Due to the deficiencies in the conventional multiple-receiver localization syste,.ns based on direction of arrival (DOA) such as system complexity of interferometer or array and ampli- tude/phase unbalance between m...Due to the deficiencies in the conventional multiple-receiver localization syste,.ns based on direction of arrival (DOA) such as system complexity of interferometer or array and ampli- tude/phase unbalance between multiple receiving channels and constraint on antenna configuration, a new radiated source localization method using the changing rate of phase difference (CRPD) measured by a long baseline interferometer (LBI) only is studied. To solve the strictly nonlinear problem, a two-stage closed-form solution is proposed. In the first stage, the DOA and its changing rate are estimated from the CRPD of each observer by the pseudolinear least square (PLS) method, and then in the second stage, the source position and velocity are found by another PLS minimiza- tion. The bias of the algorithm caused by the correlation between the measurement matrix and the noise in the second stage is analyzed. To reduce this bias, an instrumental variable (IV) method is derived. A weighted IV estimator is given in order to reduce the estimation variance. The proposed method does not need any initial guess and the computation is small. The Cramer-Rao lower bound (CRLB) and mean square error (MSE) are also analyzed. Simulation results show that the proposed method can be close to the CRLB with moderate Gaussian measurement noise.展开更多
An account of numerical solutions to the isothermal and flooded elastohydrodynamic lubrication(EHL)of a logarithmic profile roller,which is rolling over a flat plane,is given The analysis takes account of sideways fl...An account of numerical solutions to the isothermal and flooded elastohydrodynamic lubrication(EHL)of a logarithmic profile roller,which is rolling over a flat plane,is given The analysis takes account of sideways flow of lubricant in the inlet region of the contact When the results are presented in suitable non dimensional groups,it is shown that more uniformly pressure and shape of the film distributing in axial direction is taken place under light loading As the increase of the load,the end closure is displayed and the oil pressure rises sharply at the ends The seal action formed by the end closure makes the film thickness a little And the minimum film thickness is transferred from the central to the ends and the value is reduced rapidly As the increase of the speed,the end closure becomes much serious The optimum crowning value obtained in EHL state is larger than the design value obtained in elastostatic contact state for the same working conditions In order to verify the correctness of theory,optical interferometry is applied to measure the oil film thickness between a logarithmic profiled roller and a glass plate under pure rolling conditions It is found the agreement between numerical solutions and experiments is very good.展开更多
基金co-supported by the Foundation of National Defense Key Laboratory of China (No. 9140C860304)the National High Technology Research and Development Program of China (No. 2011AA7072048)
文摘Due to the deficiencies in the conventional multiple-receiver localization syste,.ns based on direction of arrival (DOA) such as system complexity of interferometer or array and ampli- tude/phase unbalance between multiple receiving channels and constraint on antenna configuration, a new radiated source localization method using the changing rate of phase difference (CRPD) measured by a long baseline interferometer (LBI) only is studied. To solve the strictly nonlinear problem, a two-stage closed-form solution is proposed. In the first stage, the DOA and its changing rate are estimated from the CRPD of each observer by the pseudolinear least square (PLS) method, and then in the second stage, the source position and velocity are found by another PLS minimiza- tion. The bias of the algorithm caused by the correlation between the measurement matrix and the noise in the second stage is analyzed. To reduce this bias, an instrumental variable (IV) method is derived. A weighted IV estimator is given in order to reduce the estimation variance. The proposed method does not need any initial guess and the computation is small. The Cramer-Rao lower bound (CRLB) and mean square error (MSE) are also analyzed. Simulation results show that the proposed method can be close to the CRLB with moderate Gaussian measurement noise.
基金This project is supported by National Natural Science Foundation of China (No.59475037).
文摘An account of numerical solutions to the isothermal and flooded elastohydrodynamic lubrication(EHL)of a logarithmic profile roller,which is rolling over a flat plane,is given The analysis takes account of sideways flow of lubricant in the inlet region of the contact When the results are presented in suitable non dimensional groups,it is shown that more uniformly pressure and shape of the film distributing in axial direction is taken place under light loading As the increase of the load,the end closure is displayed and the oil pressure rises sharply at the ends The seal action formed by the end closure makes the film thickness a little And the minimum film thickness is transferred from the central to the ends and the value is reduced rapidly As the increase of the speed,the end closure becomes much serious The optimum crowning value obtained in EHL state is larger than the design value obtained in elastostatic contact state for the same working conditions In order to verify the correctness of theory,optical interferometry is applied to measure the oil film thickness between a logarithmic profiled roller and a glass plate under pure rolling conditions It is found the agreement between numerical solutions and experiments is very good.