To solve the problem of the low interference success rate of air defense missile radio fuzes due to the unified interference form of the traditional fuze interference system,an interference decision method based Q-lea...To solve the problem of the low interference success rate of air defense missile radio fuzes due to the unified interference form of the traditional fuze interference system,an interference decision method based Q-learning algorithm is proposed.First,dividing the distance between the missile and the target into multiple states to increase the quantity of state spaces.Second,a multidimensional motion space is utilized,and the search range of which changes with the distance of the projectile,to select parameters and minimize the amount of ineffective interference parameters.The interference effect is determined by detecting whether the fuze signal disappears.Finally,a weighted reward function is used to determine the reward value based on the range state,output power,and parameter quantity information of the interference form.The effectiveness of the proposed method in selecting the range of motion space parameters and designing the discrimination degree of the reward function has been verified through offline experiments involving full-range missile rendezvous.The optimal interference form for each distance state has been obtained.Compared with the single-interference decision method,the proposed decision method can effectively improve the success rate of interference.展开更多
The us of stochastic resonance (SR) can effectively achieve the detection of weak signal in white noise and colored noise. However, SR in chaotic interference is seldom involved. In view of the requirements for the ...The us of stochastic resonance (SR) can effectively achieve the detection of weak signal in white noise and colored noise. However, SR in chaotic interference is seldom involved. In view of the requirements for the detection of weak signal in the actual project and the relationship between the signal, chaotic interference, and nonlinear system in the bistable system, a self-adaptive SR system based on genetic algorithm is designed in this paper. It regards the output signal-to-noise ratio (SNR) as a fitness function and the system parameters are jointly encoded to gain optimal bistable system parameters, then the input signal is processed in the SR system with the optimal system parameters. Experimental results show that the system can keep the best state of SR under the condition of low input SNR, which ensures the effective detection and process of weak signal in low input SNR.展开更多
基金National Natural Science Foundation of China(61973037)National 173 Program Project(2019-JCJQ-ZD-324).
文摘To solve the problem of the low interference success rate of air defense missile radio fuzes due to the unified interference form of the traditional fuze interference system,an interference decision method based Q-learning algorithm is proposed.First,dividing the distance between the missile and the target into multiple states to increase the quantity of state spaces.Second,a multidimensional motion space is utilized,and the search range of which changes with the distance of the projectile,to select parameters and minimize the amount of ineffective interference parameters.The interference effect is determined by detecting whether the fuze signal disappears.Finally,a weighted reward function is used to determine the reward value based on the range state,output power,and parameter quantity information of the interference form.The effectiveness of the proposed method in selecting the range of motion space parameters and designing the discrimination degree of the reward function has been verified through offline experiments involving full-range missile rendezvous.The optimal interference form for each distance state has been obtained.Compared with the single-interference decision method,the proposed decision method can effectively improve the success rate of interference.
基金Project supported by the National Natural Science Foundation of China(Grant No.61271011)
文摘The us of stochastic resonance (SR) can effectively achieve the detection of weak signal in white noise and colored noise. However, SR in chaotic interference is seldom involved. In view of the requirements for the detection of weak signal in the actual project and the relationship between the signal, chaotic interference, and nonlinear system in the bistable system, a self-adaptive SR system based on genetic algorithm is designed in this paper. It regards the output signal-to-noise ratio (SNR) as a fitness function and the system parameters are jointly encoded to gain optimal bistable system parameters, then the input signal is processed in the SR system with the optimal system parameters. Experimental results show that the system can keep the best state of SR under the condition of low input SNR, which ensures the effective detection and process of weak signal in low input SNR.