The ability to modulate an optical field via an electric field is regarded as a key function of electro-optic interconnects, which are used in optical communications and information-processing systems. One of the main...The ability to modulate an optical field via an electric field is regarded as a key function of electro-optic interconnects, which are used in optical communications and information-processing systems. One of the main devices required for such interconnects is the electro-optic modulator(EOM). Current EOMs based on electro-optic and electro-absorption effects often are bulky and power-inefficient due to the weak electro-optic properties of their constituent materials. Here, we propose a new mechanism to produce an arbitrary-waveform EOM based on quantum interference, in which both real and imaginary parts of the susceptibility are engineered coherently with super-high efficiency. Based on this EOM, a waveform interconnect from the voltage to the modulated optical absorption is realized. We expect that such a new type of electro-optic interconnect will have a broadrange of applications, including in optical communications and networks.展开更多
基金National Natural Science Foundation of China(NSFC)(11505100,11547035,11575071,11604147,11674337,61605225,91321101)Natural Science Foundation of Shanghai(16ZR1448400)+2 种基金Natural Science Foundation of Shandong Province(ZR2015AQ007)Strategic Priority Research Program(XDB01010200)Hundred Talents Program of the Chinese Academy of Sciences(CAS)(Y321311401)
文摘The ability to modulate an optical field via an electric field is regarded as a key function of electro-optic interconnects, which are used in optical communications and information-processing systems. One of the main devices required for such interconnects is the electro-optic modulator(EOM). Current EOMs based on electro-optic and electro-absorption effects often are bulky and power-inefficient due to the weak electro-optic properties of their constituent materials. Here, we propose a new mechanism to produce an arbitrary-waveform EOM based on quantum interference, in which both real and imaginary parts of the susceptibility are engineered coherently with super-high efficiency. Based on this EOM, a waveform interconnect from the voltage to the modulated optical absorption is realized. We expect that such a new type of electro-optic interconnect will have a broadrange of applications, including in optical communications and networks.