase derivative.By introducing linear time-varying phase modulation,we achieved sub-picosecond precision in temporal autocorrelation measurements and generatedan optical frequency comb with a fixed interval based on a feedback iteration mechanism.Theoretical analysis revealsthe crucial regulatory role of time-frequency coupling in quantum interference,providing novel solutions for ultrafast quantum imaging,temporal mode encoding,and the generation of optical frequency quantization.
基金Supported by the National Natural Science Foundation of China(61074162)the Ph.D.Program Foundation of Ministry of Education of China(200802870011)~~
文摘The mathematical model of 4He quantum interferometer gyroscope is presented. The model includes the driven equation, the current equation and the position equation. Therefore, it can sufficiently describe the gyro- scope system. The driven equation shows the thermally driven gyroscope can work for a long time but the pres- sure driven one cannot. From the current equation, the superfluid currents passing through the weak link contain the AC currents which show the rotation flux, and other currents caused by drive. As shown in the position equa- tion, the displacement of diaphragm is the only detectable parameter in the gyroscope system. The model is tested by the simulations based on experimental parameters, and can be used to research performance of the gyroscope and analyse the gyroscope error.
基金Project supported by the Innovation Program of Education Commission of Shanghai Municipality (Grant No.10YZ19)the Shanghai Leading Academic Discipline Project (Grant No.S30108)the Shanghai Key Laboratory of Specialty Fiber Optics and Optical Access Networks (Grant No.SKLSFO200903)
文摘A distributed optical fiber disturbance detection system consisted of a Sagnac interferometer and a Mach-Zehnder interferometer is demonstrated. Two interferometers outputs are connected to an electric band-pass filter via a detector respectively. The central frequencies of the two filters are selected adaptively according to the disturbance frequency. The disturbance frequency is obtained by either frequency spectrum of the two interferometers outputs. An alarm is given out only when the Sagnac interferometer output is changed. A disturbance position is determined by calculating a time difference with a cross-correlation method between the filter output connected to the Sagnac interferometer and derivative of the filter output connected to the Mach-Zehnder interferometer. The frequency spectrum, derivative and cross-correlation are obtained by a signal processing system. Theory analysis and simulation results are presented. They show that the system structure and location method are effective, accurate, and immune to environmental variations.
基金ACKNOWLEDGMENTS This work was supported by the National Natural Science Foundation of China (No.60677051 and No.10774193) and the National Key Basic Research Special Foundation (No.G2010CB923204).
文摘A wide-range and phase-locked Michelson interferometer technique is described. This technique combined with femtosecond laser is used to measure the spectrum of the rare-earth ion Nd:YVO4, which presents very high signal to noise ratio of interferometric intensity output and higher spectral resolution than traditional grating spectrophotometer.
基金the National MCF Energy R&D Program of China(Nos.2019YFE03040003 and 2017YFE0301205)Key Program of Research and Development of Hefei Science Center,CAS(No.2019HSC-KPRD001)supported in part by the Collaborative Research Program of the Research Institute for Applied Mechanics,Kyushu University。
文摘A three-wave based laser polarimeter/interferometer and a CO_(2)laser dispersion interferometer are used to determine the electron and current density profiles on a Chinese fusion engineering test reactor(CFETR).Radiation shielding is designed for the combination of polarimeter/interferometer and CO_(2)dispersion interferometer.Furthermore,neutronics models of the two systems are developed based on the engineering-integrated design of CFETR polarimeter/interferometer and CO_(2)dispersion interferometer and the major material components of CFETR.The polarimeter/interferometer and CO_(2)dispersion interferometer's neutron and photon transport simulations were performed using the Monte Carlo neutral transport code to determine the energy deposition and neutron energy spectrum of the optical mirrors.The energy depositions of the first mirrors on the polarimeter/interferometer are reduced by three orders with the whole shielding.Since the mirrors of CO_(2)dispersion interferometer are very close to the diagnostic first wall,shielding space is limited and the CO_(2)dispersion interferometer energy deposition is higher than that of the polarimeter/interferometer.The dose rate after shutdown106s in the back-drawer structure has been estimated to be 83μSv h^(-1)when the radiation shield is filled in the diagnostic shielding modules,which is below the design threshold of 100μSv h^(-1).Radiation shielding design plays a key role in successfully applying polarimeter/interferometer and CO_(2)dispersive interferometer in CFETR.
文摘A polarization-maintaining (PM) fiber Mach-Zehnder (MZ) interferometer has been established to measure the EO effect of very thin film materials with optical anisotropy. Unlike a common MZ interferometer, all the components are connected via polarization-maintaining fibers. At the same time, a polarized DFB laser with a maximum power output of 10mW is adopted as the light source to induce a large extinction ratio. Here,we take it to determine the electro-optical coefficients of a very thin superlattice structure with GaAs, KTP, and GaN as comparative samples. The measured EO coefficients show good comparability with the others.
基金supported by the National Natural Science Foundation of Chinathe Ministry of Science and Technology of ChinaChinese Academy of Sciences
文摘A distinct method to show a quantum object behaving both as wave and as particle is proposed and described in some detail. We make a systematic analysis using the elementary methodology of quantum mechanics upon Young's two-slit interferometer and the Mach-Zehnder two-arm interferometer with the focus placed on how to measure the interference pattern (wave nature) and the which-way information (particle nature) of quantum objects. We design several schemes to simultaneously acquire the which-way information for an individual quantum object and the high-contrast interference pattern for an ensemble of these quantum objects by placing two sets of measurement instruments that are well separated in space and whose perturbation of each other is negligibly small within the interferometer at the same time. Yet, improper arrangement and cooperation of these two sets of measurement instruments in the interferometer would lead to failure of simultaneous observation of wave and particle behaviors. The internal freedoms of quantum objects could be harnessed to probe both the which-way information and the interference pattern for the center-of-mass motion. That quantum objects can behave beyond the wave-particle duality and the complementarity principle would stimulate new conceptual examination and exploration of quantum theory at a deeper level.
文摘A novel fiber optic moiréinterferometer has been developed and demonstrated.A He-Ne laser and three high birefringence fibers were used to configurate a fiber optic interferometer.The moiréfringe patterns formed by the interferometer depend on the arrangement of three fiber ends.The experiment results and the intensity distribution function of the interference patterns are given.
基金the State Key Laboratory for Turbulence&Complex Systems of Peking University for their support in this studysupport of National Numerical Wind-tunnel(No.2018-ZT1A03)+1 种基金National Natural Science Foundation of China grant(No.11702106)Fundamental Research Funds for the Central Universities(2019kfyXKJC001)。
文摘Accurate prediction of hypersonic boundary-layer transition plays an important role in thermal protection system design of hypersonic vehicles.Restricted by the capability of spatial diagnostics for hypersonic boundary-layer study,quite a lot of problems of hypersonic boundary-layer transition,such as nonlinearity and receptivity,remain outstanding.This work reports the application of focused laser differential interferometer to instability wave development across hypersonic boundary-layer on a flared cone model.To begin with,the focused laser differential interferometer is designed and set up in a Mach number 6 hypersonic quiet wind tunnel with the focal point in the laminar boundary-layer of a 5 degree half-angle flared cone model.Afterwards,instability experiments are carried out by traversing the focal point throughout the hypersonic boundary-layer and the density fluctuation along the boundary-layer profile is measured and analyzed.The results show that three types of instability waves ranging from 10 k Hz to over 1 MHz are co-existing in the hypersonic boundary-layer,indicating the powerful capability of focused laser differential interferometer in dynamic response resolution for instability wave study in hypersonic flow regime;furthermore,quantitative analyses including spectra and bicoherence analysis of instability waves throughout the hypersonic boundary-layer for both cold and heated cone models are performed.
基金Project supported by the Major State Basic Research Development Program of China(Grant No.2012CB825800)the Science Fund for Creative Research Groups,China(Grant No.11321503)+1 种基金the National Natural Science Foundation of China(Grant Nos.11179004,10979055,11205189,and 11205157)the Japan–Asia Youth Exchange Program in Science(SAKURA Exchange Program in Science)Administered by the Japan Science and Technology Agency
文摘X-ray Talbot-Lau interferometer has been used most widely to perform x-ray phase-contrast imaging with a con- ventional low-brilliance x-ray source, and it yields high-sensitivity phase and dark-field images of samples producing low absorption contrast, thus beating tremendous potential for future clinical diagnosis. In this work, by changing the accel- erating voltage of the x-ray tube from 35 kV to 45 kV, x-ray phase-contrast imaging of a test sample is performed at each integer value of the accelerating voltage to investigate the characteristic of an x-ray Talbot-Lau interferometer (located in the Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Japan) versus tube voltage. Ex- perimental results and data analysis show that within a range this x-ray Talbot-Lau interferometer is not sensitive to the accelerating voltage of the tube with a constant fringe visibility of ~ 44%. This x-ray Talbot-Lau interferometer research demonstrates the feasibility of a new dual energy phase-contrast x-ray imaging strategy and the possibility to collect a refraction spectrum.
基金Supported by the National Natural Science Foundation of China under Grant Nos U0934001 and 11076028the Science and Technology Commission of Shanghai Municipality under Grant Nos 11DZ1140202 and 13XD1425400the Pudong New Area Science and Technology Development Fund of China under Grant No PKJ2012-D04
文摘A phase-sensitive optical time domain reflectometer (φ-OTDR) based on a 120°-phase-difference Michelson in- terferometer is proposed. The Michelson interferometer with arm difference of 4m is used to test the phase difference between the Rayleigh scattering from two sections of the fiber. A new demodulation method called the inverse transmission matrix demodulation scheme is utilized to demodulate the distributed phase from the backward scattering along the long fiber, The experimental results show that the 120°-phase-difference inter- ferometer φ-OTDR can detect the phase along the 3km fiber, and the acoustic signal within the whole human hearing range of 20 Hz-20 kHz is reproduced accurately and quickly.
基金supported by the National Natural Science Foundation of China(No.11274278)
文摘In this paper, magnetic fluid(MF), a new type of optical functional nanomaterial with interesting optical characteristics under the external magnetic field, is adopted to form a novel fiber-optic magnetic field sensor. The proposed sensor is based on Mach-Zehnder interferometer (MZI) and has a multimode-singlemode-multimode(MSM) fiber structure. The MSM structure was fabricated by splicing a section of uncoated single mode fiber (SMF) between two short sections of multimode fibers(MMFs) using a fiber fusion splicer. The magnetic field sensing probe was made by inserting the fiberoptic structure in an MF-filled capillary tube. Variations in an external magnetic field is seen to cause changes in the refractive index of MF. This tunable change in the refractive index with magnetic field strengths between 0.6 mT to 21.4 mT produces a shift in the peak position of the wavelength. The shift of the valley wavelength with magnetic field intensity has a good linearity of up to 99.6%. The achieved sensitivity of the proposed magnetic field sensor is 0.123 nm/mT, which is improved by several folds compared with those of most of the other reported MF-based magnetic field sensors. Furthermore, we build the corresponding circuit-based measurement system, and the experimental results show that the voltage change indirectly reflects the change of the external magnetic field strength. Therefore, this provides the potential to fiber-based magnetic field sensing applications.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61735014,61327012,and 61275088)the Scientific Research Program Funded by Shaanxi Provincial Education Department,China(Grant No.08JZ58)the Northwest University Graduate Innovation and Creativity Funds,China(Grant No.YZZ17088)
文摘An ultrasonic sensitivity-improved fiber-optic Fabry-Perot interferometer (FPI) is proposed and employed for ultra- sonic imaging of seismic physical models (SPMs). The FPI comprises a flexible ultra-thin gold film and the end face of a graded-index multimode fiber (MMF), both of which are enclosed in a ceramic tube. The MMF in a specified length can collimate the diverged light beam and compensate for the light loss inside the air cavity, leading to an increased spectral fringe visibility and thus a steeper spectral slope. By using the spectral sideband filtering technique, the collimated FP1 shows an improved ultrasonic response. Moreover, two-dimensional images of two SPMs are achieved in air by recon- structing the pulse-echo signals through using the time-of-flight approach. The proposed sensor with easy fabrication and compact size can be a good candidate for high-sensitivity and high-precision nondestructive testing of SPMs.
基金supported by the National Natural Science Foundation of China(No.51874064)
文摘A Sagnac fiber interferometer with the population grating formed in saturable erbium-doped fiber(EDF)for fiber Bragg grating(FBG)dynamic strain sensing is proposed.In this configuration,a semiconductor optical amplifier(SOA)-based fiber ring laser with an FBG reflector is employed in the sensing part and a Sagnac interferometer based on transient two-wave mixing(TWM)via dynamic population gratings in single-mode polarization maintaining erbium-doped fiber(PM-EDF)is used in this detecting part.Experimental results show that the Sagnac fiber interferometer detection system can stably respond to dynamic strains at high frequencies.As an example of application,the response of the sensor system to continuous sinusoidal ultrasonic signals is presented.The proposed simple and robust configuration has an all-fiber design based on commercially available elements,which makes it promising for applications in fiber optic ultrasonic sensors.
基金supported by the National Natural Science Foundation of China(Nos.61675174 and 61308048)
文摘A self-mixing interferometer(SMI)with resolution twenty times higher than that of a conventional interferometer is developed by multiple reflections.Only by employing a simple external reflecting mirror,the multiple-pass optical configuration can be constructed.The advantage of the configuration is simple and easy to make the light re-injected back into the laser cavity.Theoretical analysis shows that the resolution of measurement is scalable by adjusting the number of reflections.The experiment shows that the proposed method has the optical resolution of approximateλ/40.The influence of displacement sensitivity gain(G)is further analyzed and discussed in practical experiments.